
The Anatomy of ESATAN and
ESARAD Thermal Model Files

Kan Yang
NASA Goddard Space Flight Center

Objectives
 Goal: To facilitate conversion between ESA-

based thermal model files and Thermal
Desktop in interagency collaborations

 (i.e. what if you got a file from a vendor or agency that used ESATAN?
How would you go about converting it?)

 This short course will:
  Provide a basic overview of ESATAN syntax
  Provide equivalent statements in Thermal Desktop/TSS*

and SINDA to aid in the translation from ESATAN format
 *some commonly used thermal modeling tools

Who is this presentation for?

 People who are familiar with Thermal
Desktop/TSS and SINDA but unfamiliar with
ESATAN

All equivalent SINDA statements to the ESATAN thermal file
will be presented in blue boxes

All equivalent TSS statements to ESATAN-TMS/ESARAD will
be presented in red boxes

All equivalent Thermal Desktop statements to ESATAN-
TMS/ESARAD will be presented in green boxes

Overview
• ESARAD language (GMM)

 Geometric Math Model to define the surfaces, properties, nodal
 distributions for radiation modeling and to calculate the radiation
 couplings

• ESATAN Thermal model (TMM)
 Thermal Math Model to define the node data, heat sources,
 conduction couplings, and solver control variables for finite difference
 solution routines

• ESATAN-TMS Workbench GUI (demonstration)
 Graphics interface which outputs in ESARAD language; processes
 geometry and creates thermal inputs
 NOTE: this is a later addition. Initially, there were only ESARAD and
 ESATAN files. ESATAN-TMS captures both in a single user environment.

Disclaimer

Presenter is by no means an expert at ESATAN/ESARAD…

What is ESATAN?
• European Space Agency (ESA) –directed software package

developed by ITP Engines UK Ltd. under ESA Contract
– Developed as a standard set of tools that were controllable and

modifiable by ESA to address its specific modeling needs (alternative
to SINDA, but has many similar properties to SINDA)

• Major features of ESATAN include:
– Modular structure: input enables model to be described as the sum of

many sub-models (each sub-model is a complete model separately
suitable for analysis)

– Easy syntax for combining submodels (node merging or inter-model
conductances)

– Implicit submodel definitions by including previously-defined
submodels

– Mortran language to enable Fortran-like commands with model data
or operations

Function ESATAN Thermal
Desktop/SINDA

TSS/SINDA

Graphical User
Interface (GUI) /
GMM Generator

ESATAN-TMS
Workbench (.erg)

Autocad drawing
file for Thermal
Desktop (.dwg)

SPACE3D / TSS
.tssma, .tssgm,
.tssop files

Radiation (Radk)
Calculations

ESARAD .erk:
instructions to
execute ray trace
 Radk files

RadCAD
 TD Case set
manager radiation
analysis tab
 .rdk or .k files

TSS  Ray trace
produces .rk
folder and .hr
folder

Thermal Analysis
(TMM)

ESATAN Thermal
file (.d)

SINDA .inp and .cc
files

SINDA .inp files

Equivalent Files

Warning! Lots of (relatively) dry
material ahead…

I will try to make the
discussion about syntax
as painless as possible…

… but you may be
excused if your brain
feels full

ESARAD Language

ESARAD Geometric modeling process
New Model

Define bulk
properties

Define thermo-
optical properties

Define primitive
shells

Create a mesh

Cut
primitive shells

Define assemblies

Define Boundary
Conditions

Generate
Conductive
interfaces

New Model

• The ESARAD language is used to generate the geometry
(GMM) and to operate the programs / modules
ESATAN-TMS GUI can be used to generate Workbench

language statements (records all commands executed from
GUI in .log files)

• What does a typical ESARAD file look like?

• Text file with similar syntax to C/C++
• Comments are denoted with /*…*/ or #
• All lines must end with ;

New Model

BEGIN_MODEL modelname
 (other language statements)
END_MODEL

• Basic model construct (stored in .erg esarad geometry file):

GMM defined in Thermal
Desktop .dwg file

GMM defined in
TSS .tssgm file

Define bulk properties

• ESARAD allows definition of the following bulk properties:
– Density
– Specific Heat
– Thermal conductivity

• ESARAD syntax:

Bulk properties
can be redefined
in the Thermal
Desktop “Edit

Material Property
Data” window

BULK propertyname;
propertyname = [density, specific heat, conductivity];

Bulk properties in TSS .tssma file:
material materialname
 color =
 density =
 units =
 spec_heat_table =
 absorb_coef =
 units =
 .
 .

