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Abstract

An analytical solution was derived for the transient response of an insulated
structure subjected to a simplified heat pulse. The solution is solely a function
of two nondimensional parameters. Simpler functions of these two parameters were
developed to approximate the maximum structural temperature over a wide range of
parameter values. Techniques were developed to choose constant, effective thermal
properties to represent the relevant temperature and pressure-dependent properties
for the insulator and structure. A technique was also developed to map a time-
varying surface temperature history to an equivalent square heat pulse. Equations
were also developed for the minimum mass required to maintain the inner, unheated
surface below a specified temperature. In the course of the derivation, two figures of
merit were identified. Required insulation masses calculated using the approximate
equation were shown to typically agree with finite element results within 10%-20%
over the relevant range of parameters studied.

Nomenclature

a1, a2 Coefficients of approximate equation for maximum structural temperature

bn Coefficients of series solution for τ > τh

cm Coefficients of series solution for 0 < τ ≤ τh

cpe Effective insulator specific heat capacity

cps Structural specific heat capacity

de Insulator thickness

ds Structural thickness

fthr Fraction of the surface temperature range

ke Effective insulator thermal conductivity

m Mass per unit area

me Insulation mass per unit area

ms Structural mass per unit area

mopt Minimum total mass per unit area

mso Structural mass/area at which total mass/area is minimum

Pavg Average ambient pressure during equivalent square surface temperature pulse

T Temperature

t Time
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Th Applied surface temperature rise of insulator

th Duration of heating pulse

Ti Initial temperature

Tm Maximum structural temperature rise

Tce Temperature to use for calculating effective insulation specific heat capacity

Tcs Temperature to use for calculating effective structural specific heat capacity

Tha Applied surface temperature of insulator

Tke Temperature to use for calculating effective insulation conductivity

Tma Maximum structural temperature

Tmx Maximum surface temperature for a surface temperature history

Tthr Threshold temperature for truncating insulator temperature rise integral

x Nondimensionalized spatial variable

x′ Spatial variable, position through insulator thickness

β Ratio of insulator conductance/area to insulator heat capacity/area

βs Figure of merit for thermal performance of structure

δ Dirac delta function

ε Error of approximate equation

γ Ratio of insulator to structural heat capacity/area

κe Figure of merit for thermal performance of insulator

λ Eigenvalue

ρe Effective insulator density

ρs Structural density

τ Nondimensionalized time

τh Nondimensionalized duration of heat pulse

τm Nondimensionalized time of maximum structural temperature

θ Nondimensionalized temperature
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1 Introduction

Thermal protection systems are a critical component of hypersonic and atmo-
spheric entry vehicles. The reusable ceramic tiles and blankets of the Space Shuttle
Orbiter work well as thermal insulators, but result in a fragile, high maintenance
exterior surface. An intriguing approach to this problem is to build the thermal in-
sulation into the exterior vehicle wall. This deceptively simple idea will be difficult
to achieve because it requires a flight weight aerospace vehicle skin to not only carry
the required mechanical loads, but also to accommodate severe transient heating
with the corresponding hot outer surface and large temperature gradients through
its thickness.

A thermally insulating structural panel will likely be of a sandwich construction
as a result of both thermal and structural considerations. The outer, heated face
sheet of the sandwich will typically be a thin layer of non-insulating material that
will contribute little to the thermal response of the inner, unheated face sheet. Thus,
ignoring edge closeouts and joints, the transient thermal response of an insulating
sandwich panel will be similar in character to the thermal response of an insulated
structure like the external tiles and blankets covering the aluminum structure of the
Space Shuttle Orbiter. For a non-homogeneous sandwich core, it may be possible
to calculate effective thermal properties using a rule of mixtures to approximate its
thermal performance.

In this paper, a simplified transient thermal problem was investigated in an
attempt to gain basic insight that will be required to develop optimum sandwich
panels that can simultaneously insulate and carry structural loads. An analyti-
cal solution was derived for the transient response of an insulated structure to a
simplified heat pulse. The solution is a function of two nondimensional quantities.
Simpler functions of these two parameters were developed to approximate the max-
imum structural temperature over a wide range of parameter values. Techniques
were developed to choose constant, effective properties to represent the relevant
temperature and time-dependent thermal properties for the insulator and structure.
A technique was also developed to map a time-varying surface temperature history
to an equivalent square heat pulse. Using these techniques, the maximum structural
temperature rise was calculated using the analytical solutions and compared with
finite element simulations over a wide range of parameters. Equations were also
developed for the minimum mass for an insulated structure required to maintain
the inner, unheated surface below a specified temperature. A figure of merit which
correlates to the effectiveness of the heat capacity of the underlying structural ma-
terial in reducing the amount of required insulation was developed. A second figure
of merit was identified for the combination of insulator thermal properties that min-
imizes the mass of an insulator required to limit the maximum temperature of an
underlying structure subjected to a transient heating pulse. Insulation was sized for
a number of surface heating histories, insulators, and structural materials by iter-
ating a one-dimensional, finite element analysis and by using the simple equations
derived in this paper. Finite element results were correlated to the two figures of
merit developed in this paper.
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Figure 1. Illustration of simplified problem

2 Problem Definition

The simplified problem investigated in this paper is illustrated in Fig. 1. A ther-
mal insulator with thickness, de, density, ρe, specific heat capacity, cpe, and thermal
conductivity, ke, covers a structure (inner face sheet) of thickness, ds, density, ρs,
and specific heat capacity, cps. The inner surface of the structure is assumed to be
perfectly insulated to simplify the mathematics of the problem and because it is a
commonly used conservative assumption for sizing thermal protection systems. To
further simplify the problem, the structure is treated as a lumped heat capacitance
and the outer face sheet of the insulating sandwich panel is neglected. For this
solution, the material properties are assumed to be constant, so effective, averaged
properties would have to be used to approximate more complex material behavior.

A simple transient heat pulse is assumed. Initially the insulator and structure
are assumed to be at a uniform temperature of 0. The outer surface of the insulator
is assumed to instantaneously rise to a temperature Th at t = 0 and maintain that
temperature until t = th at which time it instantaneously returns to 0.

2.1 Mathematical Description

Using a nondimensional spatial variable, x = x′

de
, the governing differential equa-

tion for heat conduction through the insulator can be written as

∂T

∂t
= β

∂2T

∂2x
(1)

where

β =
ke

ρecped2
e

(2)
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The boundary condition at x = 1 is defined as

∂T (1, t)

∂t
= −βγ ∂T (1, t)

∂x
(3)

where

γ =
ρecpede
ρscpsds

(4)

The boundary condition at x = 0 is defined as

T (0, t) =

{
Th for 0 < t ≤ th
0 for t > th

(5)

Finally, the initial condition is a uniform temperature of 0.

T (x, 0) = 0 (6)

The mathematical problem defined by Eqs. 1 through 6 can be completely nondi-
mensionalized [1] by defining a nondimensional time, τ = βt and a nondimensional
temperature, θ = T

Th
. The nondimensionalized differential equation becomes

∂θ

∂τ
=
∂2θ

∂2x
(7)

The boundary condition at x = 1 becomes

∂θ(1, τ)

∂τ
= −γ ∂θ(1, τ)

∂x
(8)

The boundary condition at x = 0 becomes

θ(0, τ) =

{
1 for 0 < τ ≤ τh
0 for τ > τh

(9)

where

τh =
ke

ρecped2
e

th (10)

The initial condition becomes
θ(x, 0) = 0 (11)

2.2 Nondimensional Governing Parameters

Inspection of the mathematical problem defined by Eqs. 7 through 11 reveals that
any solution will be completely governed by two nondimensional parameters, γ and
τh. Each of these parameters has clear physical significance. The first parameter,
γ, is defined by Eq. 4 which shows it to be the ratio of the heat capacity per unit
area of the insulator to the heat capacity per unit area of the underlying structure.

Equation 10 defining the nondimensional heat pulse duration, τh, can be slightly
rewritten to show that it is the ratio of insulator conductance per unit area to heat
capacity per unit area times the duration of the heat pulse. The same ratio of
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insulator conductance per unit area to heat capacity per unit area, β, is used to
nondimensionalize time.

τh =
ke
de

ρecpede
th (12)

3 Analytical Solution

An analytical solution for the problem illustrated in Fig. 1 can be obtained by
combining two existing solutions with modifications. The solution of the first part
of the problem, 0 < t ≤ th, can be found in the classic heat transfer textbook by
Carslaw and Yeager [2]. Converting the solution to the nomenclature used in this
paper and nondimensionalizing produces

θ(x, τ) =
T (x, τ)

Th
= 1−

∞∑
m=1

cm sin (λmx)e−λ
2
mτ (13)

where

cm =
2(λ2

m + γ2)

λm(λ2
m + γ2 + γ)

(14)

The values for λm can be found by solving the equation

λm tanλm = γ (15)

Solving the second part of the problem, t > th, requires more effort. There
is an existing solution for a similar problem in which the insulator and lumped
mass are initially at a uniform temperature, but at t = 0 the temperature of the
insulator outer surface is instantaneously reduced to 0. A solution to this similar
problem, including its derivation, is presented in Reference [3]. A derivation of the
solution to the second part of the current problem is presented in Appendix A.
The derivation closely follows the approach used by De Chant, however, instead
of a uniform temperature, the solution to Eq. 13 at time th is used as the initial
temperature distribution.

So, for t > th or τ > τh the solution is

θ(x, τ) =
T (x, τ)

Th
=

∞∑
n=1

bn sin (λnx)e−λ
2
n(τ−τh) (16)

where

bn = cn(1− e−λ2nτh)−
∞∑
m=1
m 6=n

 sin (λm−λn)
(λm−λn) −

sin (λm+λn)
(λm+λn) + 2 sinλm sinλn

γ

1− sin (2λn)
2λn

+ 2 sin2 λn
γ

 cme
(−λ2mτh)

(17)
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The quantities cm and cn can be calculated using Eq. 14 and values for λm and
λn are obtained by solving Eq. 15. In Eq. 17 the summation excludes the term
m = n because the contribution of that term is captured by the exponential term
preceding the summation.

4 Numerical Example for Series Solution

The series solution described by Eqs. 13 and 16 can be applied to a wide range
of physical situations. However, the motivation for deriving the solution was to gain
insight into the thermal response of an insulated structure of an aerospace vehicle
subjected to a transient aerodynamic heating pulse. Therefore a numerical example
was chosen to represent a typical location on the Space Shuttle Orbiter at which the
aluminum structure is protected from aerodynamic heating by an LI-900 ceramic tile.
The material properties, obtained from Reference [4], are listed in Table 1 along with
dimensions, heating duration and the corresponding nondimensional parameters.
Thermal properties are temperature dependent, so the properties for the aluminum
structure are for 200◦F and the properties for the LI-900 tile are for 1250◦F . The
LI-900 thermal conductivity is also a strong function of pressure, so the conductivity
is chosen for a pressure of 0.01 atm (an arbitrary value in the mid-range of a typical
ambient pressure history for an atmospheric entry trajectory).

