
 P.O. Box 891506
Houston, TX

mREST

Interface Specification

METECS-R-XXX

Revision: DRAFT

Date: 5/31/2012

Prepared By: ___

Patrick McCartney, P.E. – mREST Project Manager

Reviewed By: ___

John MacLean, P.E. – mREST Chief Engineer

update

ii

METECS-R-XXX
Rev: DRAFT

Document Change Log

Date Revision Section(s) Description of Change

5/31/12 Baseline All Initial document release

update

11

METECS-R-XXX
Rev: DRAFT

Table of Contents

1 INTRODUCTION .. 1

1.1 BACKGROUND AND OVERVIEW .. 1

1.1.1 REPRESENTATIONAL STATE TRANSFER (REST) .. 1

1.1.2 MREST ... 4

1.2 PURPOSE AND SCOPE .. 6

1.3 APPLICATION... 7

1.4 OUTLINE .. 7

2 REFERENCES ... 8

3 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS ... 9

3.1 DEFINITIONS .. 9

3.2 ACRONYMS AND ABBREVIATIONS .. 11

4 ARCHITECTURAL APPROACH ... 13

4.1 KEY TECHNOLOGIES .. 13

4.1.1 OPEN STANDARDS .. 13

4.1.2 REST WEB SERVICES ... 15

4.1.3 DISCOVERY ... 16

4.1.4 EXTENSIBLE MARKUP LANGUAGE (XML) ... 16

4.1.5 AUTOMATIC TEST MARKUP LANGUAGE (ATML) ... 17

4.1.6 OPEN SOURCE ... 17

4.2 SYSTEM COMPONENTS ... 18

4.2.1 LOGICAL SYSTEM ELEMENT (LSE) .. 18

4.2.2 MREST MANAGERS ... 19

4.3 INTERNAL LSE DATA MODELING ... 20

4.3.1 PARAMETERS AND RESOURCES .. 20

4.3.2 STATIC AND DYNAMIC PARAMETER DATA .. 21

5 MREST INTERFACE DEFINITION .. 23

update

12

METECS-R-XXX
Rev: DRAFT

5.1 RESOURCE TYPES ... 23

5.1.1 DOCUMENT RESOURCES ... 23

5.1.2 COMPONENT RESOURCES ... 24

5.1.3 COLLECTION RESOURCES ... 24

5.1.4 CATALOG RESOURCES .. 25

5.1.5 CONTROLLER RESOURCES .. 25

5.1.6 DATALOG RESOURCES ... 27

5.2 STANDARDIZED CONTROLLER RESOURCES .. 28

5.2.1 DATA LOGGING (/MREST/CONTROLLERS/LOGDATA) ... 28

5.3 MREST UNIFORM INTERFACE ... 31

5.3.1 HTTP REQUESTS .. 31

5.3.2 HTTP RESPONSES .. 31

5.3.3 HTTP HEADERS .. 31

5.4 MREST SERVER RESOURCES ... 31

5.4.1 IDENTIFICATION .. 31

5.4.2 DATA LOGGING .. 31

5.4.3 APPLICATION SPECIFIC RESOURCES ... 31

5.5 MREST RESOURCE REPRESENTATIONS ... 32

5.5.1 RESOURCE REPRESENTATION FORMATS .. 32

5.5.2 MEDIA TYPE NEGOTIATION.. 32

5.6 MREST STATUS REQUESTS .. 33

5.7 MREST CONFIGURATION UPDATE REQUESTS ... 33

5.8 MREST LOGICAL SYSTEM ELEMENT DISCOVERY ... 33

5.9 MREST SECURITY .. 33

6 MREST MANAGER REQUIREMENTS .. 34

6.1 LSE INTERFACE .. 34

6.1.1 UNIFORM INTERFACE ... 34

6.1.2 LOCATIONS OF LSE RESOURCES .. 34

6.1.3 DATA REPRESENTATIONS OF RESOURCES .. 34

6.1.4 CACHING... 34

6.1.5 XML VALIDATION ... 34

6.1.6 STATELESS COMMUNICATION .. 34

update

13

METECS-R-XXX
Rev: DRAFT

6.1.7 CALLBACK ... 34

6.1.8 OPTIMIZATION .. 34

6.2 OPERATOR INTERFACE... 34

6.3 INITIALIZATION OF THE SYSTEM AND SESSION CONFIGURATION 34

6.4 COORDINATION OF SESSION RUN EXECUTION ... 34

6.5 COLLECTION AND DISPLAY OF STATUS DATA .. 35

6.5.1 DATABASE VERIFICATION .. 35

6.5.2 STATUS LOG REQUEST DATA ... 35

6.6 COLLECTION OF SESSION MANAGER NOTES .. 35

6.7 ORGANIZATION OF SYSTEM SESSION RESULTS .. 35

7 EXAMPLE IMPLEMENTATIONS ... 36

7.1 TEST FLOW DATA MANAGER (TFDM) ... 36

7.2 LOGICAL TEST ELEMENT (LTE) ... 36

7.3 STANDALONE TEST EXECUTIVE (STX) ... 36

APPENDIX A MREST REQUIREMENTS MATRIX ... 37

APPENDIX B MREST RESOURCE REPRESENTATIONS ... 38

B.1 MREST XML (APPLICATION/VND.MREST+XML) ... 38

B.2 MREST JSON (APPLICATION/VND.MREST+JSON) .. 38

B.3 ATML (APPLICATION/VND.ATML+XML) ... 38

APPENDIX C MREST RESOURCE TYPES ... 39

C.1 MREST XML (APPLICATION/VND.MREST+XML) ... 39

C.2 MREST JSON (APPLICATION/VND.MREST+JSON) .. 39

C.3 ATML (APPLICATION/VND.ATML+XML) ... 39

update

14

METECS-R-XXX
Rev: DRAFT

List of Tables
Table 1: Sample Resource at http://www.mrest.org/mrest/info... 2

Table 2: Resource Representations from http://www.mrest.org/rest/info 3