Define Thermo-optical
properties

• Optical properties are defined with the following data type:
 OPTICAL name;
 name = [IR emissivity, IR reflectivity, IR transmissivity,
 solar absorptivity, solar reflectivity,
 solar transmissivity, IR specular reflectivity,
 solar specular reflectivity]

• Example:
 OPTICAL OPTVAR1;
 OPTVAR1 = [0.6,0.2,0.1,0.1,0.5,0.2,0.1,0.2];

 NOTE: specular reflectivity and diffuse reflectivity defined in values,
 not percentages (like TSS or Thermal Desktop)

Define Thermo-optical
properties

Bulk properties
can be redefined
in the Thermal
Desktop “Edit

Optical Property
Data” window

Define Thermo-optical
properties

Optical properties in TSS .tssop file:
property opticalpropertyname
 ir_eps =
 ir_trans =
 ir_spec =
 ir_tspec =
 ir_refract =
 sol_eps =
 sol_trans =
 sol_spec =
 sol_tspec =
 sol_refract =
 color =

• Define by points:

2 1

3

SHELL RECT_1;
RECT_1 = SHELL RECTANGLE (
point1 = [-2.0, -1.0, 0.0],
point2 = [-1.0, -1.0, 0.0],
point4 = [-2.0, -2.0, 0.0],
thick = 0.0;

• Other shell types: triangle, triangular prism, sphere,
quadrilateral, paraboloid, cylinder, box, cone, disk

opt1 = GOLD_BOL,
opt2 = BLACKBODY,
nodes1 = 1,
nodes2 = 1,

label = “AVIONICS_12”,
side1 = “ACTIVE”,
side2 = “INACTIVE”
);

Surface name

If surface is
active/inactive in
radiation calcuations

Optical properties

Defined with Right-
handed coord. system:

1: Top/out side
2: Bottom/in side

Node subdivision

Define primitive shells

4 nbase1 = 1,
nbase2 = 18, Starting node no.

• For rectangles, the third point is placed in-plane in accordance
with other three points; if the user-defined fourth point is not
orthogonal to the first two points, ESARAD moves the point

• For quadrilateral, if the fourth point is not in the plane formed

by the first three points, ESARAD projects the fourth point
onto the plane (model check) and the position of the
projected point is used for the calculation

• Can also define shells by parameters (specify dimensions of

surface first, then translate/rotate to correct location) or by
origin/direction

Define primitive shells

Define primitive shells

Surfaces can be defined and assigned properties in the Thermal Desktop
.dwg file
Examples of surfaces supported in Desktop: Rectangle, Disk, Cone, Cylinder,
Sphere, Paraboloid, Parabolic Trough, Torus, Polygon, Ellipsoid, Elliptic Cone,
Elliptic Cylinder, Brick, Solid Cone, Solid Sphere, Solid Cylinder

Define primitive shells

Surfaces in TSS .tssgm file:
Surfacetype surfacename
 units =
 param =
 active = sides = submodel =
 node_ids =
 iconductor =
 nbeta =
 ngamma =
 rot1 = rot2 = rot3 = tx = ty = tz =
 optics =
 optics_angles =
 material = thickness =
 color =
 initial_temp =

Examples of surfaces supported
in TSS: Rectangle, Disc, Cone,
Cylinder, Polygon, Triangle,
Quadrilateral, Sphere, Elliptic
Cone, Brick, Solid Cylinder

Create a Mesh

• Within the primitive shell definition, there are two different
variables for specifying the nodal division on a surface:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

origin
d2

d1

ratio1, ratio2: determines the change in
spacing between the current node and the
next node in sequence.

Example: for ratio2 = 2, on side 2…

1 2 3

L1=1 L2=2 L3=2*2=4

node1, node2: determines the
number of nodes on each side of
the surface

Note: nodes increment from the
origin towards the first defined
direction, then loop back and
increments in direction 2

Create a Mesh

Nodal subdivisions defined in Thermal Desktop using the “subdivision”
tab when editing surface properties.

Create a Mesh

Nodal subdivisions can be defined in the Space3D GUI, and then incorporated
into the surface definition in the TSS .tssgm file:
Surfacetype surfacename
 .
 .
 param =
 .
 node_ids = or initial_id =
 nbeta = division of nodes in surface’s x-direction
 ngamma = division of nodes in surface’s y-direction
 ntheta = division of nodes in surface’s z-direction
 .

