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Polycyclic aromatic hydrocarbons and related species have been 
suggested to play a key role in the astrochemical evolution of 
the interstellar medium. but the fonnatlon mechanism of even 
their simplest building block-the aromatic benzene molecule-
has remained elusive for decades. Here we demonstrate In crossed 
molecular beam experiments combined wlth electronic structure 
and statistical calculations that benzene (C&H,) can be synthesized 
via the barrierless. exoerglc reaction of the ethynyl radical and 1.3-
butadiene. C2H + H2CCHCHCH2 -+ GiH, + H. under single collision 
conditions. This reaction portrays the simplest representative of 
a reaction dass in which aromatic molecules with a benzene core 
<an be lormed from acydk precursors via barrierless reactions ol 
ethynyl radicals with substituted l,3-butadlene molecules. Unique 
gas-grain astrochemical models imply that this low-temperature 
route controls the synthesis of the very first aromatic ring from 
acyclic precursors in cold molecular clouds. such as in the Taurus 
Molecular Cloud. Rapid. subsequent barrlerless reactions of be".. 
zene with ethynyl radicals can 'ead to naphthalene-like structures 
thus effectively propagating the ethynyl-radlcal mediated lonna
tion of aromatic molecules in the interstellar medium. 
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ftolyC'jcJic aromatic hydrocarbons (PAHs) and related species 
r such as (de)hydrogenated, ionized, and substituted PAHs are 
presumed to be omnipresent in the intersteUar medium (ISM) 
(1, 2). P.>Ji-like species are suggested to account for up to 30% 
of the galactic interstellar carbon (2), have been implicated in the 
astrobiological evolution of the ISM (3), and provide nucleation 
sites for the formation of carbonaceous dust particles (4). They 
have been also linked to the unidentified infrared (VIR) emission 
bands observed in the range oB-14 ~ (3,300-700 cm-I) (5) and 
to the diffuse interstellar bands (DlBs) (6), discrete absorption 
features superimposed on the intersteUar extinction curve ran
ging fro:n the blue part of the visible (400 nm) to the near·infra· 
red (1.2 ~m). VIR bands have also been observed toward the 
Cigar Galaxy M82; DlBs are widespread in the ISM of the Local 
Group and into the distant universe (7). Current astrochemical 
models propose that the synthesis of the simplest building block 
of PAHs-the aromatic benzene molecule [C,H,;(XIAI H-is 
driven by ion-molecule reactions (8) of methane (CH.,), e~ylene 
(C,H.), and propargyl (C,H3) with C,H, + and C,H, + ions and 
involves Ct,Hs + ions of unknown structures. However, the vaJidity 
of these processes remains conjecture because they have neither 
been ve;ified computationally nor experimentally. Therefore, the 
formatien mechanisms of the simplest building block of PAH 
species in interstellar space-the aromatic benzene molecule as 
detected toward the planetary nebula CRL 618 (9)-have re
mained ~lusive to date. 

In this article, we present the results of crossed molecular beam 
reactions of D1-substituted ethynyl radicals [C,D; X' E+] with 1,3-
butadiene [H, CCHCHCH,; Xl Ag] and its D2- and D4-substituted 
counterparts. i.e., [H,CCDCDCH, ] and [D, CCHCHCo,]. By 
combining these data with electronic structure calculations and 
astrochemical models, we provide compelling evidence that the 
aromatic benzene molecule [c.H,;(XI AI.)] together with its acyc-
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lic l,3-hexadien-5-yne isomer [HCCCHCHCHCH,; XI A'] can be 
formed via a barrierless, single collision event involving the reac
tion of two neutral molecules: l,3-butadiene and the ethynyl radi
cal. This reaction presents the simplest representative of a reaction 
class in which aromatic molecules with a benzene core can be 
fonned from acyclic precurso~ via barrierless reactions of the 
ethynyl radicals with substituted l,3·butadiene molecules in the 
ISM such as in cold molecular clouds like the Taurus Molecular 
Cloud (TMG1). 