Table 3: Static and Dynamic Parameter Data .. 21

Table 4: Sample LSE Parameter .. 22

Table 3: mREST Resource Types .. 23

Table 4: Methods for mREST Document Resources ... 23

Table 5: Methods for mREST Component Resources ... 24

Table 6: Methods for mREST Collection Resources ... 24

Table 7: Methods for mREST Catalog Resources ... 25

Table 8: Methods for mREST Controller Resources ... 27

Table 9: Methods for mREST Controller Exec, Input, Status, and PID Resources 27

Table 10: Methods for mREST Datalog Resources .. 27

Table 11: Inputs for Datalog Controller Resource .. 29

Table 12: Sample XML Input for Datalog Controllers ... 30

Table 12: XML Schema for Datalog Controller Inputs .. 30

Table 10: mREST Requirements Matrix ... 37

Table 11: mREST Resource Types .. 40

List of Figures
Figure 1: The REST Architectural Style .. 1

Figure 2: Network Interaction for a Simple Internet Search .. 2

Figure 3: mREST System Overview ... 4

Figure 4: Example of an mREST System .. 5

Figure 5: mREST Interface Specification Document Scope ... 6

Figure 6: Logical System Element (LSE) Architecture ... 18

Figure 7: Controller Status Resources ... 26

update

15

METECS-R-XXX
Rev: DRAFT

update

1

METECS-R-XXX
Rev: DRAFT

1 Introduction

1.1 Background and Overview

1.1.1 Representational State Transfer (REST)
REST, or Representational State Transfer, is a term originally used by Roy Fielding in his
Ph.D. dissertation[1] to describe an architectural style for networked systems. The REST
architectural style provides a philosophy for identifying items of interest in a system as
resources, modeling those resources using a known format (representations) which are
referenced through the use of a uniform resource identifier (URI), and then specifying a
uniform method for retrieving and/or manipulating those resources. An overview of the
REST architectural style is shown in Figure 1.

Uniform Resource Identifier (URI)

Uniform Method

Resource

Representation 1 Representation 2 Representation N..

GET PUT POST DELETE

Uniform Resource Identifier (URI)

Uniform Method

Resource

Representation 1 Representation 2 Representation N..

GET PUT POST DELETE

Figure 1: The REST Architectural Style

A familiar implementation of a REST architecture is the world-wide-web (Figure 2). A
user desires to do an Internet search so they open up a browser and enter the URI for a
search engine such as http://www.google.com. The browser sends a GET command to
the server at the URI which responds with a web page represented as text formatted using
the Hyper Text Markup Language (HTML). The user then enters some search text into
the appropriate field which the browser sends using a POST command. The server then
responds with an HTML representation of a web page containing the search results.

For the network interaction shown in Figure 2, the URI is the web address of the Google
server (http://www.google.com). The browser sends either GET or POST requests to the
server depending on user input. The server responds by delivering the appropriate
resource representations formatted as HTML text. The browser interprets the HTML text
and displays a page that the user can easily understand.

update

2

METECS-R-XXX
Rev: DRAFT

GET

POST

Google
ServerHTML Response

Google
Server

HTML Response

1

2

3

4

GET

POST

Google
ServerHTML Response

Google
Server

HTML Response

1

2

3

4

Figure 2: Network Interaction for a Simple Internet Search

As a more generic example of a network interaction using the REST architectural style,
consider a resource at the URI http://www.mrest.org/mrest/info which contains the
information shown in Table 1.