Create a Mesh

* Though there is no “one stop shop” ratio function in Thermal Desktop and TSS:
• Thermal Desktop allows the user to specify nodal boundaries
• TSS allows the user to specify node locations
(neither of these are allowed in ESARAD)

** ESARAD does not allow the user to specify node numbering for Finite Element
 nodes

Subdivision Method ESATAN Thermal Desktop TSS
Centroid Nodes Supported Supported Supported

Edge Nodes Not supported Supported Not supported

Finite Element Nodes Supported** Supported Supported

Ratio Function Supported Not supported* Not supported*

Nodal subdivision methods supported by each program:

Cut primitive shells

• Sense is an ESATAN-specific “cutting tool”  geometric shells
can be used to “cut” into previously defined surfaces

Two values for Sense:
• +1 (INSIDE):

Cutting tool will cut
away any surfaces
which are not enclosed
by its volume

• -1 (OUTSIDE):
 Cutting tool will cut

away any surfaces
which are enclosed by
its volume

Cut primitive shells

• ESARAD Syntax:
– Sense variable is included in the surface definition
 SHELL Cutshell1;
 Cutshell1 = SHELL_CYLINDER(
 point1 = [-5.0, -5.0, -1.0],
 point2 = [-5.0, -5.0, 1.0],
 point3 = [-3.0, -5.0, -1.0],
 sense = -1,

To cut shells in ESATAN: TEST1 = Shell1 - Cutshell1;

 Target
Shell

Shell to
be cut

Cut
geometry

Thermal Desktop
does not support cutting

operations

TSS allows for Boolean geometry
with radiative surfaces, not

conductive surfaces

Define Assemblies

• Assemblies are groups of shell surfaces or groups of
assemblies

• They are defined with the following construct:
 SHELL assemblyname;
 assemblyname = shellname_1 + shellname_2 + … + shellname_N;

• Examples:
 SHELL BATTERY;
 BATTERY = BATTERYCELL_1 + BATTERYCELL_2 + BATTERYCELL_3;

 SHELL AVONICS;
 AVONICS = BATTERY + POWERSYS + CDH;

Assembly declarations are built into the TSS .tssgm file hierarchy
(surfaces are defined under sets of assemblies)

Assembly assemblyname
 units =
 mirror =
 rot1 = rot2 = rot3 = tx = ty = tz =
 Surfacetype surfacename1

 (surface properties)
 .
 .

 Surfacetype surfacename2
 (surface properties)
 .
 .

Define Assemblies

Thermal Desktop GUI allows for surfaces to be
placed into assemblies and trackers (Tracker-
Assembly Tree in Model Browser shown)

Define Boundary Conditions

• ESARAD allows you to define the following types of boundary
conditions:

Type Function
Initial Temperature Initial temperature is set for the node
Temperature Node is set to a boundary node with given

temperature
Heat Load/Unit Area Heat load value assigned to a surface is the

given value multiplied by that surface’s area
Heat Load/Face Given heat load is assigned to a surface
Total Heat Load Heat load applied is divided evenly among

nodes on that surface

Define Boundary Conditions

• ESARAD syntax:
 BOUNDARY_CONDITION boundary condition name;
 boundary condition name = boundary condition type(
 reference = "shell or node name",
 value = boundary condition value);

 Example:
 BOUNDARY_CONDITION BOUND1;
 BOUND1 = TOTAL_HEAT_LOAD(
 reference = "Shell1",
 value = 15.0);

Define Boundary Conditions

In Thermal Desktop:
- Setting the initial temperature or boundary temperature on a surface

sets all of the nodes that surface to the specified value
- Heat loads / unit area or total heat loads may be applied to surfaces

or individual nodes

Boundary temperatures and heat loads for surfaces cannot be defined in
TSS (as far as I know)

Generate Conductive interfaces

103 102 101

106 105 104

109 108 107

201

202 204

203

• For any two shell surfaces that share a common edge/overlap,
ESARAD can generate linear conductors (using automatic
conductor generation) for pairs of nodes at that interface

 Ex: (109,201), (108,201), (108,203), (107,203)

Generate Conductive interfaces

• Types of conductive interfaces:
Designation Definition
FUSED Two shells form a continuous surface (no thermal

resistance across interface)
CONTACT Two shells have physical interface with contact

conductance (thermal resistance is non-zero)
NOT_PROCESSED Automatically generated conductive interface, type is

not yet specified
NOT_REQUIRED Automatically detected conductive interface, but

should not be used to generate shell conductances
NOT_CONNECTED Defines that two shells are not connected on an

interface

Generate Conductive interfaces
• ESARAD uses the following rules in allowing automatic

conductor generation to:

