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Abstract 
In this paper, we present a concept of the averaged probability density function (APDF) for studying 

compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained 
probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce 
the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for 
APDF can be derived in two ways. One is the traditional way that starts from the transport equation of 
FG-PDF, in which the compressible Navier-Stokes equations are embedded. The resulting transport 
equation of APDF is then in a traditional form that contains conditional means of all terms from the right 
hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means 
are new unknown quantities that need to be modeled. Another way of deriving the transport equation of 
APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport 
equation of APDF derived from this approach appears in a closed form without any need for additional 
modeling. The methodology of ensemble averaging presented in this paper can be extended to other 
averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the 
Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial 
filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of 
compressible turbulent reacting flows.   

1.0 Introduction 
The advantage of PDF method in the turbulent reacting flow simulations has been studied and 

examined (Refs. 1, 2, 3, and 4). Here we present the concept of an ensemble averaged probability density 
function (APDF) that may be considered as an extension of the conventional probability density function 
(PDF) method for dealing with compressible turbulent reacting flows. We do not assume that the mass 
density is a function of temperature and composition only, because this is only valid for the Mach number 
being near to zero (see Ref. 4).  The APDF is defined by an ensemble average of a mass density weighted 
fine grained probability density function. It can be used to exactly define the mass density weighted 
ensemble averaged turbulent mean variables, very similar to the way in which the conventional PDF 
defines the turbulent mean variables. 

Two ways of deriving APDF transport equation will be described in detail. One is to start from the 
transport equation of the fine grained probability density function (FG-PDF), in which the compressible 
Navier-Stokes equations are embedded. By taking ensemble average over the equation of FG-PDF, the 
resulting transport equation of APDF in its traditional form contains conditional means of all terms from 
the right hand side of the Navier-Stokes equations, except for the chemical reaction term. These 
conditional means are new unknown quantities that need to be modeled. Another way of deriving the 
transport equation of APDF is to start directly from the ensemble averaged compressible Navier-Stokes 
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equations. Using the relationship between APDF and the mass density weighted, ensemble averaged 
turbulent mean quantities, and under a “conservational” condition, the derived transport equation of 
APDF results in a closed form without any need for additional modeling. No terms of conditional means 
will appear in this conservational form of APDF equation, except when a marginal APDF equation such 
as the scalar APDF is considered.  

The methodology of ensemble averaging procedure presented in this paper can be extended to other 
averaging procedures: for example, the Reynolds time average for statistically steady flows and the 
Reynolds spatial average for statistically homogeneous flows. In these cases, the Reynolds time (or spatial) 
averaged probability density function will be defined, which then defines the mass density weighted 
Reynolds time (or spatial) averaged turbulent mean variables.  

It should be noted that for the constant density turbulent flow, the APDF will reduce exactly to the 
conventional PDF if the expectation of FG-PDF can be viewed as the ensemble average of FG-PDF. The 
conservational PDF transport equation has been reported in Reference 5. 

The methodology described in this paper can also be extended to a time or spatial filtering to 
construct the transport equation for a mass density weighted filtered FG-PDF for large eddy simulations 
(LES). In this case, the mass density weighted filtered FG-PDF is named as “FMDF” or “DW-FDF” (see 
Refs. 3 and 6), which is a random quantity and can be used to define the mass density weighted filtered 
turbulent variables to describe large scales of compressible turbulent reacting flow. 

Finally, it is noted that the equations for various (PDF, APDF, DW-FDF) methods are sought to be 
similar, so that the solution procedures would be similar regardless of the solution variables. 

2.0 Ensemble APDF 
In this section, we will use the FG-PDF to define the ensemble APDF, and then explore the 

relationship between APDF and ensemble averaged turbulent mean variables. This will provide the basis 
for establishing the transport equation of APDF. 

2.1 Fine Grained Probability Density Function ( ; , ), ( ; , )Uf t f tΦ′ ′ ψV x x  

The FG-PDF for turbulent velocity and scalars (e.g., species mass fraction or composition, internal 
energy) are defined as follows (Pope (Ref. 1)), 

 ( ) ( )
3

1

( ; , ) ( , ) ( , )U i i
i

f t t U t V
=

′ ≡ δ − ≡ δ −∏V x U x V x  (1) 

 ( ) ( )
1

1

( ; , ) ( , ) ( , )
M

m m
m

f t t t
+

Φ
=

′ ≡ δ − ≡ δ Φ −ψ∏ψ ψx x xΦ  (2) 

where δ denotes the delta function, U(x,t)  is the turbulent (random) velocity vector (U1, U2, U3), Φ(x,t) is 
the turbulent (random) scalar array ( )1 2 1, , , ,M M +Φ Φ Φ Φ , for example, M species mass fractions and 

one internal energy 1M e+Φ = , the x,t denote the physical space variable (x1, x2, x3) and the time t, V ≡ 
(V1, V2, V3) and 1 2 1( , , , , )M M +≡ ψ ψ ψ ψψ   are the sample space variables for U(x,t) and Φ(x,t), 
respectively.  