Table 1: Sample Resource at http://www.mrest.org/mrest/info

Parameter Value

UUID 821fede88cd14ad182d386255e661991
Name mREST
Type Apache PHP

Version v1.36

The resource provider decides to offer two different representations of the resource. The
first representation is formatted using the eXtensible Markup Language (XML) and the
second uses JavaScript Object Notation (JSON) as shown in Table 2.

update

3

METECS-R-XXX
Rev: DRAFT

Table 2: Resource Representations from http://www.mrest.org/rest/info

Format Respresentation

XML

<?xml version=”1.0”?>
<info>
 <atom:link rel=”self” href=”http://www.mrest.org/rest/info”/>
 <uuid>821fede8-8cd1-4ad1-82d3-86255e661991</uuid>
 <name>mREST</name>
 <type>REST Architecture</type>
 <version>v1.36</version>
</info>

JSON

{
 “info”: {
 “link” : {
 “rel” : “self”,
 “href” : “http://www.mrest.org/rest/info”
 }
 “uuid” : “821fede8-8cd1-4ad1-82d3-86255e661991”,
 “name” : “mREST”,
 “type” : “REST Architecture”,
 “version” : “v1.36”
 }
}

Any client is free to retrieve the resource using a GET method call to the URI. If the
client requests the resource in XML format then the server will respond with the
representation shown in the first row of Table 2. Likewise, if the client requests the
resource in JSON format, the server will respond with the representation shown in the
second row of Table 2.

Similarly, if the client wishes to update the resource (and the resource was configured to
allow updates from a client), it could use the PUT method to send an updated XML or
JSON document to the URI. A subsequent GET request would result in the server
sending a new representation of the resource which included the requested updates.

The client/server interaction described in the previous examples is typical of any software
architecture using the REST style. Such an architecture is sometimes referred to as
“RESTful”. The specific representation formats and other details such as how resources
are modeled and how each method is handled will be different depending on the
implementation. Additional information on the REST architectural style can be found in
references [2], [3], [4], and [5].

update

4

METECS-R-XXX
Rev: DRAFT

1.1.2 mREST
mREST is an implementation of the REST architecture specific to the management and
sharing of data in a system of logical elements. A Logical System Element (LSE) can
represent any number of varying types of hardware and/or software components or
subsystems. As shown in Figure 3, each LSE acts as a server which communicates with
one or more mREST managers (clients) using a protocol based on principles from the
REST architectural style.

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

mREST System Manager

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

Logical
System
Element

(LSE)

mREST System Manager

Figure 3: mREST System Overview

Along with the implementation of a RESTful application programming interface (API),
mREST uses open-standards to handle additional tasks such as automatic discovery of
LSE servers, how LSEs are identified and tracked in the system, and how data logging is
handled in each system component. These additional specifications are what makes
mREST useful for real-world applications. For example, the discovery specification
makes it possible for LSEs to enter and/or exit the system without affecting the overall
software architecture and without requiring interaction from the system manager.
Similarly, a common specification for data logging provides a means for efficiently
collecting data from the diverse collection of LSEs and for durable long-term archival of
that data.

A sample instance of an mREST system is shown in Figure 4. This example
demonstrates a configuration to support the testing of a motor for a robotic manipulator.
Each of the hardware and software components are configured as separate LSEs. The
mREST manager is able to discover which LSEs are available for the test and then
orchestrate the test itself. Data is then collected from each LSE using the common
mREST client/server interface. The mREST protocol is what allows such a diverse

update

5

METECS-R-XXX
Rev: DRAFT

arrangement of hardware and software to be managed as a single system in a coordinated
manner.

mREST System Manager

Oscilloscope

Motor Test
Setup

Database

Internet
Environmental
Data Source

Power Supply Temperature
Sensor

Robot
Simulation

3D Graphics
Visualization

Camera

Display and Control Interfaces

LSE
Interface

mREST System Manager

Oscilloscope

Motor Test
Setup

Database

Internet
Environmental
Data Source

Power Supply Temperature
Sensor

Robot
Simulation

3D Graphics
Visualization

Camera

Display and Control Interfaces

LSE
Interface

Figure 4: Example of an mREST System

Note that in this system even the mREST manager has an LSE interface. This allows the
manager to communicate with itself using the same mREST protocol. It also provides a
mechanism for several systems to be tiered and controlled by a higher-level manager.
For example, the Robot Simulation LSE could actually be a separate subsystem
comprised of an mREST manager and a series of simulation component LSEs. mREST
provides the common framework that allows the system designer to model the system
logically without sacrificing modularity, expandability, or reusability.

update

6

METECS-R-XXX
Rev: DRAFT

1.2 Purpose and Scope

The purpose of this document is to clearly define the mREST interface protocol. The
interface protocol covers all of the interaction between mREST clients and mREST
servers (Figure 5). System-level requirements are not specifically addressed.

mREST Server

mREST Manager Application #1

mREST Client mREST Server

mREST Manager Application #2

mREST Client mREST Server

mREST Manager Application #N

mREST Client
..

mREST Server

Logical System Element #1

mREST Server

Logical System Element #2

mREST Server

Logical System Element #N

..

mREST Interface Spec
(This Document)

Backend Interfaces

Frontend Interfaces

mREST ServermREST Server

mREST Manager Application #1

mREST ClientmREST Client mREST Server

mREST Manager Application #2

mREST ClientmREST Client mREST Server

mREST Manager Application #N

mREST Client
..