1. Calculate linear conductors within the same shell (intra-shell):
- Conductors are generated based on the bulk properties and thickness

specified for that side of the shell

2. Calculate linear conductors between two different shells (inter-shell):
- When two shells are connected, the nodes on one side of the first shell

are matched to the one side of the second shell based on orientation
(even if the thicknesses do not match)

- For a contact conductor, the thickness of the contact is the minimum of
the thickness of the two nodes

3. Calculate linear conductors through the thickness of the same shell (if

node pattern is different on either side of the shell):
- Two sets of conductors calculated, one per side; through-thickness

conductors can then be calculated

Generate Conductive interfaces
Similar to contactors
 in Thermal Desktop

No equivalent in TSS
(as far as I know)

ONLY on top level model:

 MODEL modelname = shell1+ shell2 + … + shellN

 PURGE_MODEL ();

 END_MODEL

Final Model Build

Get rid of unused surfaces

Summary of ESATAN-TMS equivalent
capabilities vs. Thermal Desktop / TSS

Capability ESATAN Thermal Desktop TSS
GMM generation ESATAN-TMS GUI AutoCAD .dwg Space3D

Bulk property definition supported supported supported (.tssma)

Optical property
definition supported supported supported

(.tssop)

Shell surface definition supported supported supported (.tssgm)

Generic meshing supported supported supported

Mesh cutting operations supported (sense) Not supported Supported (boolean)

Defining assemblies supported ≈supported supported

Surface boundary
conditions/ heat loads

supported supported Not supported

Generating conductive
interfaces between surf.

supported (automatic
GL generation)

≈supported
(contactors)

Not supported

Once the model geometry is redefined in
Thermal Desktop or TSS …
… RadCAD or TSS Radk can be used to
calculate the radiation couplings and replace
the radks generated by the ESARAD file

But what about the ESATAN thermal file?
 … This can be translated to SINDA syntax.

ESATAN Thermal File

Battery CDH Detector

ESATAN Model Structure

• Any ESATAN model may contain submodels; those submodels
may contain submodels also (down to 99 submodel levels)
– Each submodel may be separately analyzed as a standalone model

Spacecraft
Level

0

1

2

Arrays Instrument Avionics

Spacecraft:Avionics:Battery

$MODEL SPACECRAFT
 $MODEL ARRAYS
 $ENDMODEL ARRAYS
 $MODEL INSTRUMENT
 $MODEL DETECTOR
 $ENDMODEL DETECTOR
 $ENDMODEL INSTRUMENT
 $MODEL AVIONICS
 $MODEL BATTERY
 $ENDMODEL BATTERY
 $MODEL CDH
 $ENDMODEL CDH
 $ENDMODEL AVIONICS
$ENDMODEL SPACECRAFT

Basic ESATAN Thermal File Construct

$MODEL
 DATA BLOCKS
 OPERATIONS BLOCKS
$ENDMODEL

$NODES
$CONDUCTORS
$CONSTANTS
$CONTROLS
$ARRAYS

SINDA Equivalent:
SINDA .cc file:
(DATA BLOCKS)
SINDA .inp file:
HEADER OPERATIONS DATA
(LOGIC BLOCKS)

HEADER OPTIONS
HEADER NODE DATA
HEADER SOURCE DATA
HEADER CONDUCTOR DATA
HEADER REGISTER DATA
HEADER CONTROL DATA
HEADER ARRAY DATA

ESATAN Syntax

Basic notation:
Symbol Definition Note SINDA

Equivalent

$ Defines a new block i.e. declare a submodel, etc. HEADER

Comment Like Unix syntax C, $

; End of line Like C/C++ syntax (none)

: Divider for entity
definitions

Ex: T:SUBMODEL:10 .

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Node Types:

D: diffusion node
 - an arithmetic node is defined as diffusion with
 capacitance = 0
 (there is no separate arithmetic node definition in ESATAN)
B: boundary node
X: inactive node (all connected entities are ignored)

Node type

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Node #: an integer

‘name’: a string describing the node, i.e. ‘nozzle’

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Designation Definition Type

T Initial temperature of the node Real
C Capacitance of the node Real/Expression*
A Area of the node Real
ALP Absorptivity Real
EPS Emissivity Real

NOTE: “Real” declarations in ESATAN prefer “d” syntax to declare double
 precision variables, e.g. 2.0D0 (double precision 2.0)
* An equation can be used to define capacitance based on temp. or other variable

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Designation Definition Type

QE Total heat to node from Earth IR Real
QI Total impressed heat to node (internal) Real
QR Total residual (“other”) heat to node Real
QA Total heat to node from Albedo