2.2 Ensemble Averaged Turbulent Variables and APDF ( ; , ), ( ; , )UF t F tΦ ψV x x  

We start with the definition of ensemble averaged turbulent variables and the definition of ensemble 
averaged probability density function APDF. And then explore the relationship between the two. 
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2.2.1 Definition of Ensemble Averaged Turbulent Variables ( , )tφ x , ( , )tφ x  

In the case of compressible turbulent reacting flow, we often deal with two types of ensemble 
averaging: one with the mass density weighting, the other without the mass density weighting. The 
ensemble averaged turbulent variable without the density weighting is denoted by ( , )tφ x  and is defined 
as  

 ( )

1

1( , ) lim ( , )
N

n

N n
t t

N→∞
=

φ = φ∑x x  (3) 

where φ(n) is the n-th independent  realization of turbulent variables, for example, the velocity 
components ( )n

iU , the densityρ(n), pressure P(n), the species mass fraction ( )n
mΦ  and the internal energy 

( ) ( ) ( )

1

M
n n n

m m
m

e e
=

= Φ∑ . N is the total number of independent realizations. The mass density weighted 

ensemble averaged turbulent variable is denoted by ( , )tφ x and is defined as 

 ( , )t ρφ
φ =

ρ
x  (4) 

These ensemble averaged variables ( , )tφ x , ( , )tφ x  represent the turbulent mean variables and are 
measurable in experiments. They only contain relatively low frequency and low wave number 
parts of the turbulent motion comparing with the non-averaged turbulent variables φ(x,t).  

2.2.2 Definition of Ensemble APDF 
We define the following ensemble averaged probability density functions APDF: 

 
( ) ( )( )

( ) ( )( )

( ) ( )

1

( ) ( )

1

1( ; , ) lim

1( ; , ) lim

N
n n

U N n
N

n n

N n

F t t t
N

F t t t
N

→∞
=

Φ
→∞

=

≡ ρ δ −

≡ ρ δ −

∑

∑ψ ψ

V x x, U x, V

x x, x,Φ

 (5) 

Obviously, thus defined ( ; , )UF tV x  or ( ; , )F tΦ ψ x  is no longer a random quantity. And they satisfy the 
following “normalization” property: 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )

1 1

( ) ( ) ( )

1 1

1 1( ; , ) lim lim

1 1( ; , ) lim lim

N N
n n n

U N Nn n

N N
n n n

N Nn n

F t d t t d t
N N

F t d t t d t
N N

∞ ∞

→∞ →∞
= =−∞ −∞

∞ ∞

Φ
→∞ →∞

= =−∞ −∞

ρ δ − ρ = ρ

= ρ δ − = ρ = ρ

∑ ∑∫ ∫

∑ ∑∫ ∫ψ ψ

V x V = x, U x, V V = x,

x x, x, x,ψ ψΦ

 (6) 

Where the integration proceeds in the entire sample space of ( , )iV −∞ ∞  and (0,1)iψ . 

2.2.3 Relationship Between APDF and Ensemble Averaged Turbulent Variables 
With the definition of APDF described in Equation(5), we can exactly deduce the ensemble averaged 

turbulent variables that are defined in Equations (3) and (4). For example, 
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( ) ( )( )

( ) ( ) ( )( )

( ) ( )

( )

( ) ( )

1

( ) ( ) ( )

1

( ) ( )

1

1( ; , ) lim

1lim

1lim

( , )

N
n n

U N n

N
n n n

N n
N

n n

N n

F t d t t d
N

t t t d
N

t t
N

t t

+∞ +∞

−∞ −∞ →∞
=

+∞

−∞ →∞
=

→∞
=

 
ρ δ −  

 
 

ρ δ −  
 

ρ

ρ = ρ

∑∫ ∫

∑∫

∑

V V x V = V x, U x, V V

= x, U x, U x, V V

= x, U x,

= U x, U x

 (7) 

where the sifting property of FG-PDF has been used in the second line of Equation (7).  
Similarly, we have 

 ( )( ; , ) ( , )F t d t t
+∞

Φ−∞
ρ = ρ∫ ψ ψ ψx = x, xΦ Φ  (8) 

If we denote the left hand side of Equations (7) and (8) as a “mean” operation using APDF: U  and Φ , 
we may write Equations (7) and (8) as  

 ( )( ; , ) ( , )UF t d t t
+∞

−∞
≡ = ρ = ρ∫U V V x V U x, U x  (9) 

 ( )( ; , ) ( , )F t d t t
+∞

Φ−∞
≡ = ρ = ρ∫ ψ ψ x x, xψΦ Φ Φ  (10) 

For any function ( )( , )Q tU x  or ( )( , )W txΦ , it is easy to verify that 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ; , ) ( , )

( ) ( ; , ) ( , )

UQ Q F t d t Q t

W W F t d t W t

+∞

−∞

+∞

Φ−∞

= = ρ

= = ρ

∫

∫ ψ ψ ψ

U V V x V x, U x

x x, xΦ Φ

 (11) 

Furthermore, we may consider the derivatives , ,P∇ ∇ ∇U Φ  as new random quantities and legitimately 
write 

   , ,P P∇ = ρ ∇ ∇ = ρ ∇ ∇ = ρ ∇U U Φ Φ  (12) 

However, because of the variable density, the mean  does not have the differential commute property, 
i.e., 

 , ,P P∇ ≠ ∇ ∇ ≠ ∇ ∇ ≠ ∇U U Φ Φ  (13) 

because  ( )  ( )  ( ), ,P Pρ ∇ ≠ ∇ ρ ρ ∇ ≠ ∇ ρ ρ ∇ ≠ ∇ ρU U Φ Φ . 
It can be verified that the following “second moment” is true 

 ( )( ; , ) ( , )i j i j U i j i jU U V V F t d U U t U U t
+∞

−∞
= ρ = ρ∫ V x V = x, x  (14) 
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We can also write j iU Φ  for the joint variables as 