mREST Server

Logical System Element #1

mREST Server

Logical System Element #2

mREST Server

Logical System Element #N

..mREST Server

Logical System Element #1

mREST Server

Logical System Element #2

mREST Server

Logical System Element #N

..mREST Server

Logical System Element #1

mREST ServermREST Server

Logical System Element #1

mREST Server

Logical System Element #2

mREST ServermREST Server

Logical System Element #2

mREST Server

Logical System Element #N

mREST ServermREST Server

Logical System Element #N

..

mREST Interface Spec
(This Document)

Backend Interfaces

Frontend Interfaces

Figure 5: mREST Interface Specification Document Scope

In an mREST system, there are typically some “backend” interfaces between an LSE and
the associated hardware/software system. For example, a network camera LSE would
have a backend interface to the camera itself. These interfaces are specific to each type
of LSE and are not covered in this document.

There are also “frontend” interfaces that may exist in certain mREST manager
applications. For example, an electronic procedure execution application may have a
specialized interface for configuring the procedures. This interface would be application
specific and outside of this document scope.

mREST is intended to be a generic protocol which can be used in a wide variety of
applications. A few scenarios are discussed to provide additional clarity but, in general,
application-specific implementations of mREST are not specifically addressed.

In short, this document is intended to provide all of the information necessary for an
application developer to create mREST interface agents. This includes both mREST
clients (mREST manager applications) and mREST servers (logical system elements, or
LSEs).

update

7

METECS-R-XXX
Rev: DRAFT

1.3 Application

It has already been stated that an mREST system employs the REST architectural style,
which is really an architectural philosophy rather than a specific protocol. Just because
an application is RESTful does not mean that it can be easily integrated with other
RESTful applications. An application that uses mREST has made a conscious decision to
go beyond REST and adhere to a specific architecture and interface protocol. This results
in an mREST application that can be easily integrated with other mREST applications.

In order for a system to be a good candidate for mREST, it needs to be adaptable to a
client-server architecture and be modeled as a group of system Logical System Elements
(LSEs) as presented in the previous section. An mREST system also implies a definite
operations flow where inputs are inserted into the system and data is gathered.

The primary benefit to using mREST is that it facilitates automating tasks that would be
difficult and/or time consuming using manual methods. mRest also can greatly leverage
the number of software application modules that a single user can effectively manage. It
also provides a common interface for disparate system components while maintaining
loose coupling and minimizing absolute requirements that exclude non-conforming
software. These features are sometimes referred to as “orchestration”. Systems which
can benefit from this type of automation are good candidates for mREST. A couple of
the key implementations of mREST are in the areas of test automation and integrated
simulation facility management.

1.4 Outline

The mREST architectural approach is discussed in Section 4 while the actual interface
specification is defined in Section 5. Specific requirements on each mREST component
are presented in Section 6. An mREST requirements summary, specific implementation
details, and other highly detailed information are presented in the Appendices.

update

8

METECS-R-XXX
Rev: DRAFT

2 References

[1] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine, 2000
(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)

[2] Richardson, Leonard and Sam Ruby. RESTful Web Services. O’Reilly, May 2007

[3] Allamaraju, Subbu. RESTful Web Services Cookbook. O’Reilly, March 2010

[4] Webber, Jim, Savas Parastatidis, and Ian Robinson. REST in Practice. O’Reilly,
September 2010

[5] Masse, Mark. REST API Design Rulebook. O’Reilly, October 2011

[6]

update

9

METECS-R-XXX
Rev: DRAFT

3 Definitions, Acronyms, and Abbreviations

3.1 Definitions

Logical System Element (LSE)

A logical representation of a real-world system component or components. An
LSE can represent any number of varying types of hardware and/or software
components or subsystems. LSEs are the “servers” in the mREST architecture
and form the basic building blocks of an mREST system.

mREST

An implementation of a REST architecture specific to the management, operation,
and sharing of data in a system of logical elements

mREST Manager (MRM)

An application which serves a specific display and/or control function in an
mREST system and are typically the only component that contain mREST client
interfaces.

Orchestration

The operation and control of the components in an mREST system.

Parameter

An abstraction of an internal piece of LSE data.

Resource

An singe piece of data in the mREST interface.

Representational State Transfer (REST)

A term which describes a specific architectural style for networked systems.

RESTful

An application which utilizes the REST architectural style.