Table 1. Numerical values for initial example

Variable Value Units

ds 0.125 (0.003175) in(m)
ρs 175 (2800) lbm/ft3(kg/m3)
cps 0.216 (904) Btu/lbm/◦F (J/kg/K)
de 2,3,4 (0.051,0.076, 0.102) in(m)
ρe 9 (144) lbm/ft3(kg/m3)
cpe 0.296 (1238) Btu/lbm/◦F (J/kg/K)
ke 0.0492 (0.0851) Btu/ft/hr/◦F (W/m/K)
th 25 (1500) min(s)

A computer program was written using Version 2.7 of the Python programming
language to implement the series solution described by Eqs. 13 and 16. Routines
from Version 0.9 of the SciPy programming library [5] were used for numerical
solutions of nonlinear equations and fitting coefficients to nonlinear equations. For
times just after an instantaneous change in surface temperature, many terms of
the series solution were required for an accurate solution. However, for the results
shown in Figs. 2 through 5, eight terms were used to calculate the coefficients bn and
three terms to calculate cm. Use of additional terms produced negligible changes
in the results. To generate results for the wide range of parameter values shown in
Figs. 6, 7, 9, and 10, twelve terms each were used to calculate bn and cm to reduce
the chance of truncation error.
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Three different tile thicknesses, de in Table 1, are considered to gain understand-
ing of the solution described by Eqs. 13 and 16. The nondimensional temperature
distributions through the thickness of the insulator at several times are shown in
Figs. 2, 3, and 4 for LI-900 tile thicknesses of 2, 3, and 4 in. (0.051,0.076, 0.102m) re-
spectively. In each figure, the solid blue line represents the temperature distribution
halfway through the heat pulse and the solid green line represents the temperature
at the end of the heat pulse, τ = τh. The dashed lines represent temperature dis-
tributions after the heat pulse has ended, τ > τh. As expected the tile interior and
underlying structure heats up more quickly and reaches a higher temperature for
thinner tiles. Fig. 2 shows that the structure at x = 1 has already started heating
up midway through the heating pulse, τ = τh

2 = 0.14 for a tile thickness of 2 inches.
In contrast, Fig. 4 shows that the structure has not even started to heat up at the
end of the heat pulse, τ = τh = 0.07 for a tile thickness of 4 in. This behavior is
expected because it should take much longer for the heat to diffuse through twice
the thickness of tile.

Figure 2. Temperature distributions for 2 inch thick tile

After the tile surface temperature drops back to the initial temperature, the
heat stored in the tile interior begins to be conducted back out of the cooled outer
tile surface. However, the underlying structure, x = 1, continues to increase in
temperature until its temperature matches that of the tile material in contact with
it, then it begins to cool. This behavior is consistent with the assumption that the
structure is perfectly insulated on its inner surface.

For sizing of thermal protection systems, the temperature of the underlying
structure is of primary concern. Further insight into the solution can be obtained
by calculating the structural temperature as a function of time. Figure 5 shows a
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Figure 3. Temperature distributions for 3 inch thick tile

Figure 4. Temperature distributions for 4 inch thick tile

number of temperature histories for different combinations of the governing nondi-
mensional parameters. The ranges of the two parameters were chosen to bound
the values calculated for the numerical examples illustrated in Figs. 2 through 4. In
Fig. 5, the blue lines represent the structural temperature histories for τh = 0.05, the
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Figure 5. Structural temperature histories as a function of governing parameters

green for τh = 0.15, and the red for τh = 0.3. The vertical dotted lines represent the
end of the heat pulse for the respective values of τh. The solid, dashed and dash-dot
lines represent values of γ of 1, 2, and 3 respectively. Because the nondimensional-
ized time axis makes the results more difficult to interpret physically, it is helpful to
consider the case of fixed material properties and heating duration. The remaining
free parameters would be the insulator thickness, de, and the structural thickness,
ds. The parameter τh varies as 1

d2e
, so smaller values of τh imply larger values of de.

Choosing a value of τh fixes the insulator thickness, so for a specified value of τh, γ
can only be varied by changing the structural thickness. The parameter γ varies as
1
ds

so larger values of γ imply smaller structural thicknesses. In Fig. 5 the structural
temperature histories for τh = 0.05 stay much cooler, which is consistent with the
expected behavior for thicker insulation. Conversely the structural temperatures
reach much higher values for τh = 0.3, which is consistent with the expected behav-
ior for thinner insulation. For each value of τh the curve for γ = 1 reaches the lowest
maximum temperature, as expected for the correspondingly highest structural heat
capacity. Higher γ’s result in higher maximum structural temperatures as expected
for the associated reduction in structural heat capacity. All of the structural tem-
perature history curves in Fig. 5 exhibit similar behavior. The temperature of the
structure continues to rise well after completion of the heating pulse, reaches a max-
imum value, and then begins to decrease. The maximum temperature is a primary
design driver for sizing of thermal protection systems, so it is desirable to be able
to readily calculate the maximum structural temperature.

10



5 Maximum Structural Temperature

All of the temperature histories, away from the heated surface, generated using
Eq. 16 would appear to heat up, reach a maximum temperature, and then begin
to cool. The time at which the maximum temperature occurs can be found by
differentiating Eq. 16 with respect to time, setting it equal to zero, and solving for
time. This results in the following equation to be solved for τm

0 = −
∞∑
n=1

λ2
nbn sin (λnx)e−λ

2
n(τm−τh) (18)

Equation 18 can be solved for the time of the maximum temperature for any
location through the thickness of the insulator. However, for the current problem,
the maximum structural temperature at x = 1 is of greatest interest. The equation
therefore becomes

0 = −
∞∑
n=1

λ2
nbn sin (λn)e−λ

2
n(τm−τh) (19)

Although Eq. 19 cannot be readily solved for τm in closed form, it can be solved
numerically. The nondimensional times at which the maximum structural temper-
ature occurs for a range of the governing parameters are shown in Fig. 6.

Figure 6. Times at which maximum structural temperatures occur

The resulting τm can be substituted into Eq. 16 to obtain the maximum struc-
tural temperature rise. Following this procedure, the maximum structural temper-
ature rise was calculated over a range of the governing nondimensional parameters
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(0.2 ≤ γ ≤ 5 and 0.02 ≤ τh ≤ 0.5). Figure 7 shows a surface plot of the maximum
structural temperature rises calculated over a 49 by 49 point grid. The color con-
tours from dark blue to red indicate increasing maximum structural temperature
rises. To gain insight into the physical implications of this plot it is again helpful to
consider the case of fixed material properties. For fixed properties, small values of
τh imply a short heat pulse and/or thick insulator and large values imply a long heat
pulse and/or thin insulator. It is logical to expect that as the heat pulse duration
goes to zero, τh → 0, the maximum structural temperature rise will also go to zero.
The parameter, γ, is the ratio of insulation to structural heat capacity per unit
area, so small values imply that the structural heat capacity per unit area is much
larger than that of the insulation and large values imply a relatively small amount
of structural heat capacity. Therefore, as the structural heat sink increases towards
infinity, γ will approach 0 and, for a finite heating duration, the maximum struc-
tural temperature rise will also go to zero. Also, for this problem, the maximum
structural temperature cannot exceed the applied surface temperature, so Tm

Th
≤ 1.

Figure 7. Maximum structural temperatures

The maximum structural temperature rise plot in Fig. 7 is useful to illustrate how
the maximum structural temperature rise varies with the two governing parameters,
but it was generated using a complicated series of numerical solutions. For quick
calculations, it would be much more useful to have a relatively simple algebraic
equation to approximate this surface. The approximate solution should go to zero if
either of the governing parameters goes to zero, and it should approach 1 as either
parameter goes to infinity. A number of candidate equations were evaluated and the
following approximate solution was chosen as a good compromise between simplicity
and accuracy.

12



(
Tm
Th

)
a

= 1− e(a1γa2τh
2a2 ) (20)

where the subscript a indicates approximate.

A “least squares” routine was used to find the values of the coefficients in Eq. 20
that best approximate the surface shown in Fig. 7. The coefficient values are given
in Table 2.

Table 2. Coefficient values for Eq. 20

Coefficient Value

a1 -0.72058
a2 0.53649

Inspection of Table 2 reveals that a1 ≈ −1√
2

and a2 ≈ 1
2 . Substituting these

coefficients into Eq. 20 simplifies the equation to(
Tm
Th

)
a

= 1− e−τh
√

γ
2 (21)

The approximate maximum structural temperature rises calculated using Eq. 20
with the coefficient values listed in Table 2 are shown in Fig. 8. The plot is similar
to that in Fig. 7.

Figure 8. Approximate maximum structural temperatures
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The values from Fig. 7 were subtracted from those of Fig. 8 to calculate the
absolute errors resulting from the approximation.

εa =

(
Tm
Th

)
a

− Tm
Th

(22)

Figure 9 shows the distribution of error over the previously chosen range of
governing parameters. Over much of the surface errors are within ±1% of the
applied surface temperature rise, Th. Highest errors occur for small values of γ and
large values of τh.

Figure 9. Errors using approximate maximum structural temperature equation

It may be more instructive to consider the relative error distribution. The rela-
tive errors between the approximation of Eq. 20 and the series solution were calcu-
lated using the following equation

εr =

(
Tm
Th

)
a
− Tm

Th

Tm
Th

(23)

Figure 10 shows the distribution of the relative error over the previously chosen
range of governing parameters. Over most of the parameter space, the relative error
is within ±10%. For small values of γ, however, the relative error rises precipitately.
Therefore it would be prudent to check the values of γ for any calculations made
using Eq. 20 to avoid the inaccurate region. This inaccurate region of the approxi-
mate solution corresponds to a physical situation where the structural skin is much
heavier than the insulator.
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Figure 10. Relative errors using approximate maximum structural temperature
equation

6 Comparison of Analytical and Numerical Solutions

The problem illustrated in Fig. 1 is considerably simpler than a typical numer-
ical simulation of aerodynamic heating of an insulated aerospace vehicle structure.
Material properties, which can vary with temperature and pressure, are treated as
constant. The applied surface temperature is a simple square pulse, rather than a
more realistic transient profile. A numerical model was developed to: 1) demon-
strate that the series solution, Eqs. 13 and 16, produces the expected results, 2)
verify that the governing nondimensional parameters (γ and τh), rather than indi-
vidual material property values, determine the calculated temperatures, 3) develop
techniques for best using the analytical solution to approximate a realistic numerical
simulation, and 4) estimate typical errors involved in using the analytical solution
to approximate a realistic numerical simulation.

6.1 Numerical Model

A one-dimensional finite element model was developed using the DOLFIN [6]
finite element library for the Python programming language. Using the DOLFIN li-
brary, linear one dimensional elements were used to discretize the spatial dimension
and an implicit Crank-Nicolson time marching scheme was used to solve the weak
formulation of the diffusion equation. The model consisted of a layer of insulator
material in perfect contact with a layer of structural material similar to the config-
uration shown in Fig. 1, except that the structure in the finite element model was
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not treated as a lumped heat capacitance. For the results shown in this paper, the
model consisted of 50 elements through the thickness of the insulator and 2 elements
through the thickness of the structure. Although a careful convergence study was
not performed, a model with half the number of elements was shown to produce
nearly identical results. The boundary condition on the outer surface of the insu-
lator consisted of an imposed surface temperature that could be varied arbitrarily
with time and updated at each time step of the solution. The inner surface of the
structure was adiabatic. The material properties could be arbitrary functions of
temperature and ambient pressure. Material property values for each finite element
were updated at each time step of the analysis for the average temperature of each
element from the previous time step. Property values could be different for each
element, but did not vary spatially within an element. Time steps between 1 and 5
seconds were used to calculate the results presented in this paper.