 ( ), ( , ; , ) ( , )j i j i U j iU V F t d d t U t
+∞

Φ−∞
Φ = ψ = ρ Φ∫ ψ ψV x V x, x  (15) 

where, , ( , ; , )UF tΦ ψV x  is the velocity-scalar joint APDF defined as  

 ( ) ( )( ) ( )( )( ) ( ) ( )
,

1

1( , ; , ) lim
N

n n n
U N n

F t t t t
NΦ

→∞
=

= ρ δ − δ −∑ψ ψV x x, U x, V x,Φ  (16) 

Here, the velocity-scalar joint fine grained probability density function ,Uf Φ′  is introduced: 

 ( )( ) ( )( ), ( , ; , )Uf x t t tΦ′ = δ − δ −ψ ψV U x, V x,Φ  (17) 

The joint APDF , ( , ; , )UF tΦ ψV x  also satisfies the normalization property: 

 ( )( )
,

1

1( , ; , ) lim
N

n
U N n

F t d d t
N

∞ ∞

Φ
→∞

=−∞ −∞

= ρ = ρ∑∫ ∫ ψ ψV x V x,   (18) 

2.2.4 Conditional APDF and Its Conditional Mean 
From Equation(16), we may follow Pope (Ref. 1) to define a “conditional” APDF on the condition 
= ψΦ  as 

 , ( , ; , )
( ; , )

( ; , )
U

U
F t

F t
F t
Φ

Φ
Φ

≡
ψ

ψ
ψ

V x
V x

x
 (19) 

and it has the following property, 

 ( ; , ) 1UF t d
∞

Φ
−∞

=∫ ψV x V  (20) 

The “conditional mean” will be defined as  

 ( ) ( )( ) ( )( )

( ) ( )( )

,

( ) ( ) ( )

1

( ) ( ) ( )

1

1( , ) ( ; , ) ( , ; , )
( ; , )

1 1lim

1 1lim

UU

N
n n n

N n
N

n n n

N n

t F t d F t d
F t

t t t d
F N

t t
F N

+∞ +∞

ΦΦ−∞ −∞Φ

+∞

−∞ →∞Φ =

→∞Φ =

≡

 
ρ δ − δ −  

 

ρ δ −

∫ ∫

∑∫

∑

ψ ψ ψ
ψ

ψ

ψ

U x V V x V = V V x V
x

= V x, U x, V x, V

= x, U x,

Φ

Φ

 (21) 

Then we have 

 ( ) ( )( )( ) ( ) ( )
,

1

1lim ( , ; , ) ( , )
N

n n n
UN n

t t F t d F t
N

+∞

Φ Φ−∞→∞
=

ρ δ − = ⋅∑ ∫ψ ψ ψx, U x, V V x V = U xΦ  (22) 
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And the total mean should be defined as 

 

( )

( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1

( ) ( )

1

( , )

1lim

1lim ( , )

N
n n n

N n
N

n n

N n

F t d

t t t d d
N

t t t t
N

+∞

Φ−∞

+∞ +∞

−∞ −∞ →∞
=

→∞
=

⋅

= ρ δ − δ −

= ρ = ρ = ρ

∫

∑∫ ∫

∑

ψ ψ

ψ ψ

U x

V x, U x, V x, V

x, U x, U x, U x

Φ   (23) 

Equation (22) can be extended to any other turbulent quantities, for example, P∇ ,∇U ,∇Φ , ( )iS Φ : 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )

1

( )( ) ( )

1

( )( ) ( )

1

( ) ( ) ( )

1

1lim

1lim

1lim

1lim

N
nn n

UN n
N

nn n
UN n

N
nn n

N n
N

n n n
i i iN n

P t F P
N

t F
N

t F
N

S t F S F S
N

→∞
=

→∞
=

Φ
→∞

=

Φ Φ
→∞

=

ρ ∇ δ − ⋅ ∇

ρ ∇ δ − ⋅ ∇

ρ ∇ δ − ⋅ ∇

ρ δ − ⋅ = ⋅

∑

∑

∑

∑

ψ ψ

ψ ψ ψ

U x, V = V

U U x, V = U V

x, =

x, =

Φ Φ Φ

Φ Φ

 (24) 

where , ,P∇ ∇ ∇U Φ  are viewed as new random variables in addition to P , , and U Φ . 

3.0 Traditional Form of APDF Equations 
In this section, we perform the traditional way of deriving the transport equation for APDF, i.e., we 

start from the equation of FG-PDF, and the resulting equation for APDF contains conditional means that 
require closure modeling. 

3.1 Traditional Form of ( ; , )UF tV x  Equation  

The transport equation for the fine grained PDF with the variable densityρ(x,t) can be written as (see 
Ref. 6): 

 22
3

j UU
U ij ij kk

j i i j

U ff Pf S S
t x V x x

 ′  ∂ρ′∂ρ ∂ ∂ ∂  ′+ = − − + µ − µδ    ∂ ∂ ∂ ∂ ∂     
 (25) 

where the compressible continuity and momentum equations (31), (32) have been applied. Applying the 
ensemble average operation, Equation (5), on Equation (25) and using the sifting property of FG-PDF, we 
may obtain   
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( )

( )

( )
( )( )

1

( )
( )( )