Results 
Electronic Structure Calculations. Our electronic structure calcula
tions indicate that the reaction proceeds without an entrance bar
rier (Fig. 1). Details of the calculations are compiled in Materials 
and Methods. Reaction pathways to two isomers were identified: 
fannadan of the aromatic benzene molecule and synthesis of the 
thennodynamically less stable, acyclic 1,3-hexadien-5-yne isomer. 
An initial addition of the ethynylic radical center to one of the 
tenninal carbon atoms of the l,3-butadiene molecule leads to 
an acyclic reaction intermediate [ill, which is stabilized by 
282 kJ mol-1 with respect to the reactants. From here, this colli
sion complex can undergo unimolecular decomposition by emit
ting a hydrogen atom via a tight exit transition state forming an 
acyclic c.H,; isomer: 1,3·hexadien-5·yne. The overall reaction 
was computed to be exoergic by 116 kJ mol-I. Alternatively, 
intermediate [ill can isomerize to the cyclic structure [i4]. This 
molecule represents a singly hydrogenated benzene molecule and 
can be formed from [i1] via an initial ring closure to [i2] followed 
by a hydrogen shift or through an initial hydrogen shift forming 
[i3] lollowed by cyclization to [i4]. A comparison of the height 
of transition states involved in the initial steps of the reaction se
quence [il]-+ [i2] -+ [i4] versus [il] -+ [i3] -+ [i4] suggests that [ill 
preferentially undergoes ring closure foUowed by hydrogen 
migration. Which of both pathways is the dominating route of 
benzene fonnation? Our statistical calculations reveal that, over 
a range of collision energies from 0 to 50 kJ mol-I, near 99% of 
all the benzene molecules are formed through the reaction 
sequence [iI] -+ [i2] -+ [i4], whereas only 1 % of the benzene mo
lecules are synthesized via the route involving [iI] .... [i3] .... [i4]. 
Once formed, the cyclic intermediate [i4] emits a hydrogen atom 
via a tight exit transition state located 13 kJ rnol- I above the 
separated products forming the aromatic benzene molecule; this 
barrier correlates well with an experimentally determined activa
tion energy of 18.0 ± 1.1 kJ mol-1 for the reversed reaction of an 
addition of a hydrogen atom to benzene as determined over a 
temperature range of 298-400 K (10). Our calculations suggest 
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Fig. 1. Potential energy surface for the reaction of ground state ethynyl 
radicals IC2 H(X'L)+] with l,3-butadiene [CHzCHCHCH,(X1 Ag)1. Relative 
energies 2i~e given in units of kllojoules per mole. Energies in parenthesis 
refer to t'!e energetics of the reaction with the 01·e'bynyl radicals. Also 
indicated !Ire electronic wave functions and point groups of the reactants, 
intermediates, and transition states. Red and blue lines indicate the reaction 
pathways to the acyclic and benzene isomers, respectively. Optimized Carte
sian coordinates for all structures are given in the 51 Text. 

further that the overall reaction yielding benzene is strongly 
exoergic by 368 kJ mol-' . 

Crossed Molecular Beam Studies-laboratory Frame. The reaction 
was also studied experimentally under single collision conditions 
in the gas phase utilizing a molecular beam machine by crossing a 
supersonic beam of Dl-ethynyl radicals [C,D(X'E+)] with a 
sQpersonic 1,3-butadiene beam perpendicularly in the interaction 
region at a collision energy of 45.4 ± 2.1 kJ mol- l (Materials and 
Methods ). The neutral reaction products were first ionized via 
electron impact at 80 e V and then mass and velocity analyzed 
by a triply differentially pumped quadrupole mass spectrometer 
held on the order of 10-11 torr while recording TOF spectra of 
the ionized neutral molecules. We detected reactive scattering 
signal at m/z = 79 (C.H,D+). These data suggest that a molecule 
of the empirical formula C.H,D plus atomic hydrogen is formed. 
The TOF spectra and the laboratory angular distribution are 
shown in Fig. 2. Although we have provided evidence of the ex
istence of a Dl-ethynyl radical versus atomic hydrogen replace
ment pathway. in which the hydrogen atoms originates from the 
1,3-butadiene molecule, we have not resolved the question 
whether the hydrogen atom is released from the terminal ClIC4 
and/or central ClIC3 position. Therefore, we also conducted 
experiments of the Dl-ethynyl radical with 1,1,4,4-D4-1,3-buta
diene and 2.3-D2-1,3-butadiene at the center-of-mass angle. 
For reaction with 1,1,4,4-D4-I,3-butadiene (hydrogen atoms at 
the C2!C3 positions), no signal of the atomic hydrogen loss 
channel was observed atm/z = 83 (C.D,H+). Therefore, we can 
conclude that no 4DSH isomer is formed; we only detected sig
nal at m/z = 82 for the atomic deuterium loss (C.D.H, +). How
ever, in tlte reaction with 2,3-D2-1,3-butadiene (hydrogen atoms 
at the terminal CI/C4 positions), we clearly observed signal at 
m/z = 81 (C.D,H. +) (SI Text). These experiments demonstrate 
that the hydrogen atom is emitted from the terminal carbon 
atoms of the 1,3-butadiene molecule. 