When comparing results from the finite element and analytical solutions it is
important to understand and correctly handle a subtle difference in how the two so-
lutions treat temperature. Because material properties are constant, the analytical
solution deals strictly with temperature rise from a uniform initial temperature (as-
sumed to be zero for simplicity in the derivation). Therefore, Th and Tm have been
defined for the analytical solution as maximum temperature rise for the insulator
surface and structure, respectively. For the numerical solutions, however, absolute
temperatures must be used so that the solution is able to look up the correct tem-
perature dependent material properties. Therefore, it is helpful to define two more
variables to clarify this distinction in subsequent discussions.

Tma = Tm + Ti
Tha = Th + Ti

(24)

6.2 Simplified Problem

A finely discretized finite element model of the problem illustrated in Fig. 1
should give exactly the same answer as the analytical series solution defined by
Eqs. 13 and 16. Both solution techniques solve the same differential equation with
the same boundary and initial conditions.

A numerical example, using the properties, dimensions, and heating values given
in Table 1, was studied with the previously described finite element model and the
series solution. A thickness of 3 inches for the LI-900 insulation, an initial temper-
ature of 60◦F and an applied surface temperature, Tha, of 2000◦F were chosen to
complete the problem definition. Calculated temperature distributions at several
times are shown in Fig. 11. This solution is the same as that shown in nondimen-
sional form in Fig. 3. The symbols in Fig. 11 represent the temperatures calculated
at each node of the finite element model. The solid lines represent the series solu-
tion defined by Eqs. 13 and 16. The blue and green circles represent distributions
halfway through and at the end of the heating pulse, respectively. The triangular
symbols represent temperature distributions at several times after the heat pulse has
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ended. The finite element and series solutions are essentially in exact agreement, as
expected.

Figure 11. Temperature distributions from finite element model vs series solution

The primary concern for thermal protection system sizing is the maximum struc-
tural temperature. Figure 12 shows the calculated temperature history of the struc-
ture. Again the finite element analysis (temperature gradients in the structure were
negligible) and the series solution are essentially in exact agreement, as expected.
The red square shown in Fig. 12 was obtained by solving Eq. 19 for the time of max-
imum structural temperature and substituting that value into Eq. 16 to calculate
the maximum structural temperature. The green circle represents the approximate
maximum structural temperature calculated using Eq. 20, which is a temperature
rise 6% lower than the exact answer.

As shown earlier in the mathematical formulation of the problem, any solution
should depend only on the values of the nondimensional governing parameters and
not the individual parameter values. A parametric study was performed using the
finite element model to confirm that the numerical solution also depends only on the
value of the nondimensional parameters. Results of the study are shown in Table 3.
Again, the baseline properties are from Table 1 and were also used to generate
Figs. 11 and 12. Numerical values of the governing nondimensional parameters and
the maximum structural temperatures shown in Fig. 12 are presented in Table 3.
For the parametric study, selected combinations of material properties, dimensions,
and/or heating time were scaled so that the nondimensional parameter values remain
unchanged. Even though individual parameter values were doubled or halved, the
calculated maximum structural temperature was the same within 6 significant digits
because the nondimensional parameter values were unchanged.
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Figure 12. Structural temperature history from finite element model vs series solu-
tion

6.3 Material Property Variation

Constant material properties were assumed to obtain the analytical solution.
However, the material properties can vary significantly during a transient heating
pulse. The specific heat capacities of the structure and insulator, cps and cpe, can
vary significantly with temperature. The thermal conductivity of the insulator, ke,
can vary greatly with both temperature and ambient pressure. To investigate the ef-
fect of variable material properties, the temperature dependent specific heats of the
aluminum structure and LI-900 insulation and the temperature and pressure depen-
dent thermal conductivity of LI-900, Tables B1-B3 in Appendix B, were incorporated
into the one-dimensional finite element model. In addition, the thermal model for
heat transfer through flexible fibrous insulation from Reference [7] was incorporated
into a Python computer program and used to predict the effective thermal conduc-
tivity of Saffil R© insulation in air. The objective of the finite element analysis was to
develop a rationale for choosing equivalent constant material properties for the an-
alytical solution. The equivalent properties are chosen to approximate the effect of
temperature- and pressure-dependent properties on the calculated maximum struc-
tural temperature. The effect of each variable material property was investigated
separately with all other material properties held constant.

6.3.1 Structural Specific Heat Capacity

The structural specific heat capacity, cps, was investigated first because it was
expected to be the easiest to understand. The structure undergoes the smallest
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Table 3. Numerical study of nondimensional governing parameters

Governing Parameters
γ = 1.69032, τh = 0.123318

Baseline maximum structural temperature, K

Series Eq. 20 Finite element
398.898 392.325 398.908

Parametric Study

Scaled parameters Scale factor Max. str. temp., K
cps, cpe,ke 2.0 398.908
ρs, cpe, ke 2.0 398.908
cps, ρe, th 0.5 398.908
ρs, de, ke, th 0.5 398.908

temperature change, is most isolated from the sharp temperature transients on the
surface of the insulator, and undergoes relatively moderate changes in specific heat
capacity as temperature varies. The obvious approach would be to use the specific
heat capacity at the average of the maximum and initial structural temperatures.
The previously described one dimensional finite element model was used to investi-
gate the effect of temperature dependent cps on the calculated maximum structural
temperature. The finite element analysis was the same as that used for the baseline
results in Table 3, except that the constant value of cps was replaced by the tem-
perature dependent values from Table B1. The results of the finite element analysis
with temperature dependent cps are shown in Table 4. The second column shows the
initial temperature, the average structural temperature, and the maximum struc-
tural temperature from the finite element analysis. The third column shows the
value of the temperature dependent structural specific heat capacity for the initial,
average, and maximum structural temperatures, respectively. The corresponding
γ and τh are shown for each value of cps. These values of γ and τh were used to
calculate the associated maximum structural temperatures using the series (Eq. 16)
and approximate (Eq. 20) solutions. Comparing the quantities in bold faced type
in Table 4, it is obvious that using cps for the average structural temperature in
the series solution gives almost exactly (within 0.1%) the same answer as the finite
element analysis with temperature dependent cps.

6.3.2 Insulator Specific Heat Capacity

The effect of temperature dependency of the insulator specific heat capacity,
cpe, on maximum structural temperature is a little more complicated. The insulator
undergoes much larger temperature excursions than the structure and experiences
large, transient temperature gradients whereas the structure has negligible gradi-
ents. It is not obvious which value of cpe should be used in the analytical solutions
to best match the finite element solution with temperature dependent cpe. Again,
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Table 4. Effect of temperature dependent structural specific heat capacity

Structural Finite Element cps(T ) γ τh Tma(Series) Tma(Eq. 20)

Temperature T, K
(

J
kgK

)
K K

Initial 288.71 842.7 1.8134 0.12332 403.01 396.10
Average 344.33 886.7 1.7234 0.12332 400.03 393.35

Maximum 399.95 924.4 1.6530 0.12332 397.60 391.15
th = 1500s Tha =1366K

the same finite element model was used as that for the baseline results in Table 3,
except that the constant value of cpe was replaced by the temperature dependent
values from Table B2. Finite element simulations were performed for two different
values of maximum surface temperature and three different values of heating time.
Results are presented in Table 5. For each simulation cpe values for the insulator were
calculated at three different temperatures: initial temperature, maximum structural
temperature, and the average between the initial and maximum insulator tempera-
tures. The associated values of the governing nondimensional parameters are shown
for each value of cpe along with the corresponding maximum structural temperatures
calculated using the series and approximate solutions. Using the cpe values at the
maximum structural temperature in the analytical solutions most closely matched
the finite element result, as indicated by the bold faced temperatures shown in Ta-
ble 5 for each simulation. The series solution results are within ±8% of the structural
temperature rise predicted by the finite element analysis of this limited set of cases.
Therefore, using cpe(Tma) as a constant value in the analytical solutions may be an
acceptable approach for approximating the effect of temperature dependent cpe on
maximum structural temperature.

6.3.3 Insulator Thermal Conductivity

Thermal conductivity of the insulator can be a strong function of both temper-
ature and ambient pressure. For simplicity, the effects of pressure and temperature
were considered separately.

High aerodynamic heating is generally associated with high speed flight at high
altitudes with correspondingly low ambient pressure. Pressure increases rapidly
to one atmosphere as the vehicle slows and descends for landing. For an adiabatic
structure, the maximum temperature may occur long after the heating pulse is com-
pleted. Therefore, a simplified pressure history was investigated. The pressure was
assumed to have a uniform value, P1, during the heating pulse and a different uni-
form value, P2, after the heating pulse. The one-dimensional finite element model
was used to investigate the effect of this simplified pressure profile on the calculated
maximum structural temperature. Again, the material property values and heating
parameters were the same as those used for the baseline results in Table 3, except
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Table 5. Effect of temperature dependent insulator specific heat capacity

Insulator Finite Element cpe(T ) γ τh Tma(Series) Tma(Eq. 20)

Temperature T, K
(

J
kgK

)
K K

Ti 288.71 688.0 0.9393 0.22191 426.96 428.13
Tma 418.44 909.6 1.2419 0.16784 414.04 409.87
Tha+Ti

2 827.59 1209.8 1.6518 0.12620 400.15 393.55
th = 1500s, Tha =1366K

Ti 288.71 688.0 0.9393 0.11095 358.66 357.39
Tma 350.88 800.4 1.0929 0.09537 355.88 352.19
Tha+Ti

2 827.59 1209.8 1.6518 0.06310 344.74 339.88
th = 750s, Tha =1366K

Ti 288.71 688.0 0.9393 0.44382 554.38 561.19
Tma 531.14 1052.3 1.4368 0.29016 518.86 511.89
Tha+Ti

2 827.59 1209.8 1.6518 0.25239 506.19 497.47
th =3000s, Tha =1366K

Ti 288.71 688.0 0.9393 0.22191 357.84 358.42
Tma 355.42 808.7 1.1041 0.18879 354.16 352.99
Tha+Ti

2 558.15 1072.3 1.4640 0.14238 347.37 344.45
th =1500s, Tha =828K

that the constant value of ke was replaced by the temperature and pressure depen-
dent values from Table B3. The values of P1 and P2 were systematically varied
between values of 0.0001, 0.001, 0.01, 0.1, and 1.0 atm. The resulting structural
temperature histories are shown in Fig. 13. Different color lines represent different
values of P1. Different line patterns represent different values of P2: solid is 1.0 atm,
dashed is 0.1 atm, and dotted is 0.01 atm. The curves in Fig. 13 exhibit a consis-
tent pattern. The maximum structural temperature depends only on P1. Different
values of P2, cause the time of maximum temperature to vary, but the maximum
temperature itself varies less than 0.2K over this wide range of P2 values. Similar
results were obtained for Saffil insulation in air.