1

1 1lim

1 1 2lim 2
3

nN
nnU U

j UNj i in

nN
nn

ij ij kk UNi jn

F F PV f
t x V N x

S S f
V N x

→∞
=

→∞
=

  ∂ ∂ ∂ ∂ ′+ = − − ρ  ∂ ∂ ∂ ρ ∂   
  ∂ ∂   ′− ρ µ − µδ    ∂ ρ ∂     

∑

∑
 

According to Equation (24), the APDF equation for the velocity can be written as  

 1 1 22
3

U U
j U U ij ij kk

j i i j

F F PV F F S S
t x V x x

 ∂ ∂ ∂ ∂ ∂  + = − − ⋅ + ⋅ µ − µδ  ∂ ∂ ∂ ρ ∂ ρ ∂    
V V  (26) 

At this point, the velocity APDF equation is general but unclosed because of the unknown terms of the 
conditional means. The last term in Equation (26) is referred as the molecular mixing term in which 
significant modeling efforts have been devoted over several decades, nevertheless, major issues still 
remain. Later, we will show that when using a different way to derive the APDF equation, the molecular 
mixing term is in a closed form, and the pressure gradient term is also essentially closed. In addition, we 
noticed that the molecular mixing term is of the order of  O(1/Re), and may become vanishingly small 
when comparing with other terms in the equation in the case of large Reynolds number (Re). 

3.2 Traditional Form of ( ; , )F tΦ ψ x  Equation 

Applying the same procedure (in Section 3.1) on the following FG-PDF equation for scalars,  

 ( )
'

( ) ( , )j i i
i

j i j j

U ff f S t
t x x x

ΦΦ
Φ

   ∂ρ′ ∂Φ∂ρ ∂ ∂ ′  + = − ρΓ + ρ    ∂ ∂ ∂ψ ∂ ∂    
xΦ  (27) 

we obtain the APDF equation for the turbulent scalars: 

 
( )

( )( )1 1,2, 1
j i i

i
j i j j

F UF F F S i M
t x x x

ΦΦ
Φ Φ

∂  ∂Φ∂ ∂ ∂ + = − ⋅ ρΓ + ⋅ = + 
∂ ∂ ∂ψ ρ ∂ ∂  

ψ
ψ ψ   (28) 

where ( )1 0MS + =ψ . Equation (28) is also unclosed because the conditional means are unknown. Later, 
we will also see that the molecular mixing term is closed when using a different way of derivation. Again, 
it is of the order of O(1/Re) and could become vanishingly small at large Reynolds numbers.  

3.3 Traditional Form of Joint APDF , ( , ; , )UF tΦ ψV x  Equation 

We may obtain the velocity-scalar joint APDF equation from the joint fine grained probability density 
function ,Uf Φ′  defined in Equation (17). Similar to the relationship Equation (25), we may write 
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,, '
, ,

,

( )
,

22
3

j U i j j kU i k
U U

j i j k j

U ij ij kk
i i j

k k
U

k j j

U f u u uf uf f
t x V t x t x

Pf S S
V x x

f
x x

ΦΦ
Φ Φ

Φ

Φ

   ′    ′ ∂ρ ∂ρ ∂ρ Φ∂ρ ∂ρ ∂ρΦ∂ ∂   ′+ = − + − +         ∂ ∂ ∂ ∂ ∂ ∂ψ ∂ ∂         
  ∂ ∂ ∂  ′= − − + µ − µδ    ∂ ∂ ∂     

 ∂Φ∂ ∂′− ρΓ
∂ψ ∂ ∂

( )( , )kS t
    + ρ      

xΦ

 (29) 

Applying the ensemble average operation (5) on Equation (29) we obtain  

 

( )

, ,
, ,

( )
, ,

1 1 22
3

1

U U
j U U ij ij kk

j i i j

k k
U U k

k j j

F F PV F F S S
t x V x x

F F S
x x

Φ Φ
Φ Φ

Φ Φ

 ∂ ∂ ∂ ∂ ∂  + = − − ⋅ + ⋅ µ − µδ  ∂ ∂ ∂ ρ ∂ ρ ∂    
 ∂Φ∂ ∂ − ⋅ ρΓ + ⋅ 

∂ψ ρ ∂ ∂  

ψ ψ

ψ ψ

V, V,

V,

 (30) 

It is easy to verify that Equation (30) will reduce to Equations (26) and (28) by an integration over the 
sample space ψ  and V, respectively. The equation (30) is general and is not restricted to low Mach 
numbers.  

4.0 Conservational Form of APDF Equations 
In this section, we first review the ensemble averaged compressible Navier-Stokes equations, which 

are unclosed due to the unknown second order moments. Then we use the relationship between APDF 
and the first and second order moments described in Section 2.2 to express the ensemble averaged 
compressible Navier-Stokes equations in terms of an integral equation of APDF. Under a sufficient 
“conservation” condition, the APDF transport equations are established, which are in a closed form 
without additional modeling, unless a marginal APDF equation is considered.  

4.1 Ensemble Averaged Compressible Navier-Stokes Equations 

The Navier-Stokes equations for compressible reacting flows can be written as  

 0j

j

U
t x

∂ρ∂ρ
+ =

∂ ∂
 (31) 

 12 ( )
3

i ji
ij ij kk

j i j

U UU P S S
t x x x

∂ρ∂ρ ∂ ∂  + = − + ρν − δ ∂ ∂ ∂ ∂  
 (32) 

 12
3

i i
kk ij ij ii kk

i i

U e qe PS S S S S Q
t x x

∂ρ ∂∂ρ  + = − + + ρν − + ∂ ∂ ∂  
 (33) 

 ( ) 1,2, ,mm i m m
m

i i i

U W m M
t x x x

 ∂ρΦ ∂ρ Φ ∂Φ∂
+ = ρΓ + = ∂ ∂ ∂ ∂ 

  (34) 
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1

M
m

mm

TP R
w=

Φ
= ρ ∑  (35) 