Crossed Molecular Beam 5tudi~enter-of-Mas5 Frame. Having 
identified product(s) with the empirical formula C.HsD and 
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characterized the terminal carbon atoms of 1,3-butadiene releas
ing the hydrogen atom, we are focusing our attention now on the 
identification of the structural isomer(s) formed. The identifica
tion procedure of the isomers requires elucidating the chemical 
dynamics of the reaction by transfonning the experimental data 
from the laboratory to the center-of-mass reference frame (11). 
The simulated distributions are overlaid in Fig. 2 with the corre
sponding center-of-mass functions visualized in Fig. 3. Let us 
tum our attention first to the derived center-of-mass translational 
energy distribution, P(ET)' For those molecules formed without 
internal excitation, the high-energy cutoff of theP(Er) resembles 
the sum of the absolute of the reaction exoergicity and the colli
sion energy; this algebraic quantity is clearly dictated by the law of 
energy conseIVation. An adequate simulation of the laboratory 
data could not be achieved with only a single channel leading ex
clusively to the 1,3-hexadien-5-yne isomer or benzene. With only 
one channel pertaining to the acyclic isomer, the simulated TOF 
spectra were too slow, and the laboratory angular distribution was 
found to be too narrow. On the other hand, a one-channel fit 
accounting solely for the reaction energy to form the D L -benzene 
molecule yielded TOF spectra that were too fast and a laboratory 
angular distribution that was significantly broader than the data. 
However, we could successfully replicate the experimental data 
by utilizing a two-channel fit with the center-of-mass functions 
depicted in Fig. 3. Let us have a closer look at the P(ET )s. It 
is important to note that the high-energy cutoffs of 150 ± 20 and 
380 ± 20 kJ mol-1 are in excellent agreement with the computed 
reaction energies to form the acyclic and the benzene isomer plus 
the collision energy, i.e., 161 and 413 kJmol-'. Ukewise, the 
P(ET)s hold distribution maxima of about 15-25 kJ mol-I. This 
pattern likely suggests that the reaction intermediates decompose 
via rather tight exit transition states. The indirect nature of the 
reaction pathways is also verified by the center-of-mass angular 
distributions, T(O)s, because both graphs depict intensity over the 
complete angular range (12). Further, both channels are forward
backward symmetric with respect to 90°. The symmetry indicates 
that the intermediates have a significantly longer lifetime than the 
rotational period. Also, ratios of the flux intensities at the respec
tive maxima and minima of the distribution, 1(90°)/1(0"), were 
found to be 1.9 ± 0.3 and 1.3 ± 0.3 to form 1,3-hexadiene-5-
yne and benzene, respectively. This "sideways" scattering reveals 
the constraints of the decaying intennediates: Here, for each 
channel, the hydrogen atom is ejected perpendicularly to the 
molecular plane of the rotating, decomposing complex almost 
parallel to the total angular momentum vector (13). 

Discussion 
Reaction Pathways to Benrene and the 1.l-ltexadien-5-yne Isomer. 
Combining the results from the electronic structure calculations 
(Fig. I) with those obtained from the interpretation of the center
of-mass functions (Fig. 3) and the laboratory data (Fig. 2 and 
Sf Text), we are able to unravel the underlying reaction mechan
isms. First and foremost, the computations verify the experimen
tal :-esults of an indirect reaction mechanism involving 4~D 
reaction intermediate(s). The reaction is triggered via an addition 
of the DI-ethynyl radical with its radical center to one of the 
terminal carbon atoms of 1,3~butadiene without entrance barrier. 
We would like to stress that, in our computations, the barrierless 
addition was verified by a careful examination of the potential 
energy surface in the entrance channel (intrinsic reaction coordi
nate calculations), which indicates that the potential energy of the 
system steadily and monotonically decreases as the D I-ethynyi 
radical approaches 1,3~butadiene. The barrierless nature of this 
reaction is also supported by Nizamov and Leone's low-tempera
ture kinetics studies in the range from 104 to 296 K, which suggest 
rate coefficients within gas kinetics limits of a few 10-10 em3 S-I 