Thermal conductivity of the insulator is also generally a strong function of tem-
perature. A simple approach for choosing an effective constant value of ke would be
to use the conductivity for a pressure, P1, at a temperature, Tke, that is the aver-
age of Tha and Ti. A slightly more general approach would be to choose a thermal
conductivity at a temperature defined by

Tke = Ti + fkeTh (25)

where fke is the fraction (0 to 1) of the insulator temperature range. A value of 0.5
would result in a simple average of Tha and Ti.

A parametric numerical study was performed to determine if there was a sin-
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Figure 13. Structural temperature histories for different ambient pressures

gle value of fke that could be used to predict accurately the maximum structural
temperature. Results for LI-900 are shown in Table 6, and for Saffil insulation in
Table 7. A range of parameters were varied, including P1, Th, th, de, and ρe. All
other material properties, except ke, were held constant. In Table 7 the default
value of de is 3 in. (0.0762 m) and the default value of ρe is 4.5 lbm

ft3
(72 kg

m3 ). For

each combination of parameters, the one-dimensional finite element model, with
ke(P1, T ), was used to calculate the maximum structural temperature (column 2 of
Tables 6 and 7). The series solution, Eqs. 16 and 19, was solved iteratively to find
the fixed value of ke that would produce the same maximum structural temperature
as the finite element solution. The associated values of Tke (column 3 of Tables 6
and 7) and fke (column 4 of Tables 6 and 7) were also calculated. For the majority
of the results shown, fke ranged between 0.57 and 0.62. A value of 0.60 was cho-
sen for fke, and the corresponding values of Tke, ke(P1, Tke), and τh (column 5 of
Tables 6 and 7) were calculated. The resulting approximate maximum structural
temperatures were calculated using the series solution (column 6 of Tables 6 and 7)
and the approximate solution (column 7 of Tables 6 and 7). For fke = 0.6, Tables 6
and 7 show good agreement between the finite element and series solutions for max-
imum structural temperature. Over most of the parameter ranges the approximate
solution is close to the series solution, but starts to diverge for small values of γ
(Table 7), as expected from the errors shown in Figs. 9 and 10.
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Table 6. Maximum structural temperature calculated using effective LI-900 thermal
conductivity

P1 Finite Element Tke fke τh Tma(Series) Tma(Eq. 20)
atm Tma,K K K K

0.0001 358.72 954.0 0.617 0.07525 356.48 351.14
0.001 368.45 955.9 0.619 0.08577 365.86 360.21
0.01 399.02 950.6 0.614 0.12071 396.79 390.27
0.1 446.95 936.5 0.601 0.17853 447.03 439.33

γ = 1.6903, th = 1500s, Tha =1367K fke = 0.6, Tke = 935.6K

0.0001 422.26 1142.1 0.629 0.10789 410.38 402.56
0.001 429.54 1126.7 0.618 0.11867 422.34 414.20
0.01 469.68 1116.0 0.610 0.15824 465.80 456.62
0.1 541.09 1117.0 0.611 0.22374 535.89 525.19

γ = 1.6903, th = 1500s, Tha =1644K fke = 0.6, Tke = 1102.2K

0.0001 323.89 756.6 0.585 0.05398 324.93 321.53
0.001 330.85 756.9 0.585 0.06443 331.88 328.19
0.01 351.52 779.1 0.613 0.09315 350.89 346.55
0.1 381.23 756.1 0.584 0.14216 382.93 377.75

γ = 1.6903, th = 1500s, Tha =1089K fke = 0.6, Tke = 768.9K

0.0001 304.69 592.2 0.581 0.03755 305.27 303.42
0.001 309.04 587.3 0.571 0.04795 309.80 307.70
0.01 321.12 599.3 0.583 0.07527 321.65 319.06
0.1 336.38 591.6 0.580 0.11168 337.31 334.26

γ = 1.6903, th = 1500s, Tha =811K fke = 0.6, Tke = 602.3K

0.0001 293.96 439.2 0.615 0.02550 294.10 293.40
0.001 295.79 438.8 0.613 0.03445 295.93 295.10
0.01 301.10 442.2 0.627 0.06018 301.16 300.07
0.1 306.23 440.0 0.618 0.08544 306.28 305.00

γ = 1.6903, th = 1500s, Tha =533K fke = 0.6, Tke = 435.6K

0.0001 335.18 951.5 0.615 0.05017 334.03 329.61
0.001 341.67 953.2 0.616 0.05718 340.32 335.61
0.01 361.98 945.1 0.609 0.08047 361.14 355.64
0.1 393.83 926.2 0.591 0.11902 395.30 388.82

γ = 1.6903, th = 1000s, Tha =1367K fke = 0.6, Tke = 935.6K

0.0001 382.33 956.2 0.619 0.10034 378.80 372.77
0.001 395.35 958.9 0.622 0.11436 391.19 384.82
0.01 436.15 955.6 0.619 0.16095 431.90 424.54
0.1 499.87 947.6 0.611 0.23804 497.16 488.41

γ = 1.6903, th = 2000s, Tha =1367K fke = 0.6, Tke = 935.6K
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Table 7. Maximum structural temperature calculated using effective Saffil thermal
conductivity (th = 1500s)

P1 Finite Element Tke fke τh Tma(Series) Tma(Eq. 20)
atm Tma,K K Tma,K Tma,K

0.0001 385.23 931.5 0.596 0.16694 386.50 387.99
0.001 405.99 941.7 0.606 0.19850 404.57 407.07
0.01 457.55 935.0 0.599 0.29376 457.92 463.63
0.1 482.63 932.8 0.597 0.34120 483.89 491.02

ρe = 72 kg
m3 , de = 0.0762m, γ = 0.8452, Tha =1367K fke = 0.6, Tke = 935.6K

0.0001 329.76 745.7 0.571 0.10155 333.20 332.72
0.001 344.56 754.8 0.582 0.13288 346.74 347.07
0.01 379.25 753.7 0.581 0.21580 382.05 384.33
0.1 393.60 752.7 0.580 0.25156 396.98 400.16

ρe = 72 kg
m3 , de = 0.0762m, γ = 0.8452, Tha =1089K fke = 0.6, Tke = 768.9K

0.0001 313.96 588.3 0.573 0.12546 315.57 317.88
0.001 328.84 592.0 0.581 0.19465 330.10 334.55
0.01 359.31 587.4 0.572 0.34894 361.62 371.04
0.1 370.14 587.8 0.572 0.40521 372.71 383.95

ρe = 72 kg
m3 , de = 0.0508m, γ = 0.5634 Tha =811K fke = 0.6, Tke = 602.2K

0.0001 301.90 425.9 0.561 0.24284 302.68 307.68
0.001 316.59 428.9 0.573 0.50759 317.22 328.42
0.01 339.90 430.0 0.577 0.96849 340.69 361.57
0.1 346.37 431.3 0.582 1.10387 347.12 370.46

ρe = 72 kg
m3 , de = 0.0254m, γ = 0.2817, Tha =533K fke = 0.6, Tke = 435.6K

0.0001 358.43 756.42 0.584 0.22445 361.50 369.79
0.001 379.61 763.0 0.593 0.28701 381.81 392.56
0.01 416.06 760.1 0.589 0.40934 418.58 435.96
0.1 427.75 760.5 0.590 0.44890 430.34 449.61

ρe = 48 kg
m3 , de = 0.0762m, γ = 0.5634, Tha =1089K fke = 0.6, Tke = 768.9K
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6.4 Heating History Profile

For hypersonic aerospace vehicles, surface heating histories can vary greatly with
the vehicle mission, trajectory, configuration, and location on the vehicle. Surface
heating histories are often provided to a TPS designer in the form of radiation
equilibrium heating rates, radiation equilibrium temperatures, convective heating
coefficients with total enthalpies or recovery temperatures, or a series of heating
rates at constant wall temperatures that bracket the expected surface temperature
range. For simplicity, the current study will only consider radiation equilibrium
temperature histories, which are suitable for well insulated surfaces that have rela-
tively low thermal mass at the surface. Radiation equilibrium temperature histories
can also be readily calculated from the other forms of heating histories.

Figure 14. Surface temperature histories

For the current study, surface temperature histories were chosen from Space
Shuttle Orbiter entry flight data [8, 9] and from previous studies [10, 11] of single
stage-to-orbit reusable launch vehicles (RLV’s). A total of seven surface temperature
histories are shown in Fig. 14. Surface temperature histories from four different body
points (BP9740, BP9678, BP9591, and BP9489) during the same atmospheric entry
flight of the Shuttle Orbiter were chosen to illustrate a range of different profile
shapes. The flight temperature data was smoothed to reduce noise from the crude
discretization produced by the flight instrumentation. Two heating histories from
an earlier TPS parametric weight study [10], body point A on the windward center
line of a winged cylindrical vehicle for the Access to Space study (ATSpA), and body
point A on windward centerline of a lifting body reusable launch vehicle (RLVpA)
are also shown in Fig. 14. The seventh surface temperature history, also studied in
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Figure 15. Ambient pressure histories

Reference [11], was for a point on the windward center line of a slightly different
variation of the lifting body vehicle (RLV3c). The corresponding ambient pressure
histories are shown in Fig. 15.

The challenge was to find an equivalent square heating pulse for each of the
heating histories that would enable the analytical solution to calculate an accurate
estimate of the maximum structural temperature. The first step in idealizing the
heating histories was to simplify the temperature histories in Fig. 14 by truncating
the variable low temperature portions of each history at the beginning and end.
The histories were truncated by eliminating any portions below a threshold surface
temperature defined by

Tthr = Ti + fthr(Tmx − Ti) (26)

where Tmx is the maximum surface temperature for a surface temperature history,
and fthr is a fraction of the surface temperature range.

Several quantities, including integrated heat load, integrated absolute surface
temperature, and integrated surface temperature rise from the initial temperature,
were integrated over the time of the truncated temperature histories.

The one-dimensional finite element model with fixed material properties from
Table 1 was used to calculate the maximum structural temperature for a structural
thickness of 0.125 inch and insulator thicknesses of 1, 2, 3, and 4 inches for each
heating history. The resulting maximum structural temperatures were plotted as a
function of various integral values, such as integrated heat load, integrated absolute
temperature, and integrated surface temperature rise, in hopes of identifying a clear
correlation. A linear correlation, Fig. 16, was discovered between the maximum
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structural temperature rise, Tm, and the integrated surface temperature rise from
the initial temperature, which is defined as

IT =

∫ t2

t1

(T − Ti)dt (27)

where t1 and t2 are the beginning and ending times of the truncated temperature
history.