 ( )

1

M
m m

i m
i im

Tq c h
x xυ

=

∂Φ∂
= −ρκ − ρΓ

∂ ∂∑  (36) 

Applying the ensemble averaging on the above equations, we obtain the following Reynolds averaged 
Navier-Stokes equations: 

 


0j

j

U
t x

∂ρ ∂ρ
+ =

∂ ∂
 (37) 

 


 12 ( )
3

i i j
ij ij kk

j i j

U UU P S S
t x x x

∂ρ  ∂ρ ∂ ∂
+ = − + ρν − δ 

∂ ∂ ∂ ∂  
 (38) 

 
 12

3
i i

kk ij ij ii kk
i i

U e qe PS S S S S Q
t x x

∂ρ ∂∂ρ  + = − + + ρν − + ∂ ∂ ∂  



 (39) 

 
 

( ) 1,2, ,m mi m m
m

i i i

U W m M
t x x x

 ∂ρ Φ ∂Φ∂ρΦ ∂
+ = ρΓ + =  ∂ ∂ ∂ ∂ 

  (40) 

where 

 

 



1 1

1

1

or

M M
m m

m v mm m

M
m M

v mm

T eRP R
w c w

RP
c w

= =

+

=

Φ Φρ
= ρ =

Φ Φρ
=

∑ ∑

∑

 (41) 

 ( )

1

N
m m

i m
i im

Tq c h
x xυ

=

∂Φ∂
= −ρκ − ρΓ

∂ ∂∑  (42) 

In the above equations, κ, ν and Γ(m) are the molecular heat conductivity, kinematic viscosity and the m-th 
species diffusivity, they have the same dimension (i.e., velocity ⋅ length). It is also commonly assumed 
that Γ(m) is the same for all species Φm. The hm, T are the enthalpy of m-th species and the temperature, Q 
is the radiation rate, Wm = ρSm is the chemical generation rate of m-th species, ΦM+1  represents the 
internal energy e, R is the universal gas constant. These equations are general; however, unlike the 
constant density flows, further approximations for the terms on their right hand side are required in order 
to complete the ensemble averaging process. One of such approximations leads to 

 
  1 22

3 3
i j k

ij ij kk ij
j i k

U U US S
x x x

 ∂ ∂ ∂ ρν − δ ≈ µ + − δ    ∂ ∂ ∂   
 (43) 
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In which, we have basically neglected the variations of µ and ρ during the averaging process, the value of 
µ will be considered as the function of , ,P T  . Alternatively, 

 
  1 22

3 3
i j k

ij ij kk ij
j i k

U U US S
x x x

 ∂ρ ∂ρ ∂ρ ρν − δ ≈ ν + − δ    ∂ ∂ ∂   
 (44) 

Similarly, 

 
 

( ) ( )

1 1

M M
m mm m

i m m
i i i im m

T Tq c h c h
x x x xυ υ

= =

∂Φ ∂Φ∂ ∂ρ
= −ρκ − ρΓ ≈ − κ − ρΓ

∂ ∂ ∂ ∂∑ ∑  (45) 

 


( ) ( ) mm mm

i ix x
∂Φ ∂ρΦ

ρΓ ≈ Γ
∂ ∂

 (46) 

Furthermore, invoking the turbulent kinetic energy dissipation rate: 

 12
3ij ij ii kkS S S S ρν − ≡ ρε 

 
  (47) 

Where , , ,cυν κ and Γ(m) are now considered as functions of , ,P T  .  
Then, the ensemble averaged Navier-Stokes equations can approximately be written as  

 


0j

j

U
t x

∂ρ ∂ρ
+ =

∂ ∂
 (48) 

 




  2
3

i i j ki j
ij

j i j j i k

U UU P U U U
t x x x x x x

  ∂ρ∂ρ ∂ ∂ ∂ρ ∂ρ ∂ρ
+ = − + ν + − δ   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (49) 

 


i i
kk

i i

U e qe PS Q
t x x

∂ρ ∂∂ρ
+ = − + + ρε +

∂ ∂ ∂


  (50) 

 
  



( ) 1,2, ,m mmi m
m

i i i

U S m M
t x x x

 ∂ρ Φ∂ρΦ ∂ ∂ρΦ
+ = Γ + ρ = 

∂ ∂ ∂ ∂ 
  (51) 

 

 



1 1

1

1

or

M M
m m

m v mm m

M
m M

v mm

T eRP R
w c w

RP
c w

= =

+

=

Φ Φρ
= ρ =

Φ Φρ
=

∑ ∑

∑

 (52) 

 
 

( )

1

M
m m

i m
i im

Tq c h
x xυ

=

∂Φ∂ρ
= − κ − ρΓ

∂ ∂∑  (53) 
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These equations are still considered as quite general, because i) they are exact if the flow becomes 
incompressible, ii) all the approximations made in Equations (49), (50) and (51) are related only to the 
molecular diffusion terms that are less important and even become negligibly small (1/Re) comparing 
with the convection terms on the left hand side for turbulent flows at large Reynolds numbers (see 
Tennekes & Lumley (Ref. 7) and Pope (Ref. 1)). For the conventional unsteady Reynolds averaged 
Navier-Stoke simulation (URANS), Equation (48) to (51) are often used together with the further 
approximations for Equations (52) and (53): 

 
 

1 1 1

1,
M M M

mm m

m m mm m m

T RT RTP R
w M M M w w= = =

Φ Φρ ρ Φ = ρ = ≈ = ≈ 
 

∑ ∑ ∑  (54) 

 


i
i

Tq c
xυ

∂ρ
= − κ

∂
 (55) 

The momentum flux 

i jU Uρ , the energy flux 

iU eρ  and the species flux 

i mUρ Φ  are considered to be 
critically important in URANS simulations and should be carefully modeled. Many models in the 
literature, from the simplest zero-equation model (Ref. 8) to the complex two-equation models (Refs. 9 
and 10) have been suggested. In the following Sections 4.2 and 4.3, we will derive the APDF equations 
directly from Equations (48) to (53). It is important to note that in the joint PDF method, the terms 
corresponding to these important turbulent fluxes are always in closed forms with no need of modeling.  