(14); however, these experiments did not detennine the nature of 
the reaction products. In the bimolecular crossed beam reaction, 
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Fig. 3. Center-af-mass angular (Upper) and translational energy flux distri
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the resulting doublet radical intermediate [ill was found to either 
decompose forming the 1,3-hexadien-5-yne isomer or to undergo 
ring closure followed by hydrogen shift yielding ultimately the 
singly hydrogenated benzene molecule [i4], which then loses a 
hydrogen atom forming Dl-benzene. AIl proven experimentally 
based on the off-zero peaking of the center-of-mass translational 
energy distributions and also theoretically, both exit transition 
states are rather tight and located about 13-23 kJ mol- I above 
the separated products. The tight transition state can be easily 
understood because the reversed reactions involve the addition 
of a hydrogen atom to a closed shell hydrocarbon, which is asso
ciated with an entrance barrier. Considering the computed struc
tures of the exit transition states, the hydrogen atom leaves the 
decomposing complex almost perpendicular to the molecular 
plane, i.e., 1010 and 102' for the hydrogen atom loss from [ill and 
[i4], respectively, as predicted from the center-of-mass angular 
distributions. The derived mechanism also gains support from 
the experiments with partially deuterated 1,3·butadienes. Recall 
that these studies provided evidence that the ejected hydrogen 
atom in [i4] originates from the terminal position of the 1,3-bu
tadiene molecule. 

Branching Ratios of Benzene and the 1,J-Hexadlen-5-yne Isomer. It is 
also important to discuss the branching ratios of the two isomers 

Jone5 et al. 



formed because these ratios are crucial to transfer our findings 
to real interstellar environments. Note that our experiment was 
conducted at a collision energy of about 45 kJ mol- i , which is 
equivalent to a thermal energy of about 5,400 K, which is com
parable with temperatures in the circumstellar envelopes of car
bon-rich stars and protoplanetary nebulae like CRL 61S-where 
benzene was detected-close to the photosphere, that reach up 
to a few thousand kelvin (15). However, these temperatures are 
significantly higher than the average translational temperature in 
cold molecular clouds (10 K). If two competing products are 
formed in a chemical reaction, the branching ratios of these two 
channels may depend on the collision energy. OUT computations 
suggest that this is the case. At the limit of zero pressure and 
zero collision energy, which resembles conditions in cold mole
cular clouds, our statistical calculations indicate that about 40% 
of the products are benzene. As the collision energy rises to 
45 kJ mol-I , this fraction drops monotonically to about 20%. This 
fluctuation can be rationalized in terms of the reduced lifetime 
(which i; still higher than its rotational period) of the initial 
addition intermediate [ilJ and hence less favorable cyc1ization 
step to [12J versus a decomposition to form the acyclic isomer. 
In our experiment, we find benzene fractions of about 30 :i:: 10%, 
in good agreement with the computational predictions, which 
demonstrates that our calculations are conducted at a level high 
enough to replicate our experimental findings. Finally, we would 
like to address briefly a competing reaction pathway at elevated 
collision energies and temperatures: the hydrogen abstraction 
forming acetylene and resonantly stabilized n-C,H, radicals. 
Here, the direct hydrogen abstraction from the terminal and cen
tral carbon atoms of 1,3-butadiene involve barriers of about 4 and 
7 kJ mol- I. Hence, in low-temperature interstellar cloudS, these 
pathways are closed, but might be relevant in interstellar envir
onments with elevated temperatures. 

Interstellar Reaction Models. Having verified the formation of the 
aromatic benzene molecule under single collision conditions, we 
now apply these findings to the "real" ISM. Most importantly, our 
studies indicate that the reaction has no entrance barrier, all bar
riers involved in the formation of benzene are below the energy of 
the separated reactants, and the overall reaction to form benzene 
is exoergic. These findings represent a crucial prerequisite for this 
reaction to be important in low-temperature molecular clouds. If 
any barrier lies above the energy of the separated reactants or if 
the reacoon is endoergic, the low temperatures of the molecular 
clouds such as TMC-1 would typically inhibit the formation of 
benzene. In constructing a chemical reaction network for the gas
phase formation of benzene in interstellar clouds. two input para
meters are crucial: the reaction products (benzene and its acyclic 
isomer) and the rate constants. In our network, we implemented 
a rate constant of 3.0 ± 0.9 x 10-to cm3 8-1 and accounted for 
the branching fractions of benzene versus the 1,3-hexadien-5-
yne isomer as elucidated in our present study. We recognize that 
Nizamov and Leone's data were recorded at temperatures be
tween 104 and 2% K (14). However, an analysis of ethynyl-radical 
reactions with unsaturated hydrocarbons shows that their rate 
constants are almost invariant with temperature (16). !herefore, 
a rate constant of 3.0 ± 0.9 x 10-10 em) S-I for cold mterstellar 
clouds with a benzene fraction of 40% versus 60% for the 1,3-
hexadien·5-yne isomer presents a sensible input parameter. 