Figure 16. Maximum structural temperature vs integrated surface temperature rise

In Fig. 16, the maximum structural temperature rise is shown as a function
of the integral defined in Eq. 27. Each marker shape represents one of the seven
surface heating histories from Fig. 14. The triangular symbols represent the four
shuttle histories and the other symbols represent the RLV histories. The dashed
lines represent the best fit line for all the maximum structural temperatures cal-
culated using the finite element model at each insulator thickness. The lines were
constrained to pass through the origin. The figure implies that for each configu-
ration with fixed material properties, the maximum structural temperature rise is
directly proportional to the integral defined in Eq. 27. For the simple square heat
pulse, that integral is simply

IT = Thth (28)

To determine a reasonable equivalent square heat pulse it is helpful to bound the
ranges of the two parameters that define it. The maximum possible value of th would
be the time span of the truncated surface temperature history, t2−t1, and the largest
that Th could be is the maximum surface temperature rise, Tmx − Ti. Therefore,
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the smallest that th could be is IT /(Tmx − Ti). For fixed material properties, the
series solution was used to calculate Tm by varying combinations of th and Th for
fixed values of IT . The calculated value of Tm was almost totally a function of IT
and showed little sensitivity to the particular combinations of th and Th over their
feasible ranges. However, for variable material properties, it is important to chose a
combination of th and Th that will enable calculation of constant effective properties
and average pressure during the heating pulse, P1. A simple approach is to use an
average of the bounding values of th.

th =
(t2 − t1) + IT

Tmx−Ti
2

(29)

Then Th can be readily found from Eq. 28. The resulting square heat pulse can
then be centered in the truncated time range between t1 and t2 for the purposes of
calculating an average value of P1, Pavg.

Figure 17. Simplified heating and pressure histories for BP9740

This approach for simplifying the surface heating history of Shuttle Orbiter
body point 9740 is illustrated in Fig. 17. The solid black line represents the surface
temperature history for BP9470. The horizontal blue dotted line represents the
threshold temperature defined in Eq. 26 for fthr = 0.15. The vertical blue dotted
lines, t1 and t2, bound the truncated heating pulse. The shaded area illustrates the
integral defined by Eq. 27. The heavy black dashed line represents the equivalent
square heating pulse with th calculated from Eq. 29. The square heat pulse has been
centered between t1 and t2 for the purpose of calculating an average pressure to use
as P1. The ambient pressure over the duration of the square heat pulse is indicated
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by a solid green line. The heavy green dot-dash line represents a simple average of
the pressure over the interval of the square heat pulse.

Selecting the threshold temperature, or more specifically fthr, for truncating
the surface temperature histories is not straightforward. The intent of truncating
the temperature histories is to capture the main heating pulse without any spuri-
ous complications from variations in convective cooling effects before landing or the
missing initial portion of the heating history (RLV histories). The heating history
simplifications illustrated in Fig. 17 were applied to all seven heating histories for
three different values of fthr: 0.10, 0.15, and 0.20. Table 8 lists the resulting calcu-
lated quantities. The second column shows the maximum surface temperature rise.
The third column shows the threshold temperature for the given value of fthr and
the fourth and fifth columns show the times bounding the truncated heating inter-
val. Columns 6 and 8 show the maximum and minimum possible durations for the
equivalent square heat pulse and column 9 is their average. The last three columns
contain the values that would be used for further calculations using the analyti-
cal solution. The integral in column 7 changes little over this range of fthr, which
indicates that there should be little effect on the calculated maximum structural
temperature for fixed material properties.

Table 8. Simplified surface temperature histories

Profile Tmx − Ti Tthr t1 t2 t2 − t1 IT
IT

Tmx−Ti
th Th Pavg

◦C K s s s 103s ◦C s s ◦C Pa
fthr = 0.10

BP9470 976.4 386.3 77.2 1575.0 1497.8 1073.5 1099.4 1298.6 826.6 122.7
BP9678 914.0 380.1 76.7 1593.8 1517.1 1055.4 1154.7 1335.9 790.0 163.3
BP9591 969.3 385.6 126.4 1583.4 1457.0 975.5 1006.4 1231.7 792.0 122.2
BP9489 687.5 357.5 99.3 1516.8 1417.5 689.0 1002.1 1209.8 569.5 64.7
ATSpA 990.9 387.8 0.0 2166.3 2166.3 1670.4 1685.7 1926.0 867.3 1756.6
RLVpA 969.9 385.7 0.0 2297.9 2297.9 1763.4 1818.0 2058.0 856.9 1025.5
RLV3c 814.1 370.1 0.0 2160.2 2160.2 1399.1 1718.5 1939.4 721.4 1401.4

fthr = 0.15
BP9470 976.4 435.2 91.4 1544.7 1453.3 1068.1 1093.9 1273.6 838.6 98.0
BP9678 914.0 425.8 88.1 1565.9 1477.8 1051.0 1149.8 1313.8 799.9 133.0
BP9591 969.3 434.1 141.7 1554.2 1412.5 970.1 1000.8 1206.6 804.0 99.7
BP9489 687.5 391.8 114.2 1498.6 1384.3 686.1 998.0 1191.2 576.0 59.1
ATSpA 990.9 437.3 0.0 2145.7 2145.7 1667.8 1683.1 1914.4 871.2 1756.6
RLVpA 969.9 434.2 0.0 2269.7 2269.7 1760.0 1814.5 2042.1 861.8 1025.5
RLV3c 814.1 410.8 0.0 2125.1 2125.1 1395.5 1714.2 1919.6 727.0 1364.6

fthr = 0.20
BP9470 976.4 484.0 103.5 1523.2 1419.6 1062.3 1088.0 1253.8 847.3 84.0
BP9678 914.0 471.5 95.7 1538.6 1442.9 1045.4 1143.7 1293.3 808.3 107.3
BP9591 969.3 482.6 154.5 1529.6 1375.1 963.7 994.2 1184.7 813.5 82.7
BP9489 687.5 426.2 127.9 1480.9 1353.0 682.4 992.6 1172.8 581.9 54.2
ATSpA 990.9 486.9 0.0 2125.2 2125.2 1664.2 1679.5 1902.4 874.8 1732.7
RLVpA 969.9 482.7 0.0 2244.6 2244.6 1755.8 1810.2 2027.4 866.0 974.2
RLV3c 814.1 451.5 0.0 2091.9 2091.9 1390.8 1708.4 1900.2 732.0 1331.4

1 2 3 4 5 6 7 8 9 10 11

The equivalent square heat pulses, defined by the values of th and Th in Table 8,
and the fixed material properties from Table 1 were substituted into the series
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solution to calculate the maximum structural temperature rise. The temperature
was predicted for a structural thickness of 0.125 in. and insulator thicknesses of 1, 2,
3, and 4 in. for each equivalent square heat pulse and compared to the finite element
results shown in Fig. 16. The largest errors in maximum structural temperature
rise were -5.4%, -5.9%, and -6.5% for fthr values of 0.10, 0.15, and 0.20 respectively.
Therefore, for fixed material properties, the solution is not sensitive to the threshold
temperature over the range considered. However, variable material properties are
sensitive to both Th and Pavg, which vary somewhat with fthr, as shown in Table 8.
With these considerations in mind, a value of fthr = 0.15 was chosen for further
calculations.

6.5 Approximation of Realistic Simulations

The key remaining question is: how accurately can the analytical solution, with
the previously described effective material properties and simplified square heat
pulse, predict the maximum structural temperature calculated using a finite element
solution with variable material properties and a time-accurate surface temperature
history? The one-dimensional finite element model with temperature-dependent
structural properties from Table B1 and insulator properties from Tables B2 and
B3 was used to calculate the maximum structural temperature for a structural
thickness of 0.125 in. and LI-900 insulator thicknesses of 1, 2, 3, and 4 in. for each
heating history.

For comparison, the maximum structural temperature was calculated for each
surface temperature history and geometry using the series and approximate analyt-
ical solutions, with the following approximations.

cps = cps(Tcs), where Tcs = Ti +
Tm
2
, (30)

cpe = cpe(Tce), where Tce = Ti + Tm, and (31)

ke = ke(Tke, Pavg), where Tke is defined in Eq. 25 (32)

Values for th, Th, and Pavg are taken from Table 8 for fthr = 0.15.
One difficulty is that the maximum structural temperature rise, Tm, must be

known to calculate the effective constant properties. This difficulty can be readily
overcome by making an initial guess and iterating to a converged solution. The
series solution and both approximate analytical solutions, Eqs. 20 and 21 were each
iterated independently to arrive at their respective converged solutions.

The finite element and analytical solutions for maximum structural temperature
are compared in Fig. 18. The figure shows the maximum structural temperature
rise as a function of LI-900 tile thickness. The solid circles represent the finite
element solutions, the solid lines represent the series solution, the dashed lines rep-
resent the approximate solution given by Eq. 20, and the dotted lines represent the
approximate solution given by Eq. 21. The colors correspond to the applied sur-
face temperature histories: black - Shuttle orbiter body point 9470, green - Shuttle
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Figure 18. Maximum structural temperature rise vs insulation thickness

orbiter body point 9489, and red - ATS reusable launch vehicle point A (windward
centerline). The series solution agrees with the finite element solution to within
-0.9% and 18.7% for the predicted maximum structural temperature rise of the
cases shown on Fig. 18. The close agreement between the finite element results and
the series solution tends to validate the methodology used to calculate the effec-
tive material properties and to map the transient surface temperature history to an
equivalent square pulse. The two approximate equations track the series solution
and the finite element solution well for most of the LI-900 thickness range, but start
to diverge for small thickness values.

Table 9 gives the detailed numerical comparisons between the finite element
calculations and results using the equations developed in this paper. The table is
divided into seven sections with each section consisting of results for four different
insulator thicknesses for a surface temperature history identified in bold print. For
each insulation thickness, values of the two governing nondimensional parameters
(associated with the series solution) are given, based on the effective constant ma-
terial properties and equivalent square heating pulse defined previously. The finite
element prediction of the maximum structural temperature rise is given for variable
material properties and a time-accurate surface heating history. The series and ap-
proximate solutions for the maximum structural temperature rise are also shown,
along with their errors relative to the finite element solution. The best assessment
of the accuracy of using the material property simplifications combined with the
surface temperature history simplifications is error associated with the series solu-
tion. The approximate solution has the same errors as the series solution combined
with the approximation errors illustrated in Fig. 10. The errors for the series so-
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lution range from 5.6% to 21.3%. The series solution is remarkably close to the
finite element solution, considering the complexity of the numerical simulation and
the large variation of material properties that occurs with time. For the much sim-
pler approximate equations, Eq. 20 has errors that range from 1.5% to 38.2% and
Eq. 21 has errors that range from 9.6% to 46.0%. The errors for the approximate
solutions start to get large for relatively small values of γ, as expected from the
errors shown in Fig. 10. The series solution errors for the reusable launch vehicles
(ATSpA, RLVpA, and RLV3c) are less than 10% for all calculated cases.