(Reflected solar)
Real

QS Total heat to node from Solar Real
NOTE: Q in SINDA = QA+QS+QI+QR+QE in ESATAN

THRMST can be used to incorporate heater logic into ESATAN

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Designation Definition Type

QEI Incident albedo heat source Real
QAI Incident Earth IR heat source Real
QSI Incident solar heat source Real
FX Node location in X Cartesian coordinate Real
FY Node location in Y Cartesian coordinate Real
FZ Node location in Z Cartesian coordinate Real

Node Definitions
Node type node # = ‘name’, T = temp, C = cap,

A = area, ALP = α, EPS = ε, ….;
 Examples:

D5001 = ‘Top radiator’, T = 22.0, C = 250.1;
X9012 = ‘MLI’, T = 53.1, C = 0.0, A = 0.05, ALP = 0.4, EPS = 0.79;

SINDA Equivalent:
HEADER NODE DATA, submodel name
node #, initial temp, capacitance

NOTE: There are no equivalents in ESATAN to SINDA GEN, SIV, SIM, etc.
 statements

Conductors
Conductor type (node1, node2) = value;

Designation Definition
GL Linear Conductor (heat flows either way)
GR Radiative Conductor

Node does not need node type designation in front

Value GL in heat/temp (e.g. W/K), for GR in heat/temp4 (e.g. W/K4)

Example: GL(5001,5002) = 1.413E-02;

Conductors
Conductor type (node1, node2) = value;

Note: ESATAN will NOT allow definition of a conductor
between two submodels within the current submodel’s
conductors block if both submodels are on the same level
$MODEL MAIN
$CONDUCTORS
.
 $MODEL SUBMODEL1
 .
 .
 $ENDMODEL SUBMODEL1
 $MODEL SUBMODEL2
 $CONDUCTORS
 .
 GL(SUBMODEL1:51, SUBMODEL2:42) = 0.05;

Conductors
• If more than one conductor between two nodes is

desired, the following syntax can be used:
Conductor type (node1, node2, n3) = value;

where n3 is the sequence number for the conductor

• Conductors can be defined with a function for
conductance value:

GL(3,4) = AL_CONDUCTIVITY*0.2/0.25;

GL(3,4) = T3*COND_VAL;
can be updated with temperature:

GL(3,4) = 0.04* INTRP1((T2+T4)/2.0, Conductivity, 1);
or can be interpolated:

NOTE: Radiative conductor to space MUST be placed in the top-level model

Conductors

SINDA Equivalent:
HEADER CONDUCTOR DATA, submodel name
conductor#, node 1, node 2, conductance

ESATAN SINDA Definition

GL (positive conductor number) Linear Conductor

GR (negative conductor number) Radiative Conductor

NOTE: There are no conductor numbers in ESATAN. To refer to a conductor, can
 use the syntax:
 SUBMODELA:SUBMODELB:GL(3,4)

Constants
• $CONSTANTS defines constants block; multiple blocks may be

used in one submodel
– Can define type blocks $REAL, $INTEGER, or $CHARACTER
– TYPE*name = value; defines individual type

• Constant names up to 18 characters, first character must be

alphabetic (SINDA allows 32 characters)

• User constants can be referenced and/or reassigned in all
operations blocks, but only referenced in $NODES and
$CONDUCTORS
– In operations, value of user constant can be changed during solution

run (e.g. change boundary temp. value of node)

Constants
• Examples of constant definitions:

$CONSTANTS

INTEGER*NODE_COUNT = 99; REAL*NODE_TEMP = 15.7;
CHARACETER*ZPROCESS = ‘HELLO’;

$REAL
AZ23 = 19.3E-06; UB_AST = 23.52; flux = INTRP1(TIMEM, Qarray, 1);

$CHARACTER
JTC = ‘TIME STEP’;

NOTE: SINDA allows global constants to be defined in the HEADER REGISTER
 DATA; in ESATAN, all constants only local to the submodel they are
 contained in (even constants in top model)

 Constants need to be passed between submodels to allow reference

Control Constants
• Control constants can be defined in $CONTROL block

– Global: top-level model definition only
– Local: defined in submodel

• Examples of control constants:
ESATAN PURPOSE SINDA Equivalent

DTIMEI Input time step DTIMEI

DTIMEU Time step used DTIMEU

DTMAX Maximum time step DTIMEH

DTMIN Minimum time step DTIMEL

LOOPCT Number of solution iterations LOOPCT

NLOOP Maximum allowable number of iterations NLOOPS, NLOOPT

TIMEN Time at end of time step (“current” step) TIMEN

TIMEO Time at start of time step TIMEO

TIMEND Time at end of solution TIMEND

STEFAN Stefan-Boltzmann Constant SIGMA

Control Constants
• Examples of more control constants:

ESATAN PURPOSE SINDA Equivalent

CSGMIN Smallest characteristic nodal time constant
(bound on time step size to prevent instability
in model)

CSGMIN

DAMPT Temperature Damping DAMPD

RELXCA Temperature Convergence Criterion DRLXCA

RELXCC Calculated Temperature Convergence DRLXCC

DTPMAX Maximum allowable temperature change over
a time step

DTMPCA

ENBALA Absolute energy balance ENGBAL

NCSGMN Node of CSGMIN NCSGM

OUTINT Output interval OUTPUT

Arrays
• $ARRAYS defines arrays block; multiple array blocks allowed

per submodel, naming convention same as constants

• /SIZE = N/ defines the size of the array (placed after array
name declaration; for example:
$REAL
 ANGLES(2, 19) /SIZE = 40/ =

 10.0, 3.3E-04, 20.0, 1.002E-03, ….;

• Arrays may be referenced in operations blocks or wherever

expressions are allowed in data blocks
$CONDUCTORS
 GL(1,3) = MASS_FLOW(1) * 0.4;

Arrays

• Two ways to specify arrays:
– $TABLE sub-block: values for single dependent variable V tabled

against several independent variables X, Y, Z

 V(X, Y, Z)
 X = X1, Y = Y1, Z1, V, Z2, V, … ZN, V,
 Y = Y2, Z1, V, Z2, V, … ZN, V,
 X = X2, Y = Y1, Z1, V, Z2, V, … ZN, V,
 . .
 . .
 X = XN, Y = Y2, Z1, V, Z2, V, … ZN, V;

Arrays
• Two ways to specify arrays:

– $TABLE sub-block:
 This is a shortened form of the array on the last slide:

 V(X, Y, Z)
 Z = Z1, Z2, Z3 …, ZM,
 X = X1, Y = Y1, V1, V2, V3, … VM,
 X = X2, V1, V2, V3, … VM,
 X = X1, Y = Y2, V1, V2, V3, … VM,
 . .
 . .
 ;

Y values held constant while X
being specified

– Or, if just one independent variable:
V(X)
X1, V1, X2, V2 …;

Arrays
SINDA Equivalent:
HEADER ARRAY DATA, submodel name

array number = value 1, value 2, … value N (singlet)

array number = x1,y1, x2,y2, … xN,yN (doublet)

array number = N, x1, x2, … xN (bivariate)
 y1, Z11, Z12, … Z1N

 . .
 . .
 ym, Zm1, Zm2, … ZmN

Arrays
NOTES:

• SINDA allows arrays of mixed types (e.g. an integer and a

real can be in the same array); this is not allowed in ESATAN

• There are no array numbers in ESATAN. To refer to an array,
can use the following syntax:

 SUBMODELA:SUBMODELB:V(X,Y,Z)

Basic ESATAN Thermal File Construct

$MODEL
 DATA BLOCKS
 OPERATIONS BLOCKS
$ENDMODEL

$SUBROUTINES
$INITIAL
$VARIABLES1
$VARIABLES2
$EXECUTION
$OUTPUTS

SINDA Equivalent:
SINDA .cc file:
(DATA BLOCKS)
SINDA .inp file:
HEADER OPERATIONS DATA
(LOGIC BLOCKS)

HEADER OPERATIONS DATA
 (BUILD statements)
HEADER SUBROUTINE
HEADER VARIABLES 0/1/2
HEADER CONTROL DATA, GLOBAL
HEADER OUTPUT CALLS

Subroutines
SUBROUTINE name LANG = language

• Subroutines defined in $SUBROUTINES block
• To call subroutine (e.g. subroutine SUB1 in submodel

ROCKET:MOTOR):

• language is either MORTRAN or FORTRAN

– MORTRAN is a superset of FORTRAN77; in addition to all FORTRAN77
commands, some additional features include:

• SELECT CASE (expression); … CASE ELSE; … END SELECT
 where CASE is identified by point values or ranges
• WHILE(expression); … ENDWHILE;
• REPEAT; … UNTIL (expression);
• Node/Conductor properties may be referenced (e.g. T1012, GL(1,5), etc.)