Resource

The intended conceptual target of a hypertext reference; a conceptual mapping to
a set of entities

Uniform Resource Identifier

update

10

METECS-R-XXX
Rev: DRAFT

A string of characters used to identify a resource (e.g.,
http://www.mrest.org/rest/sample_resource)

update

11

METECS-R-XXX
Rev: DRAFT

3.2 Acronyms and Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATML Automatic Test Markup Language

ATS Automatic Test Systems

COTS Commercial Off-The-Shelf

DNS Domain Name Service

DoD Department of Defense

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ID Identifier

IP Internet Protocol

IRIG Inter-Range Instrumentation Group

JSON JavaScript Object Notation

LSE Logical System Element

mDNS Multicast DNS

NTP Network Time Protocol

NxTest Next Generation Automatic Test Systems

POE Post Once Exactly

PID Process Identifier

RAID Redundant Array of Inexpensive Disks

REST Representational State Transfer

SOAP Simple Object Access Protocol

UUID Universal Unique Identifier

URI Uniform Resource Identifier

VPN Virtual Private Network

W3C World Wide Web Consortium

XML eXtensible Markup Language

update

12

METECS-R-XXX
Rev: DRAFT

XSL eXtensible Stylesheet Language

XSLT eXtensible Stylesheet Language Transformation

update

13

METECS-R-XXX
Rev: DRAFT

4 Architectural Approach

A primary objective of the mREST specification is that it be flexible while enforcing the
constraints necessary to meet the requirements of system automation. The mREST
protocol has been designed so that specific applications can take advantage of this
flexibility without sacrificing interoperability with other mREST components or systems.

Another key objective is that mREST be simple to implement. The protocol is designed
to provide basic capabilities while still accommodating more complicated interactions. A
system designer can certainly implement a very complex system using mREST but the
protocol should not require such complexity for a simple system.

Finally, the mREST protocol is intended to be an “open” standard. It is built using non-
proprietary components with the goal of allowing anyone to implement the specification
without worrying about licensing issues.

A brief discussion of the key technologies and a high-level overview of the mREST
architectural components is presented in the following subsections.

4.1 Key Technologies

This section briefly describes and provides references for the technologies upon which
the mREST protocol is based.

4.1.1 Open Standards
There are several significant advantages of an open standards based architecture (over ad-
hoc or proprietary architectures) that tend to reduce costs, increase long-term
performance, and reduce risk over a long-term program. These include:

Easier interoperability between components supplied by different vendors because open
standards are already defined and accepted by a wider community

a. Greater choice of vendors for development and maintenance which reduces cost
and technical risk by eliminating single contractor points of failure

b. Availability of compatible software, hardware, development tools and support
options from industry and user communities (especially with the emergence of the
open source movement)

c. Because they are supported by industry consensus, open standards are frequently
machine, operating system, and language independent. This provides less reliance
on specific equipment, languages, or operating systems that may go obsolete.

d. A path exists to upgrade architecture components/capabilities as standards evolve
to avoid obsolescence

The architectural perspective taken is similar in nature to the Open Systems approach
used by the Department of Defense (DoD) Automatic Test Systems (ATS) Directorate to

update

14

METECS-R-XXX
Rev: DRAFT

lower life cycle costs and improve systems performance through use of standards-based
architectures1.

With the mass production and proliferation of desktop computers, high speed Ethernet
interfaces, and web-based communication technologies, has come an emergence of
sophisticated messaging protocols, database technologies, and equipment discovery
techniques. A number of non-profit consortiums and organizations such as the World
Wide Web Consortium (W3C), the Internet Engineering Task Force (IETF) and the
Institute of Electrical and Electronics Engineers (IEEE) have defined and are promoting
the open specifications upon which these technologies are being based.

Government departments such as the Department of Defense have also directly sponsored
development of open specifications, including in the automation and test area, through
programs such as the Next Generation Automatic Test Systems (NxTest).

Specific open standards of significant interest to this project are:

a. DNS Service Discovery2 and Multicast DNS3 (mDNS) specifications for
Zeroconf4 networking from the IETF

b. Hypertext Transfer Protocol5 (HTTP) from the IETF

c. Extensible Markup Language6 (XML) from the W3C

d. XML Schema7 from the W3C

e. JSON…

f. ATOM…

g. Automatic Test Markup Language8 (ATML) from the IEEE

One potential risk of using open specifications compared to ad-hoc specifications would
be if system components had to be continuously upgraded to conform to the latest release
of any of the specifications. This risk is mitigated first by baselining the mREST
protocol to reference a specific set of open specification releases. Secondly, risk is
mitigated by specifically avoiding proprietary or non-standard protocols that may require
tight coupling between system elements (such as installable drivers that have to match
exact versions of a driver on another piece of equipment to function properly). Finally,

1 http://www.acq.osd.mil/ats
2 http://www.dns-sd.org
3 http://www.multicastdns.org
4 http://www.zeroconf.org
5 http://tools.ietf.org/html/rfc2616
6 http://www.w3.org/XML
7 http://www.w3.org/XML/Schema
8 http://grouper.ieee.org/groups/scc20/tii

update

15

METECS-R-XXX
Rev: DRAFT

backward compatibility is enabled by including specification version numbers in the
protocol.

4.1.2 REST Web Services
Web services was quickly identified as an applicable technology because of its
compatibility with XML, widespread user communities, language and operating system
independence, and adoption within the test industry in standards such as Automatic Test
Markup Language (ATML). Two types of web services were prototyped: The Simple
Object Access Protocol (SOAP) and REST. REST was selected because it provides a
simpler, more flexible, and more elegant interface. Transparency of operation is also
enhanced with REST because states of the system component interfaces are readily
visible using simple tools such as web browsers.