7 Mass of Insulated Structure

For aerospace vehicles reducing mass is of utmost importance. Therefore, it is
helpful to develop further insight into the interplay between the mass of structure
and the mass of insulator required to limit the structural temperature. The mass
per unit area of this simplified, insulated structure can be written simply as

m = me +ms = ρede + ρsds (33)

The relationship between de and ds that is required to limit the maximum struc-
tural temperature to a specified value is given by Eq. 21. By substituting Eqs. 4
and 10 into Eq. 21 and rearranging terms, the following expression can be obtained.

dsd
3
e =

(keth)2

2(ρscps)(ρecpe)
(
−ln(1− Tm

Th
)
)2 (34)

The equation can be further manipulated to give an explicit expression for de.
This provides a useful equation to calculate the insulator thickness required to limit
the maximum structural temperature to a specified value.

de =

 (keth)2

2(ρscpsds)(ρecpe)
(
−ln(1− Tm

Th
)
)2


1
3

(35)

Substituting Eq. 35 into Eq. 33 produces an expression for mass per unit area
as a function of structural thickness.

m =


(
ρeke√
cpe

)2
t2h

2ρsdscps

(
−ln(1− Tm

Th
)
)2


1
3

+ ρsds (36)

The first term in Eq. 36 represents the mass of insulator required to limit the
structure to the specified maximum temperature and the second term represents
structural mass. Eq. 36 can be written as a function of ms.
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Table 9. Maximum structural temperature rise for LI900 insulation

de γ τh FE Series error Eq. 20 error Eq. 21 error
m ◦C ◦C % ◦C % ◦C %

BP9470
0.0254 0.4367 0.6536 164.86 174.10 5.6 207.58 25.9 214.64 30.2
0.0508 0.7858 0.1889 74.84 81.58 9.0 83.99 12.2 92.40 23.5
0.0762 1.1128 0.0902 44.74 49.42 10.5 47.22 5.5 54.23 21.2
0.1016 1.4400 0.0527 30.33 33.74 11.2 30.79 1.5 36.51 20.4

BP9678
0.0254 0.4364 0.6857 152.83 173.38 13.4 206.89 35.4 213.33 39.6
0.0508 0.7857 0.1980 68.76 81.49 18.5 84.03 22.2 92.15 34.0
0.0762 1.1128 0.0946 41.05 49.40 20.3 47.30 15.2 54.14 31.9
0.1016 1.4400 0.0552 27.81 33.73 21.3 30.85 10.9 36.47 31.1

BP9591
0.0254 0.4288 0.6144 139.86 155.54 11.2 186.49 33.3 193.71 38.5
0.0508 0.7735 0.1767 63.32 72.47 14.4 74.65 17.9 82.61 30.5
0.0762 1.1010 0.0839 37.78 43.76 15.8 41.70 10.4 48.20 27.6
0.1016 1.4290 0.0488 25.58 29.83 16.6 27.10 5.9 32.35 26.5

BP9489
0.0254 0.3969 0.5056 77.47 87.58 13.0 107.09 38.2 113.09 46.0
0.0508 0.7285 0.1408 33.92 39.79 17.3 41.10 21.2 46.49 37.1
0.0762 1.0588 0.0651 20.08 23.75 18.3 22.41 11.6 26.52 32.1
0.1016 1.3900 0.0373 13.55 16.09 18.7 14.39 6.1 17.60 29.8

ATSpA
0.0254 0.4826 1.3822 369.70 366.53 -0.9 426.90 15.5 423.03 14.4
0.0508 0.8856 0.4003 184.05 188.32 2.3 193.76 5.3 201.79 9.6
0.0762 1.2413 0.1957 112.23 117.62 4.8 114.58 2.1 123.82 10.3
0.1016 1.5723 0.1178 76.97 81.86 6.3 77.45 0.6 85.93 11.6

RLVpA
0.0254 0.4803 1.3174 358.76 348.28 -2.9 405.92 13.1 403.15 12.4
0.0508 0.8764 0.3826 175.04 177.50 1.4 182.78 4.4 190.99 9.1
0.0762 1.2327 0.1863 106.19 110.50 4.1 107.55 1.3 116.67 9.9
0.1016 1.5589 0.1122 72.75 76.85 5.6 72.59 -0.2 80.88 11.2

RLV3c
0.0254 0.4710 1.2408 270.03 276.63 2.4 324.47 20.2 323.31 19.7
0.0508 0.8446 0.3626 131.45 139.07 5.8 143.92 9.5 151.17 15.0
0.0762 1.1880 0.1760 79.73 86.22 8.1 84.07 5.4 91.61 14.9
0.1016 1.5121 0.1050 54.48 59.67 9.5 56.23 3.2 63.12 15.9
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m =


(
ρeke√
cpe

)2
t2h

2cps

(
−ln(1− Tm

Th
)
)2


1
3

m
− 1

3
s +ms (37)

7.1 Material Properties and Insulator Mass

The first term in Eq. 37 represents the mass of insulator required to limit the
structure to the specified maximum temperature. Inspection of this equation illus-
trates the effect of key parameters on required insulator mass.

me =


(
ρeke√
cpe

)2

cps

(
−ln(1− Tm

Th
)
)2


1
3 (

t2h
2ms

) 1
3

(38)

From Eq. 38, it is obvious that a longer heat pulse (increased th) will result in
a larger required insulator mass. Similarly, a larger structural mass will provide
more structural heat sink capacity and require less insulator mass. For a given
structural mass and a particular transient heating pulse, required insulation mass
will be determined by the thermal properties of the insulator and structure.

The specific heat capacities of insulators and structural materials vary signifi-
cantly with temperature and the thermal conductivity of low density insulators is a
function of both temperature and pressure. Therefore, it is not immediately obvious
which material property values to use in the preceding equations to obtain results
that are meaningful and useful. However, the previously derived expressions for
equivalent constant thermal properties, Eqs. 30, 31, and 32, can be used to calcu-
late values of cps, cpe, and ke for each surface temperature history. The quantities
defining the equivalent square heating pulses, th, Th and Pavg, are listed in Table 8
for the seven heating histories previously studied. The first four temperature histo-
ries were measured at four different locations on the windward surface of a Shuttle
Orbiter during a single atmospheric entry flight [8, 9]. It is interesting to note the
variation in the equivalent square heating pulses that occur over just the wind-
ward surface in a single flight. The last three heating histories were predicted for
a single point on the windward surface of three different proposed reusable launch
vehicles [10,11].

Inspection of Eqs. 37 and 38 reveals that the thermal properties of the structure
and insulator can each be grouped separately. These grouped properties have the
potential to be useful for comparing the thermal effectiveness of both the structural
and insulator materials.

The specific heat capacity and maximum allowable temperature of the structure
directly affect the required insulation mass. However, the thermal properties of the
structure are coupled to the amplitude of the equivalent square heating pulse, Th.
The following expression is a candidate figure of merit for the thermal effectiveness
of the structural material.
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βs = cps

(
−ln(1− Tm

Th
)

)2

(39)

A larger value of this parameter will lead to a smaller required mass of insula-
tion. Therefore a structure with a high specific heat capacity and high maximum
temperature limit will tend to require less insulation.

For steady state heat conduction, minimizing the product of insulator density
and thermal conductivity, ρeke, minimizes the mass of required insulator [11]. How-
ever, a similar figure of merit for minimum mass of insulation subjected to transient
heating has not been available. The grouping of insulator properties in Eq. 38 sug-
gests a candidate figure of merit for minimum mass insulation for a transient heating
pulse (or at least for the simplified heat pulse in this derivation).

κe =
ρeke√
cpe

(40)

A smaller value of this parameter will lead to a smaller required mass of insu-
lation. Therefore, a low mass insulator for the transient heat pulse should have a
combination of low ρeke and high cpe.

7.2 Minimum Mass of Insulated Structure

The mass of the insulated structure, calculated using Eq. 37, is obviously a
function of the mass of the structural material. Increasing the amount of structural
mass linearly adds to the total mass, but results in a corresponding decrease in the
mass of required insulation. Therefore, in the absence of any overriding structural
requirements, there should be a structural mass for which the total mass is minimum.
The structural mass for which the total mass is minimum can be readily calculated
by taking the first derivative of Eq. 37 with respect to ms and setting it equal to
zero. The result can be solved for ms to produce

mso = 54(− 1
4

)
√
th


(
ρeke√
cpe

)2

cps

(
−ln

(
1− Tm

Th

))2


1
4

(41)

Equation 41 is potentially useful for sizing insulated structure. The structure
could first be sized to carry the design structural loads. The resulting equivalent
structural mass can then be compared to that calculated using Eq. 41. If the result
of Eq. 41 is greater, then increasing the structural mass to that value will result in
the lowest combined mass of structure and insulator. However, if the result of Eq. 41
is less, then adding additional structural mass will only increase the combined mass.

Substituting Eq. 41 back into Eq. 37 produces the following expression for the
minimum mass of an insulated structure.

mopt = (3 + 1)mso (42)
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mopt = 2

(
2

3

)( 3
4

)√
th


(
ρeke√
cpe

)2

cps

(
−ln

(
1− Tm

Th

))2


1
4

(43)

The first term in parentheses in Eq. 42 indicates the relative contributions of the
insulation and structure, respectively, to the minimum total mass. For minimum
total mass, Eq. 42 predicts that the mass of the insulation will be three times the
mass of the structure. Eq. 43 defines the lower bound for the mass of an insulated
structure subjected to a transient heat pulse. The magnitude of the minimum total
mass is solely a function of the duration of the equivalent square heating pulse, th,
and the figures of merit defined in Eqs. 39 and 40.

8 Analytical Predictions and Numerical Simulations

Several numerical studies were performed to assess how the simple approximate
solutions derived in this paper compare to more accurate numerical simulations of
Earth atmospheric entry heating on reusable launch vehicles. The objectives of the
numerical studies were: 1) to assess the accuracy of using Eqs. 35 and 38 to size
insulation for a realistic transient heating pulse, 2) to determine the applicability
of the figures of merit defined by Eqs. 39 and 40 to results of atmospheric entry
simulations, and 3) to investigate the interplay between the mass of the structure
and the corresponding mass of insulation required to limit the maximum structural
temperature.

The finite element model and heating histories previously described were used for
all of these numerical studies. However, the finite element simulation was iterated to
determine the insulation thickness required to limit the structural temperature rise
to the specified value. Each transient simulation was continued until the structural
temperature had reached its maximum value.

8.1 Thermal Properties of Structural Material

Obviously, raising the structural temperature limit will decrease the amount of
required insulation. Less commonly considered is the effect of the structural specific
heat capacity on the required insulation. Equation 39 defines a candidate figure
of merit that combines the effects of structural temperature limit and specific heat
capacity on the amount of required insulation.

A numerical study was performed to assess how well the results of a series of full
numerical simulations would correlate to the parameter βs. To compare the effects of
the structural thermal properties, it was necessary to fix all other parameters in the
problem and vary only the choice of structural material. LI-900 tile was chosen as the
insulator and the structural mass per unit area was fixed at 6.10 kg

m2 (1.25 lbm
ft2

). Two

different heating histories were considered, but results can only be directly compared
for a particular heating history. Table 10 shows thermal properties for four structural
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Table 10. Thermal Properties of Four Structural Materials

Ti + Tm cps(Tcs) βs(BP7940) βs(ATSpA)

K(◦F ) J
kgK

(
Btu
lbm◦R

)
J

kgK

(
Btu
lbm◦R

)
J

kgK

(
Btu
lbm◦R

)
Aluminum 2024 ρs =2803 kg

m3 (0.10 lbm
in3 )

422(300) 900(0.215) 27(0.006) 25(0.006)

450(350) 910(0.217) 41(0.010) 38(0.009)

Graphite/epoxy ρs =1576 kg
m3 (0.057 lbm

in3 )

366(200) 913(0.218) 9(0.002) 8(0.002)

422(300) 984(0.235) 30(0.007) 27(0.006)

Beryllium Aluminum ρs =2098 kg
m3 (0.076 lbm

in3 )

505(450) 1690(0.404) 151(0.036) 138(0.033)

561(550) 1735(0.415) 267(0.064) 244(0.058)

Titanium 6Al-4V ρs =4437 kg
m3 (0.16 lbm

in3 )

533(500) 574(0.137) 68(0.016) 62(0.015)

700(800) 594(0.142) 270(0.064) 242(0.058)

materials chosen for the study. The temperature dependent properties for these
materials are tabulated in Reference [11]. The maximum allowable temperature for
each material is application dependent, so an approximate upper and lower bound
was chosen for each material. For each limiting temperature, the structural specific
heat capacity (Eq. 30) and βs for each of the two heating histories are shown in
Table 10.