4.2 Conservational form of ( ; , )UF x tV  equation 

Using Equations (9) and (14), the left hand side of Equation (49) can be written as 

 




i i j U U
i U i j U i j

j j j

U U F FU V F d V V F d V V d
t x t x t x

∞ ∞ ∞

−∞ −∞ −∞

 ∂ρ ∂ ∂∂ρ ∂ ∂
+ = + +  ∂ ∂ ∂ ∂ ∂ ∂ 

∫ ∫ ∫V V = V  (56) 

The pressure gradient term can be written as (via Eq. (52)) 



2

1 ,
1

1

1 2

1
1

( , ; , )

or

M

i m M U
k k v mm

M
m M

i i v mm M

i m M U
k k v mm

RV F x t d d
V x c w

P R
x x c w

RV F d
V x c w

∞ ∞

+ Φ
=−∞ −∞

+

= ∞

+
=−∞

   ∂   ψ ψ
 ∂ ∂     Φ Φ∂ ∂ ρ − = − =   ∂ ∂    ∂ Φ Φ ⋅  ∂ ∂  

∑∫ ∫

∑
∑∫

ψ ψV V

V V

 (57) 

During the above arrangement, no approximations have been made other than the integration by parts and 
a zero integration property like Equation (59). Note that the pressure gradient term can be in a closed 
form only when the joint APDF, ,UF Φ , is considered, otherwise, a conditional mean will be unavoidable. 
Now the molecular mixing term in Equation (49) can be written as  
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  

( ) ( )

2
3

2
3

2
3

or

i j m
ij

j j i m

i U j U ij m U
j j i m

U
i i j U k j i m U

j j j k k m k

j

U U U
x x x x

V F d V F d V F d
x x x x

FV d V V F d V V F d
x x x x V x V

x

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

 ∂ ∂ρ ∂ρ ∂ρ
ν + − δ  ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
 = ν + − δ
 ∂ ∂ ∂ ∂ 

  ∂∂ ∂ ∂ ∂ ∂ ∂
 ν − ν − δ    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

=

∂
− ν
∂

∫ ∫ ∫

∫ ∫ ∫

V V V

V V V

( ) ( ) ( )2
3i k U i j U k j i m U

j k k k m k
V V F d V V F d V V F d

x V x V x V

∞ ∞ ∞

−∞ −∞ −∞






  ∂ ∂ ∂ ∂ ∂ ∂  + − δ  ∂ ∂ ∂ ∂ ∂ ∂ 

∫ ∫ ∫V V V

 

and further rearranged as  

 

2 2

22 2

2
3

or

2
3

j UU m U
i i i k j

j j j k k j k m

j Uk U m U
i i i k j

j k j j k k j k m

V FF V FV d V d V d
x x x V x x V x

V FV F V FV d V d V
x V x x V x x V x

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞

−∞ −∞

   ∂  ∂ ∂∂ ∂ ∂
 ν − ν + δ ν       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

=

   ∂ ∂ ∂∂ ∂ ∂
 − ν − ν + δ ν     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∫ ∫ ∫

∫ ∫

V V V

V V d
∞

−∞









 


∫ V

 (58) 

Note, on the third line of Equation (58), we have applied the integration by parts and the following type of 
zero integration similar to the one used in PDF formulations (Pope (Ref. 1)): 

 ( ) 0i k U
k

VV F d
V

∞

−∞

∂
=

∂∫ V  (59) 

Finally, collecting the terms that are in the integrands and factored by iV , we obtain the following 
transport equation for ( ; , )UF tV x  by setting the sum of the integrands to zero, which will sufficiently 
satisfy the Navier-Stoke equations (48), (49) and (52). We refer to this condition as the “conservation 
condition”. 

 

2

1
1

2

1
1

2
3

or

M
U U U

j m M U
j k k v m j jm

U U
j k j m

k j k k j m

M
U U U

j m M U k
j k k v m k j jm

F F FRV F
t x V x c w x x

F FV V
V x x V x x

F F FRV F V
t x V x c w V x x

+
=

+
=

  ∂ ∂ ∂∂ ∂
+ = Φ Φ ⋅ + ν    ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ ∂∂ ∂ ∂
+ = Φ Φ ⋅ − ν  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∑

∑

V

V

2
3

U U
j k j m

k j k k j m

F FV V
V x x V x x




   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

 (60) 
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In Equation (60), all the terms are closed, except for the one involving the conditional mean originating 
from the pressure gradient. It should be noted that the unclosed term in the momentum equation, 
i.e., i jU Uρ , now is closed in the corresponding APDF equation while the less important molecular 
diffusion terms remain in closed forms.  