In a typical REST architecture, only four HTTP requests are used to manipulate the
resources on a server:

a. GET is used to obtain a representation of the resource

b. PUT creates or updates a resource

c. DELETE gets rid of the resource

d. POST appends data to the resource or requests that the server create a subordinate
resource

One of the standard RESTful restrictions on use of these HTTP requests is that GET is a
“safe” request in the sense that it doesn’t change the server resource state. This means
that servers can be probed without upsetting the state of the server itself. Additionally,
PUT, and DELETE are idempotent meaning that if the request is sent twice the server is
in the same state as if it was sent once. This is important in the case when a response is
not received and it is not clear whether the server actually received the command. An
idempotent command can be sent again without undesirable side effects. The POST
command is neither safe nor idempotent however the Post Once Exactly (POE) approach
can be used to make it idempotent.

Another of the aspects of the REST architecture is the concept of stateless
communication. This means that each client request must contain all information
necessary for the server to evaluate that request, thus keeping the session state is entirely
the responsibility of the client. This simplifies the server implementation because it does
not have to track the client state from one request to the next. It also simplifies the client
implementation since the client does not have to worry about server expectations of its
behavior from one request to the next. Because each server does not know the session
state of the overall system configuration, fault recovery requires cycling fewer modules
in order to restore that overall state.

update

16

METECS-R-XXX
Rev: DRAFT

4.1.3 Discovery
To meet the plug-and-play objectives of Section Error! Reference source not found.,
three TCP/IP based discovery technologies were assessed; VXI-119, UPnP10, and
Zeroconf11. Zeroconf was found to be the simplest technology and it is gaining
acceptance within the test and measurement industry (LXI and LabView are two
examples).

Zeroconf is a combination of three technologies: link-local addressing, Multicast DNS
(mDNS) and DNS Service Discovery (DNS-SD).

Link-local addressing allows a network device to make up an IP address for itself in the
absence of a DHCP server. This capability is not significant for the Automation Hooks
objective as we would expect a DHCP server to be functional in the test lab. In the case
where it is not, however, link-local addressing would still find a usable IP address.

Multicast DNS allows computers and devices to negotiate their own locally unique
hostnames so that they can be referred to by name without adding hostnames to a DNS
server or in the absence of a DNS server.

DNS Service Discovery (DNS-SD) is a service discovery method that works on small
networks (perhaps with no infrastructure) with mDNS and on large networks using wide-
area DNS Discovery. It allows a DNS-SD client to discover services based on service
name and type and then map those services to IP addresses and port numbers.

4.1.4 Extensible Markup Language (XML)
Use of Extensible Markup Language (XML) as a communication and data storage format
provides language and operating system independence. It is increasingly being used as a
data format and/or a data description language.

Because XML is an open standard, its use as a data representation isolates the
components from changes in software versions on other components in the system. This
reduces maintenance costs and in the long term will allow legacy equipment to remain
functional within a given configuration. Because XML is designed to be easily program-
readable, libraries and other tools for development of software utilities to access XML
documents are ubiquitous so the data can be transformed for various analysis or display
purposes.

A data archive format based on XML has longer shelf life than implementation-specific
formats such as database files.

Through the use of schema, XML also provides a standard method (with available tools)
for describing document structure and data types. A schema can be used for
documentation, validation, data binding, and guided editing.

9 http://www.vxibus.org
10 http://www.upnp.org
11 http://www.zeroconf.org

update

17

METECS-R-XXX
Rev: DRAFT

The main disadvantage of XML as a communication and data archive format is that
bandwidth and file sizes are not optimized. The proposed architecture addresses this
disadvantage through use of existing HTTP capabilities such as

a. open standards-based compression algorithms like GNU zip (gzip) to reduce
document size12.

b. Conditional GET requests and proxy caching to avoid unnecessary document
transfers

4.1.5 Automatic Test Markup Language (ATML)
Automatic Test Markup Language (ATML) is an XML language defined using an
interrelated collection of specifications and associated W3C schemas. Its purpose is to
define a standard exchange medium for sharing information between components of
automatic test systems. The ultimate automation goal is to write test requirements, have
the test requirements automatically executed on a test rig, and have an artificial
intelligence program analyze the test results, including for diagnostic purposes.

The original mREST prototypes were built upon ATML but it was determined that a
better design would be to allow the mREST protocol to support any number of XML-
based schemas. This allows each client in the system to communicate in their preferred
XML language rather than forcing every server to adhere to one schema. The mREST
protocol has a default XML schema that it uses to communicate but a client could
provide an XML transformation (in the form of an XSLT document) from mREST to any
other XML language.

Since ATML is quickly gaining widespread use in the automated testing community,
mREST servers will typically provide ATML support in the interface, although this is not
a hard requirement.