Iterative finite element analysis was used to size insulation for 16 cases (4 struc-
tural materials, 2 temperature limits, and 2 heating histories). The resulting insu-
lation masses are shown in Fig. 19 and indicated by the square symbols. For the
ATSpA heating history, each particular structural material and temperature limit is
identified in the figure. The square symbols are not labeled for the BP7490 heating
history to avoid cluttering the figure. The approximate insulation masses, calculated
using Eq. 38, are indicated by circles corresponding to each of the 16 cases sized by
the finite element solution. For the Space Shuttle heating history, BP7490, half of
the approximate solutions are within 10% of the finite element solutions and all of
the approximate solutions are within 25%. For the reusable launch vehicle heating
history, ATSpA, half of the approximate solutions are within 10% of the finite el-
ement solutions and all of the approximate solutions are within 20%. Because the
value of cpe used in Eq. 38 is a function of the maximum structural temperature
limit (Eq. 31), the approximate insulation masses are not solely a function of βs.
The solid lines in Fig. 19 represent the approximate solution using a value of cpe
that is an average of the 8 cases for each temperature history. The close agreement
between the solid lines and circles indicates that, for LI-900 insulation, the variation
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Figure 19. Effect of structural thermal properties on required insulator mass

of cpe with Tm has little effect on the mass of required insulation. The solid lines
clearly indicate the effect of βs on the required insulation mass predicted by the ap-
proximate solution, Eq. 38. Remarkably, the finite element solutions closely follow
this trend, even with four different structural materials. Therefore, the parameter βs
appears to be a useful indicator of the thermal effectiveness of a structural material.

8.2 Thermal Properties of Insulator

To better understand the significance of the parameter defined in Eq. 40, it is
helpful to consider a range of candidate insulator materials that could be used for
thermal protection on a reusable launch vehicle. A numerical study was performed
to investigate the relative mass efficiency of a range of insulators for two different
surface temperature histories (BP7490 and ATSpA) from Table 8. Five rigid ceramic
tile materials (LI-900, LI-2200, FRCI-12, AETB-8, AETB-16) and four flexible insu-
lations (Saffil-3, Saffil-6, Qfiber-3, and Qfiber-6) were considered. The temperature
and pressure dependent thermal properties of the three Space Shuttle Orbiter tile
materials ((LI-900, LI-2200, and FRCI-12) were obtained from published tables [4].
The thermal properties for AETB-8 and AETB-16 were calculated using the model
developed by Daryabeigi [12] and the flexible insulation properties were calculated
using the models also developed by Daryabeigi [7]. For this study, aluminum with
a maximum temperature limit of 450K (350◦F) was chosen as the underlying struc-
ture. The structural mass per unit area was fixed at 6.10 kg

m2 (1.25 lbm
ft2

).

Table 11 shows the effective cpe (Eq. 31) and ke (Eq. 32) of each insulation for
the two surface heating histories. The insulation figure of merit, calculated using
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Eq. 40, is shown for each set of material properties. As shown in Table 11, the
insulation effective material properties and figure of merit, κe, for a given insulation
can be significantly different for different surface temperature histories. Therefore,
insulations should be directly compared only for a given surface temperature history,
structural material, and structural mass.

Table 11. Insulation figure of merit values
for aerospace insulations

Temp. History cpe ke κe = ρeke√
cpe

W
mK

J
kgK

kg2

m3s2
√
K

LI-900 ρs =144 kg
m3 (9 lbm

ft3
)

BP7490 949 0.03399 0.1589
ATSpA 949 0.06060 0.2832

LI-2200 ρs =352 kg
m3 (22 lbm

ft3
)

BP7490 949 0.06046 0.6907
ATSpA 949 0.08326 0.9512

FRCI-12 ρs =192 kg
m3 (12 lbm

ft3
)

BP7490 949 0.04039 0.2517
ATSpA 949 0.07212 0.4494

AETB-8 ρs =128 kg
m3 (8 lbm

ft3
)

BP7490 975 0.05702 0.2338
ATSpA 975 0.08728 0.3578

AETB-16 ρs =256 kg
m3 (16 lbm

ft3
)

BP7490 975 0.05927 0.4860
ATSpA 975 0.08975 0.7360

Saffil-3 ρs =48 kg
m3 (3 lbm

ft3
)

BP7490 975 0.04352 0.0669
ATSpA 975 0.07302 0.1123

Saffil-6 ρs =96 kg
m3 (6 lbm

ft3
)

BP7490 975 0.02420 0.0744
ATSpA 975 0.05489 0.1688

Qfiber-3 ρs =48 kg
m3 (3 lbm

ft3
)

BP7490 932 0.04106 0.0646
ATSpA 932 0.07328 0.1152

Qfiber-6 ρs =96 kg
m3 (6 lbm

ft3
)

BP7490 932 0.02158 0.0679
ATSpA 932 0.04975 0.1564

The iterative finite element analysis,
previously described, was used to cal-
culate the required insulation mass for
each insulation and surface heating his-
tory listed in Table 11. Fig. 20 shows
the required insulation masses versus
the insulation figure of merit, κe. Each
symbol shape represents the finite ele-
ment solution for each of the insulations
represented in Table 11 and the solid
line represents the approximate solution
calculated using Eq. 38. The red line
and symbols correspond to the BP7490
temperature history and the black line
and symbols correspond to the ATSpA
temperature history. For each temper-
ature history, the finite element results
for this wide range of insulators clearly
follow the trend predicted by the ap-
proximate solution.

For both surface temperature histo-
ries the flexible insulation materials are
more mass efficient than the rigid tile
materials. For the Shuttle Orbiter sur-
face temperature history (BP7490), the
bulk of the heating takes place at such a
low pressure that gas conduction is not
significant and radiation dominates the
heat transfer through the insulation. Therefore the density of the flexible insulation
(affects the length of gas conduction path) has little effect on the thermal perfor-
mance, so that all four flexible insulations have nearly the same mass efficiency.
Conversely, the bulk of the heating for the reusable launch vehicle surface tempera-
ture history (ATSpA) occurs at a higher pressure at which gas conduction through
the insulation is significant. Therefore, the lower density flexible insulations are
more mass efficient than the higher density flexible insulations. The lower density
insulations are more efficient because at a given mass they are thicker and thus pro-
vide a longer path for gas conduction. For both surface temperature histories, lower
density ceramic tiles tend to be more mass efficient than higher density tiles because
heat transfer due to solid conduction becomes more significant with increased den-
sity. However, the denser LI-900 tile is more mass efficient than the AETB-8 tile.
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The required insulation masses predicted by the approximate equation are within
15% of the finite element solutions.

Figure 20. Required insulation mass for several insulators

8.3 Interplay Between Mass of Insulator and Structure

An additional numerical study was performed to gain a better understanding of
the interplay between the mass of the structure and the mass of insulator required
to limit the structural temperature. LI-900 ceramic tile was used as the insulator.
Aluminum, with a maximum temperature limit of 450K (350◦F ), was chosen as the
underlying structure. The structural mass per unit area was varied between 0.49
and 14.6 kg

m2 (0.1 and 3.0 lbm
ft2

). For each of the two different surface temperature

histories (BP7490 and ATSpA) from Table 8, iterative finite element analyses were
performed for thirteen different values of structural mass per unit area to calculate
the required insulation mass.

Results of this numerical study are shown in Fig. 21. The red symbols and
lines correspond to the BP7490 heating history and the black to the ATSpA heating
history. The blue line is the mass of the structure, which was the same for both
heating histories. Required insulation masses calculated using the finite element
analyses are represented by the solid circles. Dashed lines represent the correspond-
ing approximate insulation masses calculated using Eq. 38 with properties defined
by Eqs. 30-32. The solid squares represent the sum of the finite element solutions
for insulation mass and the structural mass. The solid lines represent the sum of
the approximate solution for insulation mass and the structural mass. The solid
triangles represent the minimum total mass calculated using Eqs. 41 and 43.
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Figure 21. Mass of insulated structure as a function of structural mass

Comparison of the required insulation masses calculated using the finite element
analysis and using Eq. 38 (solid circles vs dashed lines in Fig. 21) shows remarkably
good agreement. Over the middle range of structural masses studied the approxi-
mate solution is within 15% of the finite element solution for both heating histories.
However, for values of structural mass below 1 kg

m2 , the approximate solution begins
to sharply diverge from the finite element solution. Also, at the high end of the
range of structural masses, the approximate solution for the BP7490 heating his-
tory is beginning to diverge from the finite element solution. This indicates that the
approximate solution may become much less accurate when the ratio of insulation
mass to structural mass becomes very high or very low. The total mass is obtained
by simply adding the structural mass to the insulation mass, so the accuracy com-
parison between the finite element and approximate solutions is similar to that for
the required insulation masses.

As the structural mass increases, the required insulation mass decreases, so there
is the potential for a combination of structure and insulator that produces the mini-
mum total mass. For the finite element results, the total mass minimum occurs at a
structural mass value of about 1 kg

m2 (0.2 lbm
ft2

) for both heating histories. Equation 41

predicts a minimum at a structural mass of 2.1 kg
m2 for the BP7490 heating history

and 3.6 kg
m2 for the ATSpA heating history. Although Eq. 41 does not accurately

predict the structural mass at which the total mass is a minimum, the values of the
minimum total mass predicted using Eq. 43 are within 10% of the finite element
calculations for both heating histories. The three to one ratio of insulator mass to
structural mass predicted to occur (Eq. 42) at the minimum mass appears to be an
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artifact of error in the approximation.
The total mass curves in Fig. 21 are relatively flat over a significant range of

structural masses. Therefore, the mass (and thickness) of the insulator can be
reduced by increasing the structural mass, for a relatively modest total mass penalty.
Thinner vehicle walls, insulator plus structure, could improve vehicle packaging
efficiency, perhaps resulting in a net mass savings.

9 Conclusions

A simplified transient thermal problem was investigated in an attempt to gain
basic insight into the thermal response of an insulated structure. A one-dimensional
problem, consisting of a homogeneous insulator in perfect contact with an underly-
ing, perfectly insulated structure was defined. From an initial uniform temperature,
the outer surface of the insulator is instantaneously raised to an elevated tempera-
ture, held at that temperature for finite time, and then instantaneously returned to
the initial temperature.

An analytical solution was derived for the transient response of this simplified
transient problem. Although the solution is a rather unwieldy infinite series, the
thermal response is completely governed by two nondimensional parameters with
physical significance. Numerical examples were presented using properties and a
heating duration representative of ceramic tiles on the Space Shuttle Orbiter.