4.3 Conservational Form of ( ; , )F tΦ ψ x  Equation 

Similarly, we may obtain the APDF equation for the scalars (i.e., species and internal energy) from 
Equations (50), (51) as follows: first, we write the terms on the left hand side of Equation (51) as 

 
m

m m
FF d d

t t t

∞ ∞
Φ

Φ
−∞ −∞

∂∂ρΦ ∂
= ψ = ψ

∂ ∂ ∂∫ ∫ψ ψ  (61) 
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( )

,
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m i U
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i m
i m U

i i
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i

V F d d
x

U V F d d
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F U d
x

∞ ∞

Φ
−∞ −∞∞ ∞

Φ
−∞ −∞ ∞

Φ
−∞

  ∂
ψ  ∂  

∂ρ Φ ∂ = ψ = 
∂ ∂ 

 ∂ ψ ⋅  ∂ 

∫ ∫

∫ ∫
∫

ψ

ψ

ψ ψ

V

V  (62) 

Then, the terms on the right hand side of (51) can be written as  
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m
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F d
x x

∞
Φ

−∞∞

Φ
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Φ
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  ∂∂
ψ Γ  ∂ ∂    ∂ ∂ρΦ ∂ ∂  Γ = Γ ψ =   ∂ ∂ ∂ ∂     ∂ ψ∂− ψ Γ   ∂ ∂ψ ∂ 

∫

∫
∫
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 (63) 

 

( )
( ) k

m m m
k

S F
S S F d d

∞ ∞
Φ

Φ
−∞ −∞

∂
ρ = = − ψ

∂ψ∫ ∫ψ ψ ψ  (64) 

Where in Equations (63) and (64), we have applied the integration by parts and zero integrations similar 
to Equation (59). Collecting all the integrand terms that factored by mψ , and invoking the sufficient, 
conservation condition, we obtain  
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F UF F F S k M
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Φ
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Φ

∂ ⋅   ∂ ∂∂ ∂ + = Γ −  ⋅  = +    ∂ ∂ ∂ ∂ ∂ψ   

∂ ⋅   ∂ ∂∂ ∂ + = − Γ ψ + ⋅ = +  ∂ ∂ ∂ψ ∂ ∂   

ψ
ψ

ψ
ψ





 (65) 
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This equation also represents the equation of internal energy when ( )1 0MS + =ψ  and other source terms 
in Equation (50) are neglected. Equation (65) is essentially closed if we consider the joint APDF ,UF Φ . 

For the marginal FΦ , the convection term is not closed because of the conditional mean iU ψ . Then, 

this critically important term, corresponding to 

i mUρ Φ  in Equation (51), must be carefully modeled 
while the less important molecular diffusion term remains in a closed form. In addition, we noticed that 
the equally important chemistry source term ( )mSρ Φ  in Equation (51), which involves complex 
processes of turbulence-chemistry interaction and is very difficult to be modeled accurately, now is closed 
in the APDF equation with no need of modeling. This direct calculation of turbulence-chemistry 
interaction is one of the unique features of PDF methodology.  

4.3.1 Modeling of Unclosed Terms 

Consider the approximation described by Equation (54), i.e., P RT M≈ ρ , we may write from 
Equation (57) 

 

 1

1 ,

2

1 ,

2

1

M

i i v

M U
i v

i M U
k k v

i M U
k k v

P R
x x c M

R F d d
x c M

RV F d d
V x c M

RV F d
V x c M

+

∞ ∞

+ Φ
−∞ −∞

∞ ∞

+ Φ
−∞ −∞

∞

+
−∞

 ∂ ∂ ρ Φ
− ≈ −  
∂ ∂  

∂
= − ψ

∂

 ∂
= ψ 

∂ ∂   

 ∂
= Φ ⋅ ∂ ∂  

∫ ∫

∫ ∫

∫

ψ

ψ

V

V

V V

 (66) 

For the marginal APDF equation of UF , we must model the unknown “conditional” mean 1M +Φ V . 
While seeking its physical based model the roughest one could be suggested as follows:  

  11 MM e++Φ ≈ Φ = V  (67) 

As for the term containing conditional mean, iF UΦ ⋅ ψ , in Equation (65), we may start from a more 

general model for the term i mUρ Φ (see Refs. 11 and 12): 

   



 ( )


( ) ( )
1 2

m mm m
m iji iji m T T

i j

kU U c S c
x x

∂ρΦ ∂ρΦ
ρ Φ = ρ Φ −Γ −Γ + Ω

∂ ε ∂
 (68) 

Where 1 2,c c  are model coefficients and were temporally set to 1c  = 2c  = - 0.24, ( )m
TΓ is the turbulent 

diffusivity for species mΦ and is assumed to be the same for all species. This will lead to the following 
model by directly applying Equations (8) and (22) described in Sections 2.2.2 and 2.2.4: 



NASA/TM—2012-217677 15 

 

  ( )

  ( )

( ) ( )
1 2

( ) ( )
1 2

or

m m
iji iji T T m

i m j

m m
iji iji T m T m

m i m j

F FkF U U F c S c
x x

F FkF U U F c S c
x x

Φ Φ
Φ Φ

Φ Φ
Φ Φ

  ∂ ∂∂
⋅ = − Γ + Γ + Ω ψ  ∂ ∂ψ ε ∂    

  ∂ ∂∂ ∂
⋅ = + Γ ψ + Γ + Ω ψ  ∂ψ ∂ ∂ψ ε ∂    

ψ

ψ

 (69) 

4.3.2 Summary 

With the models given by Equations (66) and (69), the marginal APDF equations for ( ; , )UF tV x  and 
( ; , )F tΦ ψ x  can be written as 