Formation of Benzene in the IS~ualitative Considerations. The 
results of our astrochemical models (Materials and Methods) for 
dark clouds like TMC-1 have important implications. We objec
tively investigated the effects of ion-molecule reactions versus 
neutral-neutral chemistry leading to benzene. With respect to 
benzene, the reaction sequence was found to start with the fast 
reaction of methylidyne radicals (CH) with ethane (C,Ho) (17, 
18), which leads to propene (C,Ho) plus atomic hydrogen (reac-
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tion 1); the latter reacts rapidly with another methylidyne radical 
forming then 1,3-butadiene (C,H,) (19-21) (reaction 2). Here
after, the ethynyl radical can react with 1,3-butadiene to form 
-besides the acyclic isomer --benzene plus atomic hydrogen. 
Our models suggest further that ethane-the primal)' starting 
point for the neutral-neutral benzene synthesis-is not likely 
to be formed via gas-phase chernistry, but is preferentially synthe
sized on dust grains inside ice mantles by successive hydrogen 
atom addition to acetylene (C,H,) (22) or by reactions between 
the methyl radical (CH,) fragments produced by irradiation of 
methane (ca.) on the interstellar grains (23). In a similar way, 
1,3-butadiene can be also formed by recombination of two vinyl 
radicals (C,H,). Cometary ices are also known to be rich in 
ethane (24), where the observed abundances are comparable 
to that of methane. It is therefore plausible that large quantities 
of ethane can be released into the gas phase in interstellar clouds 
following events that result in ice mantle sublimation via grain
grain collisions (25) or shocking of the ISM (26). This situation is 
very different from the hot core model, where a newly formed star 
thermally heats the grains thus leading to a thermal sublimation 
of the molecules from the grain (27). 

CH+C,Ho .... C,H, + H ll] 

CH + CoHo .... I,3-C,Ho + H [2] 

[3] 

Formation of Benzene In the ISM--quantitative Considerations. How 
does the unique neutral-neutral reaction scheme compare quan
titatively with the previously proposed ion-molecule reaction net
work? First, if benzene is formed only by ion-molecule reactions, 
peak fractional abundances of benzene of 1 x 10-10 are expected. 
Secondly, recall that the ion-molecule reactioHs incorporated 
into these previous astrochemical models leading to benzene 
via the C1;Hs + bottleneck have neither been investigated theore
tically nor experimentally (28). Upon removal ofthe guessed ion
molecule reactions, the peak abundance of C6Hs + drops by over 
3 orders of magnitude resulting in a similar reduction of benzene 
formed via ion-molecule reactions to fractional abundances of 
less than 10-13 • Third, the incorporation of the neutral-neutral 
reaction sequences leading to benzene via the reaction of 1,3-
butadiene plus ethynyl clearly shows that this pathway presents 
the most important route to synthesize benzene in cold molecular 
clouds such as TMC-l. Fig. 4 displays the quantitative results of a 
gas-grain chemical model for TMC-1 (25). After about 6 x 10' y 
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Fig. 4. Results from the cnemical model for TMC-' in which oxygen is 
depleted and ice mantles are injected into the gas. The abundances of 
gas· phase mole<ular species are plotted as a function of time after the inje<
tion event (solid lines). Da5hed lines are from the same model but without 
the injection of 1,3-butadiene from the dust. 
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of chemical evolution, benzene formed by neutral-neutral chem
istry reaches a peak fractional abundance of about 5 X 10-10 