The analytical series solution was used to calculate the maximum structural
temperatures over a range of the two governing parameters. A simple function of
the two governing parameters was constructed and used to approximate the maxi-
mum structural temperature over the selected range of the parameters. From this
function, two approximate equations were developed for predicting the maximum
structural temperature rise of an insulated structure.

Techniques were developed to choose a constant effective value for each of the
temperature and pressure dependent material properties of the insulator and struc-
tural materials. A technique was also developed for defining an equivalent square
heating pulse for a wide range of surface temperature histories associated with atmo-
spheric entry. Analytical solutions for maximum structural temperature rise, using
these constant effective material properties and simplified equivalent square heating
pulses were compared to finite element solutions with variable material properties
and time-accurate surface temperature histories for a range of insulator thicknesses.
Results for the analytical series solution were typically within 10% to 20% of the
finite element solutions. The approximate analytical solution had similar accuracy
for many of the cases studied, but began to lose accuracy as one of the nondimen-
sional governing parameters, the ratio of insulation heat capacity to structure heat
capacity, became small.

Approximate analytical equations were developed for sizing the insulator thick-
ness and mass required to maintain the insulated structural skin of hypersonic
aerospace vehicles below a specified temperature. Manipulation of the equations
revealed that the thermal properties of the insulator and of the structure could each
be collected into a single term. These terms could be used as figures of merit to
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indicate the effect of the choice of insulator or structural material on the required
insulator mass. An equation was also developed for the minimum total mass of an
insulated structure sized to stay below the maximum structural temperature limit,
ignoring other design considerations.

A one-dimensional, finite element, transient thermal analysis was used to perform
numerical studies for comparison with the results of approximate equations devel-
oped in this paper. The finite element analysis included the effects of temperature
and pressure dependent material properties. Time-accurate surface temperature
histories and ambient pressure histories were also incorporated into the numerical
models.

A numerical study was performed to compare the mass of insulation required
to protect four different structural materials. Two different maximum structural
temperatures were considered for each structural material. The insulation material
and the structural mass were kept the same. Calculations were performed for two
different surface temperature histories. The approximate solution predicted the
required insulation masses to within 10% of the finite element results for more than
half of the cases and to within 25% for all of the cases considered. The finite element
results exhibited a close correlation to the figure of merit, βs, derived in this paper.

A second numerical study was performed to compare the mass efficiency of nine
different aerospace insulators, five ceramic tile materials and four flexible insula-
tions. The structural material, mass and maximum temperature limit were held
constant while the required insulation masses were calculated for the same two sur-
face temperature histories. For the insulations considered, the required insulation
masses predicted by the approximate equation were within 15% of the finite ele-
ment solutions. The finite element results were closely correlated to the insulation
efficiency figure of merit, κe, derived in this paper.

A third numerical study was performed to investigate the effect of structural
mass on the mass of required insulation and to determine the minimum mass for an
insulated structure designed with only thermal constraints. The structural material
and maximum temperature, as well as the insulation material, were held constant
and the required insulation masses were calculated for a range of structural masses
and for the same two surface temperature histories. For very small or very large
values of structural mass the approximate solution diverges from the finite element
solutions, however, away from these extremes the approximate solution was within
15% of the finite element solution. The approximate equation for minimum total
mass was within 10% of the finite element solution, however, the approximate equa-
tion predicted the minimum total mass at a much larger value of the structural mass
than the finite element solution.

The approximate equations developed in this paper were shown to predict the
results of much more complex finite element calculations with surprising accuracy
for the wide range of cases considered. Achieving these accurate results requires
carefully following the techniques developed for mapping the transient surface tem-
perature histories to equivalent square temperature pulses and for calculating the
effective property values to use in the approximate equations. These simple approxi-
mate equations are useful for the preliminary investigation of a wide range of design
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space to identify attractive regions for more detailed study. The figures of merit
developed in this paper can also be helpful for choosing between available insulation
and structural materials as well as providing guidance for developing more efficient
materials. The successful development of constant, effective values for the temper-
ature and pressure dependent thermal properties of monolithic insulators raises the
intriguing possibility of developing effective properties for more complex sandwich
cores or composite insulations for use in the simple approximations.
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Appendix A

Derivation of Series Solution

In Reference [3] De Chant derives the solution to a problem that is similar to the
second portion of the current problem, t > th. De Chant’s solution is for a uniform
initial temperature distribution with the outer surface temperature of the insulator
instantaneously reduced to zero. A solution to the same problem is presented in
Reference [2], but it appears to be incorrect – as noted by De Chant and verified in
the current effort.

In Reference [3] De Chant defines the following problem (converted to the nomen-
clature of the current paper) to be solved.

∂T

∂t
= β

∂2T

∂2x
(A-1)

with the boundary condition at x = 1 as

∂T (1, t)

∂t
= −βγ ∂T (1, t)

∂x
(A-2)

the boundary condition at x = 0 as

T (0, t) = 0 (A-3)

and the initial condition as

T (x, 0) = Tio (A-4)

The dimension de appears, indirectly through β, in Eqs. A-1 and A-2 as a result
of nondimensionalizing the spatial variable x.

De Chant then separates variables to get a first order ordinary differential equa-
tion in time that can be readily solved to obtain an exponential decay term and an
eigenvalue problem in the spatial variable.

φ′′(x) + λ2φ′(x) = 0 (A-5)

The eigenfunctions that solve Eq. A-5 are given by

φn(x) = sin (λnx) (A-6)

and the eigenvalues can be obtained by solving Eq. 15.

The boundary condition at x = 1 causes some difficulty in proceeding with the
solution. De Chant overcomes this difficulty by developing a “weighting” function.

σ(x) = 1 +
1

γ
δ(x− 1) (A-7)

where δ denotes the Dirac delta function.
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The weighting function is then used to ensure orthogonality of the eigenfunctions.∫ 1

0
φi(x)φj(x)σ(x)dx = 0 (A-8)

The next step in the solution is to satisfy the initial condition by using an
eigenvalue expansion.

To(x)

Th
=
∞∑
n=1

bnφn(x) (A-9)

However, rather than using a uniform temperature distribution for the initial
condition of the second part of the problem, the temperature distribution from
Eq. 13 at time τ = τh is used as the initial condition.

To(x)

Th
= 1−

∞∑
m=1

cm sin (λmx)e−λ
2
mτh (A-10)

Application of the orthogonality relationship, Eq. A-8, yields

bn =

∫ 1
0
To(x)
Th

φn(x)σ(x)dx∫ 1
0 φ

2
n(x)σ(x)dx

(A-11)

Substituting Eqs. A-6 and A-7 into Eq. A-11 and applying the Dirac delta func-
tion produces

bn =

∫ 1
0
To(x)
Th

sin(λnx)dx+ 1
γ
To(1)
Th

sinλn∫ 1
0 sin2 (λnx)dx+ sin2 λn

γ

(A-12)

Further substitution of Eq. A-10 into Eq. A-12 and rearranging terms gives

bn =

(∫ 1
0 sin (λnx)dx+ sinλn

γ

)
−
∑∞

m=1

(∫ 1
0 cm sin (λmx) sin (λnx)dx+ cm sinλm sinλn

)
e−λ

2
mτh∫ 1

0 sin2 (λnx)dx+ sin2 λn
γ

(A-13)

Integrating Eq. A-13 produces

bn =

(
1−cosλn

λn
+ sinλn

γ

)
−
∑∞

m=1

(
λn sinλm cosλn−λm sinλn cosλm

λ2m−λ2n
+ sinλm sinλn

γ

)
cme

−λ2mτh

1
2 −

sin (2λn)
4λn

+ sin2 λn
γ

(A-14)

The first term in the numerator represents the solution for the uniform initial
temperature problem. It can be shown to be the same as the coefficients defined in
Eq. 14. Using this observation and trigonometrical identities for the product of sine
and cosine, Eq. A-14 can be rewritten as
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bn = cn −

∑∞
m=1

(
sin (λn−λm)
λn−λm − sin (λn+λm)

λn+λm
+ 2 sinλm sinλn

γ

)
cme

−λ2mτh

1− sin (2λn)
2λn

+ 2 sin2 λn
γ

(A-15)

Inspection of Eq. A-15 reveals a potential numerical problem when m = n. The
first term in the large parentheses of Eq. A-15 approaches 1 in the limit as λm → λn.
Therefore, for n = m the quantity in the large parentheses becomes equivalent to
the denominator and cancels out. Eq. A-15 can thus be rewritten as

bn = cn(1− e−λ2nτh)−
∞∑
m=1
m 6=n

 sin (λm−λn)
(λm−λn) −

sin (λm+λn)
(λm+λn) + 2 sinλm sinλn

γ

1− sin (2λn)
2λn

+ 2 sin2 λn
γ

 cme
(−λ2mτh)

(A-16)
which is the same as Eq. 17. A simple offset in the time variable completes the
solution shown in Eq. 16.

48



Appendix B

Material Properties

Table B1. Properties for aluminum 2024 (Ref. [4])

Temperature cp k
◦R(K) Btu/lbm/◦R(J/kg/K) Btu/ft/hr/◦R(W/m/K)

160 (89) 0.177 (741) 61.2 (106)

260 (144) 0.147 (615) 69.6 (120)

460 (256) 0.195 (816) 84.0 (145)

660 (367) 0.216 (904) 95.0 (164)

760 (422) 0.224 (937) 99.0 (171)

860 (478) 0.233 (975) 102.5 (177)

1060 (589) 0.250 (1046) 104.5 (181)

Table B2. Specific heat capacity for LI-900 (Ref. [4])

Temperature cp
◦R(K) Btu/lbm/◦R(J/kg/K)

460 (256) 0.150 (628)

710 (394) 0.210 (879)

960 (533) 0.252 (1054)

1210 (672 0.275 (1151)

1460 (811) 0.288 (1205)

1710 (950) 0.296 (1238)

1960 (1089) 0.300 (1255)

2210 (1228) 0.303 (1268)

2460 (1367) 0.303 (1268)

3460 (1922) 0.303 (1268)

49



Table B3. Thermal conductivity for LI-900 (Ref. [4])

T, ◦R

k, Btu/(ft hr ◦R)

Pressure, atm

0 0.0001 0.001 0.01 0.1 1.0

460 0.0075 0.0075 0.0100 0.0183 0.0250 0.0275

710 0.0092 0.0092 0.0125 0.0225 0.0316 0.0341

960 0.0125 0.0125 0.0167 0.0276 0.0400 0.0433

1210 0.0175 0.0175 0.0216 0.0325 0.0492 0.0534

1460 0.0233 0.0233 0.0275 0.0392 0.0600 0.0658

1710 0.0308 0.0308 0.0350 0.0492 0.0725 0.0782

1960 0.0416 0.0416 0.0459 0.0617 0.0875 0.0942

2210 0.0567 0.0567 0.0610 0.0767 0.1060 0.1130

2460 0.0734 0.0734 0.0782 0.0942 0.1270 0.1360

2760 0.0966 0.0966 0.1020 0.1160 0.1550 0.1670

2960 0.1660 0.1660 0.1230 0.1390 0.1790 0.1940

3260 0.1540 0.1540 0.1620 0.1800 0.2220 0.2420

3460 0.1900 0.1900 0.1960 0.2190 0.2620 0.2900
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