CALL ROCKET:MOTOR:SUB1(…)

Subroutines
SUBROUTINE name LANG = language

• Functions can also be defined in the subroutines block:
$SUBROUTINES
 DOUBLE PRECISION FUNCTION TAV(XX, YY)
 DOUBLE PRECISION XX, YY
 TAV = (XX + YY) / 2.0D0
 RETURN
 END

• Note: values defined inside a subroutine do NOT re-zero if
subroutine is called multiple times!

Safe option: set all local values inside the subroutine to zero at
the beginning of the routine

Initial
• $INITIAL block allows initialization of data prior to the

program solution
 First “subroutine”: program executes code in $INITIAL
 block only once
• This is useful for initializing temperatures

Rough Equivalent in
Thermal Desktop:
“Case Set Manager”

Variables 1
• $VARIABLES1 defines block
• Instructions placed here are executed at the start of each

iteration or time step in the solution
– Useful for time- or temperature-dependent quantities

• Example:
$VARIABLES1
 CALL TCAPCA(C10,T10) #CALCULATE TEMP DEPENDENT CAPACITANCE
 IF(T10 .LE. 10.0D0)THEN
 QI10 = 5.6D0
 ELSE
 QI10 = 0.0D0
 END IF

NOTES:
- There are no semicolons in VARIABLES1 since it uses Fortran-type language
- ESATAN does not have an equivalent of VARIABLES 0 (operations after timestep

incremented, before heat transfer equations are integrated)  use VARIABLES
1 instead

Variables 2
• $VARIABLES2 defines block
• Instructions placed here are executed at the end of each time

step in the solution
– Useful for integrating or metering quantities, rearranging the model

based on a time-dependent event, or comparison of latest results with
test data

• Example:
$VARIABLES2
 CALL ROTATE # SET LATEST MODEL POSITION
 HX=FLUXML(CURRENT, PIPE)
 # FLUXML IS A LIBRARY ROUTINE USED TO OBTAIN
 # LINEAR HEAT FLOW BETWEEN TWO SUBMODELS

Steady State Execution

VARIABLES 0
Time-dependent logic

VARIABLES 1
Temp-dependent logic

VARIABLES 2
Post-process solution

RUN SOLVER

Converged
and/or

LOOPCT =
NLOOPS

Yes

No

HEADER OPERATIONS

$VARIABLES1
Time or temp-

dependent logic

$VARIABLES2
Post-process solution

RUN SOLVER

Converged
and/or

LOOPCT =
NLOOP

Yes

No

$INITIAL

$OUTPUTS at end
of solution

ESATAN

$EXECUTION

SINDA

OUTPUT

Transient Execution

VARIABLES 0
Time-dependent logic

VARIABLES 1
Temp-dependent logic

VARIABLES 2
Post-process solution

RUN SOLVER

Converged
and/or

LOOPCT =
NLOOPT

Yes

N
o

an
d

N
VA

RB
1

=
0

N
o

an
d

N
VA

RB
1

=
1

Timestep + 1

HEADER OPERATIONS

After last timestep
OUTPUT

O
U

TP
U

T
as

ne

ce
ss

ar
y

SINDA

$VARIABLES1
Time or temp-

dependent logic

$VARIABLES2
Post-process solution

RUN SOLVER

Converged
and/or

LOOPCT =
NLOOP

Yes

No

Timestep + 1

$INITIAL

$OUTPUTS at end of solution
and every OUTINT seconds

ESATAN

$EXECUTION

Model Execution

• $EXECUTION block only called on top level model after
$INITIAL
– $EXECUTION on lower levels ignored

$EXECUTION
 INTEGER I
 I = 1
 WHILE (I .LE. 2)
 SELECT CASE I
 CASE 1
 T999 = 0.0D0
 CASE 2
 T999 = 100.0D0
 END SELECT
 CALL SOLVIT
 I =I+1
 ENDWHILE

Example code to select case to
run

SOLVIT performs steady state
solution

Model Execution

 CALL SAVET(CURRENT)

 CALL PRQNOD(‘ ‘, CURRENT)

 HEATER = ‘TRANSIENT’

 CALL STATST(’N:Thruster1:2’, ’D’)

 CALL SLFWBK

STATST changes the status of the
node; in this case, it changes node
Thruster1:2 to a diffusion node

SLFWBK performs transient
thermal analysis by implicit
forward-backward differencing

Save steady state temps

Print heat flows

Model Execution
• Other keywords typically used during execution are:

Keyword Definition

MODULE Current Solution Module

SOLVER Solver Type

SOLVFM Full matrix steady state solver

SLFRWD Forward differencing transient solver

SOLVIT Iterative steady state solver

SLCRNC Crank-Nicholson forward-backward transient solver

ESATAN SINDA

CALL SOLVIT CALL STDSTL

CALL SLFRWD CALL FORWRD

CALL SLFWBK CALL FWDBCK

Outputs

• $OUTPUTS block: only main model block is executed
• Instructions in $OUTPUTS block are executed at:

– End of the steady state run
– Before the first transient timestep
– At each transient output interval
– After the last transient timestep

• Control Constants:
OUTINT = (value) # outputs every (value) seconds of
 simulation time
OUTIME = (‘ALL’/ ‘NONE’) # ‘ALL’ (default): output block executed
 # ‘NONE’: code bypasses output block

Outputs

• Typical output subroutines:
PRNDTB: Table output of entities (uses Fortran formatting)
Example:

 TFORM = '(1X, I5, 3(2X, F8.3), 2(2X, F8.5))‘ # FORMAT
 THEAD = ' NODE T C QA EPS ALP‘ # HEADER
 CALL PRNDTB(' ', 'T, C, QA, EPS, ALP', AVIONICS:BATTERY)

5-digit Integer

REAL, XXXXX.XXX
format, repeated

3 times

REAL, XXX.XXXXX
format, repeated
2 times

Node Range Node
properties

Submodel
Name

Outputs

• Typical output subroutines:
PRNCSV Comma-separated list output of entities
PRNDBL Block output of entities
PRQG Print heat flow between two nodes
PRQLIN Print heat flow over linear conductors
PRQNOD Print heat flow to node
PRTARR Print array elements
PRTNAV Print average of entities
PRTSUM Print sum of entities
PRTTMD Print maximum temperature difference
PTSINK Print sink temperatures

Outputs

ESATAN SINDA

CALL PRNDBL (‘ ‘, ‘T’, CURRENT) CALL TPRINT

CALL PRNDBL (‘ ‘, ‘C’, CURRENT) CALL CPRINT

CALL PRNDBL (‘ ‘, ‘GF,GL,GR’, CURRENT) CALL GPRINT

CALL PRNDBL(‘ ‘, ‘QS,QA, QE, QI,QR’,
CURRENT)

CALL QPRINT

Summary of ESATAN Declarations:
Data Blocks

ESATAN SINDA

$MODEL HEADER OPTIONS DATA

$NODES HEADER NODE DATA

≈ QI (impressed heat) in $VARIABLES1 HEADER SOURCE DATA

$CONDUCTORS HEADER CONDUCTOR DATA

$CONSTANTS HEADER REGISTER DATA

$CONTROLS HEADER CONTROL DATA

$ARRAYS HEADER ARRAY DATA

Summary of ESATAN Declarations:
Operations Blocks (Logic Blocks)

ESATAN SINDA

$SUBROUTINES HEADER SUBROUTINES

$INCLUDE INCLUDE, INSERT

$INITIAL ≈Case Set Manager in Thermal Desktop

$VARIABLES1 HEADER VARIABLES 0, submodel name
HEADER VARIABLES 1, submodel name

$VARIABLES2 HEADER VARIABLES 2, submodel name

$EXECUTION HEADER OPERATIONS

$OUTPUTS HEADER OUTPUT CALLS, submodel name

ESATAN-TMS Workbench
GUI Demonstration

Questions?

Thank You!

	The Anatomy of ESATAN and ESARAD Thermal Model Files
	Objectives
	Who is this presentation for?
	Overview
	Disclaimer
	What is ESATAN?
	Equivalent Files
	Warning! Lots of (relatively) dry material ahead…
	ESARAD Language
	ESARAD Geometric modeling process
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Final Model Build
	Summary of ESATAN-TMS equivalent capabilities vs. Thermal Desktop / TSS
	Slide Number 38
	ESATAN Thermal File
	ESATAN Model Structure
	Basic ESATAN Thermal File Construct
	ESATAN Syntax
	Node Definitions
	Node Definitions
	Node Definitions
	Node Definitions
	Node Definitions
	Node Definitions
	Conductors
	Conductors
	Conductors
	Conductors
	Constants
	Constants
	Control Constants
	Control Constants
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Basic ESATAN Thermal File Construct
	Subroutines
	Subroutines
	Initial
	Variables 1
	Variables 2
	Steady State Execution
	Transient Execution
	Model Execution
	Model Execution
	Model Execution
	Outputs
	Outputs
	Outputs
	Outputs
	Summary of ESATAN Declarations: Data Blocks
	Summary of ESATAN Declarations: Operations Blocks (Logic Blocks)
	ESATAN-TMS Workbench�GUI Demonstration
	Questions?
	Thank You!