with respect to molecular hydrogen-a factor of 5 higher than the 
benzene abundances reached in reaction schemes based on 
"guessed" ion-molecule reactions, A detailed sensitivity analysis 
suggests that the fractional abundances of benzene formed via 
the neutral-neutral scheme vary with ±2 x 10-10 within tf:,e error 
limits of the rate constant of the ethynyl-1,3-butadiene reaction 
and the uncertainties of the hydrogen production rates in reac
tions 1 and 2. Note that the benzene fraction of 5 x 1O-1D is of a 
similar magnitude to the ubiquitous intersteUar cyclopropenyli
dene molecule (c-C,H,) (29). Therefore, we can conclude that 
the fonnation of benzene via the neutral-neutral reaction of the 
ethynyl radical and l,3-butadiene is the dominating process in 
cold clouds like TMC-1 where the gas-phase oxygen is depleted 
on dust grains; the "freeze out" of oxygen on the grains is a direct 
consequence of astronomical observations and required to ac
count for tbe low abundances of molecular oxygen as obsetved in 
molecular clouds (30). 

Interstellar versus Combustion Chemistry. We would like to stress 
that alternative neutral-neutral reactions to form benzene in the 
ISM have been "borrowed" from the high-temperature, combus
tion chemistry community and incorporated in previous interstel
lar chemistry models. These bimolecular processes involve, for 
instance, reactions of resonantly stabilized free radicals such as 
n-C.H, and n-C.H, with acetylene (C,H,) (31). However, these 
reactior.s have significant entrance barriers of about 20-31 (32, 
33) to 23 kJ mol-I (34), respectively, which cannot be overcome 
at molecular cloud temperatures of 10 K. Ukewise, the self
recombination of the propargyl radical (C,H,) followed by iso
merization and stabilization of the benzene intermediate via a 
third-body collision has been discussed to form benzene in flames 
(35, 36). In cold molecular clouds, the collision complex formed 
in the self·recombination of two propargyl radicals cannot be 
stabilized by a third-body collision. Although this reaction has 
no entrance barrier, third-body collisions are on the order of 
magnitude o~ ?ne every 10' y for interstellar clouds with typical 
number densities of 1()2-1Q4 cm-3; thiS hme scale IS much larger 
than the typical lifetime of these cold molecular clouds of typi
cally 10" Y (37). Consequently, three body processes such as 
the self-reaction of propargyl and collisional stabilization of the 
CoR,; intermediate(s) are unimportant in cold molecular clouds. 
Another possibility might be radiative stabilization of the CoR,; 
intermediate(s) via emission of an infrared photon. Radiative 
association is known to be a plausible channel for some ion
molecule reactions (38) and hence a similar process might, in 
principle, produce benzene, To be efficient, the rate of radiative 
stabilization of the energized benzene intermediate has to be 
faster than that for its dissociation, This difference in rates is 
not the case for the energized benzene formed by recombination 
of two propargyl radicaL. Its radiative stabilization rate constant, 
computed using the theoretical approach by Klippenstein et al. 
(38) for the average temperature corresponding to the available 
internal energy of611 kJ mol-I, i.e., the exothermicity of the self
recombination of two propargyl radicals yielding ultimately the 
benzene (36), is in the range of 50 s-!. This reaction exothermi
city is several orders of magnitude lower than the dissociation 
rate CO[b'i:ant of the energized benzene to fonn atomic hydrogen 
plus a phenyl radical, 10' , - I (39). In principle, benzene can be 
formed via hydrogen abstraction by the phenyl radical from any 
hydrogen-carrying molecules such as ubiquitous molecular hydro
gen, However, this reaction has a classical activation energy of 
33-35 kJ mol- I (40) and hence cannot proceed in cold molecular 
clouds like TMC-l. Therefore, reactions which may lead to the 
formation of benzene under combustion relevant conditions do 
not yield benzene under those low-temperature and pressure con
ditions in cold molecular clouds, However, the newly investigated 
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ethynyl·radical mediated formation of benzene overcomes these 
problems, and the aromatic benzene molecule can be formed 
via a single collision of two neutral particles under bimolecular 
conditions without entrance barrier in interstellar space. 