 





2
1

2
1

2
3

or

MU U U
j U

j k k v j j

U U
j k j m

k j k k j m

MU U U
j U k

j k k v k j j

U
j

k j

F F FRV F
t x V x c M x x

F FV V
V x x V x x

F F FRV F V
t x V x c M V x x

FV
V x x

+

+

  ∂ ∂ ∂∂ Φ ∂
+ = + ν    ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ ∂∂ Φ ∂ ∂
+ = − ν    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂∂ ∂
− ν
∂ ∂ ∂

2
3

U
k j m

k k j m

FV
V x x

   ∂∂ ∂
+ δ ν      ∂ ∂ ∂   

 (70) 

and 

 

( ) ( ) ( )( )

 ( )

( ) ( ) ( )

( ) ( )

( )
1 2

( ) ( )

, 1,2, , 1

or

i m m
T k

i i i k

m
ijijk T

k i j

i m m
k T k

i k i i

k

U FF F F S
t x x x

Fk c S c k M
x x

U FF F F S
t x x x

ΦΦ Φ
Φ

Φ

ΦΦ Φ
Φ

∂   ∂ ∂∂ ∂ + = Γ + Γ − ⋅  ∂ ∂ ∂ ∂ ∂ψ   
  ∂∂ ∂ − ψ Γ + Ω = +   ∂ψ ∂ ε ∂   

∂   ∂ ∂∂ ∂ + = − ψ Γ + Γ + ⋅  ∂ ∂ ∂ψ ∂ ∂   

∂
− ψ
∂ψ

ψ

ψ



 ( )( )
1 2 , 1,2, , 1m

ijijk T
i j

Fk c S c k M
x x

Φ
  ∂∂ Γ + Ω = +   ∂ ε ∂   



 (71) 

It can be verified that the APDF Equations (70) and (71) can exactly deduce the ensemble averaged 
compressible Navier-Stoke equations (48) to (51) with the assumed approximations of (66) and (68). 
However, the models described by Equations (66) and (69) are by no means unique. Furthermore, the 
variables (  1M +Φ ,  iU ,  ijS  and  ijΩ ) are considered as available quantities during the solution procedure of 
APDF equations.  
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4.4 Conservational Form of Joint APDF , ( , ; , )UF tΦ ψV x  Equation 

The transport equation for the velocity-scalar joint APDF , ( , ; , )UF tΦ ψV x  can be constructed from 
Equations (60) and (65) as  

 

( )

2
, , ,

1 ,

, ,

,( )
,

2
3

, 1,2, , 1

U U U
j M U

j k k v j j

U U
j k j

k j k k j

Um
U m

i i m

F F FRV F d
t x V x c M x x

F F
V V

V x x V x x

F
F S m M

x x

∞
Φ Φ Φ

+ Φ
−∞

Φ Φ

Φ
Φ

   ∂ ∂ ∂∂ ∂
+ = ψ + ν    ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂  + Γ − ⋅ = +   ∂ ∂ ∂ψ 

∫ ψ

ψ







 (72) 

or, 

 

( )

2
, , ,

1 ,

, ,

,( )
,

2
3

, 1,2, ,

U U U
j M U k

j k k v k j j

U U
j k j

k j k k j

Um
m U m

m i i

F F FRV F d V
t x V x c M V x x

F F
V V

V x x V x x

F
F S m M

x x

∞
Φ Φ Φ

+ Φ
−∞

Φ Φ

Φ
Φ

   ∂ ∂ ∂∂ ∂ ∂
+ = ψ − ν    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂∂ ∂ ∂ ∂
− ν + δ ν      ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ − ψ Γ + ⋅ =  ∂ψ ∂ ∂   

∫ ψ

ψ





 1+

  (73) 

It is easy to verify that Equation (72) or (73) will reduce to Equations (70) and (71) by an integration over 
the entire space ψ  and V, respectively. It is noted that the transport equation for joint APDF 

, ( , ; , )UF tΦ V xΦ  is in a closed form; however it contains an integration of 1 ,M UF d
∞

+ Φ−∞
ψ∫ ψ  from the 

pressure gradient term. 

5.0 Concluding Remarks 
We have derived the traditional form of APDF equations by starting from the equation of FG-PDF. 

The resulting equations contain the “conditional means” for all the terms on the right hand side of the 
embedded Navier-Stokes equations except for the reaction term (see Equations (26) and (28)), which need 
empirical models to make the equations closed.  

We have also derived the conservational form of APDF equations directly from the ensemble 
averaged compressible Navier-Stokes equations using the relationship between APDF and the ensemble 
averaged turbulent variables. In this way, the resulting joint APDF equation is in a closed form, see 
Equation (72) or (73).  

APDF equations both in the traditional and in the conservational forms derived in this study do not 
subject to the low Mach number limitation.  

In the marginal APDF equations, (60) and (65), there are two unclosed terms, one is related to the 
pressure gradient and the other is related to the scalar convection. They are generally much more 
important than the molecular “mixing” terms, especially at large Reynolds numbers. The models 
proposed in Equations (66) and (69) should be further developed and evaluated.  
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It should be pointed out that the methodology used in the present study can be extended to other 
averaging operations: for example, the Reynolds time (or spatial) averaging. Furthermore, it can also be 
extended to a filtering operation to derive the filtered density function (FDF) for large eddy simulation 
(LES) such as the mass density weighted filtered density function DW-FDF for LES of compressible 
turbulent reacting flows (see Ref. 6).  
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