4.1.6 Open Source
It is worth mentioning that the fundamental technologies presented in this report, such as
HTTP, XML, REST and Zeroconf have widespread support within the open source
community.

The open source community emerged towards the end of the 1990’s with the rise in
popularity of Netscape Navigator and the Linux operating system. Open source software
is software that is distributed according a set of criteria13 that includes:

a. Source code must be made easily available

b. Derived works must be allowed

c. Redistribution is not limited

12 http://www.gzip.org
13 http://opensource.org/docs/osd

update

18

METECS-R-XXX
Rev: DRAFT

d. Use is not restricted by license to specific technologies, fields of endeavor, or as
part of specific products

Multiple open source implementations of REST, for example, are available for all major
operating systems, most computer languages, and most major computing platforms.
These implementations also tend to be leaner and more efficient and defect-free than
many mainstream commercial software packages.

4.2 System Components

4.2.1 Logical System Element (LSE)
Each Logical System Element (LSE) is a server in the mREST architecture and can
represent many different types of objects. LSEs have been developed for such disparate
items as measuring equipment, power switches, network cameras, computer systems,
simulations, graphical models, internet data sources, and LabVIEW virtual instruments.

An LSE is made up of three main components as shown in Figure 6. The “resources”
make up the data that is served as part of the mREST interface and is sometimes referred
to as the “LSE front end”.

The “parameters” are the internal data elements that are necessary for operation of the
LSE. The data here is generally stored using a durable mechanism such as a database.
How each parameter is exposed in the list of resources is left up to the LSE designer.

The “core” is sometimes called the “LSE back end” and represents the actual object of
interest. The core may include internal interfaces to other software or hardware, as
necessary. For example, in a network camera LSE, the manufacturer-provided interface
to the camera itself is handled as part of the LSE core. The architecture of the LSE core
will vary widely for different types of LSEs.

mREST

Interface

Logical System Element (LSE)

Parameters

Durable Data

CoreResources
mREST

Interface

Logical System Element (LSE)

ParametersParameters

Durable Data

CoreCoreResourcesResources

Figure 6: Logical System Element (LSE) Architecture

Regardless of the object involved, the key attribute that makes it an LSE is that it has the
common mREST interface. The internal architecture of an LSE is essentially left up to

update

19

METECS-R-XXX
Rev: DRAFT

the developer, although it is generally recommended that the resources, parameters, and
core be separated as shown in Figure 6. Eliminating a direct interface between the
resources (front end) and the core (back end) keeps the design more compartmentalized
and also provides for independent control of each interface. Client requests coming in
the front end do not have to make a round trip through the core before a response can be
formulated.

To support automatic discovery, each LSE advertises its services through DNS-SD using
multicast DNS (mDNS). Use of mDNS is important because it allows the system
architecture to more easily scale from large distributed systems to very small systems (at
the minimum with all LSEs on the same computer). If the LSE is located on another
network such that discovery through multicast DNS will not work then it is referred to as
a Remote LSE and several techniques are available for DNS-SD in that situation.

4.2.2 mREST Managers
An mREST manager is effectively any client in an mREST system. The clients are
responsible for initiating requests and collecting responses from each LSE (server) in the
system. It is typical for an mREST Manager to also act as an LSE so that it can respond
to requests from other clients in the system or even respond to internal requests from
itself or other copies of itself. A few sample mREST client implementations are
described in the following subsections.

4.2.2.1 Test Flow Data Manager (TFDM)
The Test Flow and Data Manager (TFDM) provides overall coordination and control of a
test. The TFDM client sends requests to each LSE to gather data and to orchestrate every
aspect of the test. When the test is complete, the TFDM documents the test in an ATML
format data package for analysis and archival purposes.

The test conductor communicates with the TFDM using a web browser. For this purpose
the TFDM incorporates a web server. This allows the test to be conducted from any
computer authorized to connect to the TFDM and it mobilizes the test Ccnductor,
allowing him to disconnect, move, and reconnect without being disruptive. It also
provides a mechanism for allowing observers to monitor the test from their web
browsers.

It is expected that there may be different styles of TFDM’s developed to accommodate
test requirements of specific labs. Currently, a single core TFDM implementation has
been used in a variety of test situations by adding a test-specific panel page to the TFDM
to provide convenient test-specific controls.

The scope of TFDM responsibilities is primarily intended to be limited to orchestration
and data gathering functions. Although a test-specific panel page is convenient for
simple test-specific controls, the Standalone Text Exec (STX), described in the next
section, is provided for detailed control of test flow. This division of responsibilities
allows for more modular implementation of the two types of mREST Managers.

update

20

METECS-R-XXX
Rev: DRAFT

4.2.2.2 Standalone Test Executive (STX)
A certain amount of test-specific software for commanding, monitoring, and performing
real-time calculations to support a specific test objective could be incorporated as a
custom module within the TFDM software. For situations where a test executive must be
tightly interfaced to a test set or where the test executive is to be more portable, a
Standalone Test Exec (STX) may be used. This STX may have test-specific connections
to the test set or to each LSE. It must also have an LSE interface which will be used by
the TFDM to configure, control, and monitor the STX. The STX may have a web
services client in which case it may communicate with designated LSEs using the same
protocol as the TFDM but with restrictions on which LSE resources it may modify.