Condusion 
We have demonstrated that the aromatic benzene molecule-the 
central building block of polycyclic aromatic hydrocarbons--can 
be formed under single collision conditions via the gas-phase 
reaction of ethynyl radicals with 1,3-butadiene. The formation 
of an aromatic, closed shell molecule via a rapid neutral-neutral 
reaction presents a first step toward a systematic understanding 
how complex PAHs and related molecules might be formed in the 
ISM via neutral-neutral reactions involving benzene. Because the 
hydrogen atoms in l,3~blltadiene can be replaced by organic side 
groups, the reaction of ethynyl with 1,3~butadiene presents the 
simplest representative of a reaction class in which aromatic mo
lecules with a benzene core can be formed from acyclic precursors 
via barrierless reactio~s of the ethynyl radicals with substituted 
l,3-butadiene molecules, Electronic structure calculations pre
dicted further that the phenylacetylene molecule (CoH,CCH), 
synthesized from exoergic, barrierless reactions of benzene with 
the ethynyl radical (41,42), can even react with a second ethynyl 
radical to form 1,2-diethynylbenzene lCoH.(C,H), ] plus a hydro
gen atom. The reaction of 1,2-diethynylbenzene with a third ethy
nyl radical in turn produces an intermediate, which isomerizes 
via ring closure and emits atomic hydrogen to yield a dehydroge
nated, aromatic, and bicyclic naphthalene core. Therefore, 
successive neutral-neutral reactions of aromatic molecules such 
as benzene and naphthalene with ethynyl radicals present a ver
satile, hitherto overlooked reaction class to yield complex, PAH 
(like) structures via ring expansions at temperatures as low as 
10 K, as present in cold molecular clouds. Although benzene 
h~s no permanent dipole moment and hence cannot be observed 
via its rotational spectrum, the reaction of benzene with ubiqui
tous cyano radicals can lead to benzonitrile (C.H,CN) (43) 
holding a large dipole moment of 4.18 D. Therefore, the hitherto 
unobserved benzonitrile molecule could act as a tracer for ben
zene in cold molecular clouds (44). We anticipate that our c;om
bined experimental, theoretical, and modeling study will act as a 
role model to initiate further investigations of the fonnation and 
chemistry of polycyclic aromatic molecules in low-temperature 
interstellar environments, A link of the laboratory and modeling 
data with prospective astronomical searches utilizing the Ataca
ma Large Millimeter Array are expected to provide a comprehen
sive picture of the processes involved in the formation of aromatic 
molecules in the ISM. 

Materials and Methods 
Electronic Strudure Calculations. Our electronic structure calculations were 
conducted at the cCSOm/CBS level of theory (see 51 Text for details) to pre
dict relative energies of the Intermediates [i1 -141, the transition states, and 
products of the reactions of the ethynyl and Dl-ethynyl radkal with 1,3-b~ 
tadiene to an <KOJra<y of about 5 k.J mol-I . Stationary points were optimized 
at the hybrid density functional B3lYP level with the 6-311G" basis set iJ~ng 
the Gaussian 9B program package (45), Vibrational frequencies and zero
point vibrational energy corrections were calculated using the same 
B3lYPI6-11G** method. ' 

Experimental The crossed beam reaction of the deuterated ethynyl radical, 
CzD(X1E+). with ',3-butadiene. CHl CHCHCH2(X'Ag). was conduct~ with a 
universal crossed molecular beam apparatus (46) at a collision energy of 
45.4 ± 2.1 kJ mol-I by crossing a pulsed beam of D1-ethynyl radic'als perpen
dicularly with a pulsed beam of 1,3-butadlene molecules. The products 
were monitored using a triply differentially pumped quadrapole mass spec
trometer In the rOF mode after electron·impact ionization of the neutral 
mol\!Cules. To collect information on the scattering dynamics. the laboratory 
data (TOF. angular distribution) were transfOfrned into t~e center-of-mass 
reference frame utilizing a forward-<onvolutlon routine, This iterative meth
od initially assumes the angular flux distribution, T(O), and the translational 
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energy fll..:{ distribution, P(fr) in the center-of-mass system. Laboratory TOF 
spectra and the laboratory angular distributions were then <akulated from 
the 1(9) and peEr) function and were averaged over a grid of Newton 
diagrams ,0 account for the apparatus functions and also for the angular 
and velocity spreads of both reactant beams. 

Astrom.mical Modeling. We examined the viability of the formation of 
benzene via :teutral-neutral reactions using chemical models based on the 
dipole-enhanced University of Manchester Institute for Science and Technol
ogy Rate05 reaction database (47) updated with rate constants relating to 
the formation of benzene and its 1,3-butadiene precurso~ as compiled in 
the 51 TeX!, which also includes uncertainties of tile rate constants of the 
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methylidyne radical reactions and in the experimental uncertainties of the 
hydrogen atom yields given by the kinetics studies as cited above. 
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