4.2.2.3 Facility Manager (FM)
The Facility Manager (FM) client application is used solely to detect LSEs on a network
and to make them available for use in a given facility. This client application gives a
facility manager control over which assets he/she wishes to make available for a given
test or simulation session. The FM application also contains its own LSE interface.

4.2.2.4 Session Manager (SM)
The Session Manager (SM) client application is used to assemble LSEs for a specific
session configuration. The session configuration is simply the grouping of LSEs that are
used for a given purpose. The group of available LSEs can be automatically discovered
on the network by the SM or they can be obtained via the LSE interface on the Facility
Manager (FM) application. The SM application also contains its own LSE interface.

4.3 Internal LSE Data Modeling

While not specifically a requirement of this specification, it is generally good practice to
model the data within an LSE in a manner consistent with other mREST agents. It is also
recommended that LSE designers use common terminology. A discussion of the concept
of parameters and resources as well as static and dynamic parameter data is presented in
the following subsections.

4.3.1 Parameters and Resources
For the purposes of this document, the word “parameter” has a specific meaning with
regard to the modeling of data internal to an LSE. A parameter is an abstraction of the
internal pieces of LSE data whereas a resource is the exposure of data in the mREST
interface. How the internal parameters are mapped to resources in the mREST interface
is one of the main design decisions that the LSE designer must confront. As previously
shown in Figure 6, parameters are for “internal” LSE data and resources are for the
“external” LSE data.

It might be tempting to think of a parameter as simply a “variable” in the LSE software.
However, a parameter can have many attributes which might actually include several
different variables in the actual software. For example, a single parameter that stores the

update

21

METECS-R-XXX
Rev: DRAFT

value of a temperature sensor might also include the name, description, type, units, and
limit values.

4.3.2 Static and Dynamic Parameter Data
When designing the representations for the lowest level resources, the mREST
specification makes an attempt to separate a parameter’s dynamic data from its static
metadata. Data gathering in an mREST system is usually performed in a somewhat
cyclical manner and thus some of the following benefits can be realized by reducing the
amount of static data that has to be returned with each response:

1. Reduced verbosity of each representation,

2. A reduced command/response latency between clients and servers,

3. The ability for static metadata to be cached and thus reduce the load on each
server

In general, the only “dynamic” portion of a parameter in a system is its value. Exceptions
might include confidence intervals or tolerances which are situational metadata. The
name of the parameter is also included in the dynamic data so that the value can be
referenced properly. Everything else can be considered static metadata unless for some
reason it changes dynamically (Table 3).

Table 3: Static and Dynamic Parameter Data

Dynamic Parameter Data Static Parameter Data

name

value

description

type

units

limit values (max, min)

expected values

user interface characteristics

any other metadata (extensible schema)

To increase flexibility and to serve various types of clients, a single resource
representation that includes both the static and dynamic data should also be provided. So,
in general, there could be at least 3 resource representations for each parameter:

1. Dynamic data

2. Static metadata

3. Complete data set

The mREST specification accomplishes this by providing a mechanism for declaring all
three resources for each parameter and then using ATOM links to relate the three
resources. A few of the advantages to this approach are:

update

22

METECS-R-XXX
Rev: DRAFT

1. This provides greater flexibility since the LSE designer can still choose to model
data in a traditional sense (1 resource for each parameter) while providing
optional finer grained controls for dynamic data without the overhead of
potentially large payloads of metadata or ignored parameters.

2. Full caching can be employed with the static resources thus reducing the load on
the LSE server

3. Resource updates from the client are simpler since a parameter’s value can be
modified without maintaining the metadata. Likewise, a parameter’s metadata
can be updated without affecting its current value.

For example, consider a simple integer parameter in an LSE that has the attributes listed
in Table 4.

Table 4: Sample LSE Parameter

Attribute Value Type

Name pint
dyndata

Value 6

Description This is a sample integer parameter

metadata

Type Integer

Units V

Max Value 10

Min Value 0

Expected Value 5

An LSE designer provides three separate resources that map to this parameter:

1. /mrest/test/pint – A resource with all of the parameter data

2. /mrest/test/pint/metadata – A resource with just the static parameter data

3. /mrest/test/pint/dyndata – A resource with just the dynamic parameter data

The representation for each resource would include two ATOM links to the other
resources that are mapped to this parameter. Thus, if a client retrieved just the dynamic
data, it would be provided a reference to where it could also retrieve the static data or the
complete data set.

The LSE designer would also set the appropriate cache expiration flags so that the static
data would only have to be provided once for each client, thus eliminating the processing
associated with responding to multiple client requests for data that is not changing.

update

23

METECS-R-XXX
Rev: DRAFT

5 mREST Interface Definition

5.1 Resource Types

Rather than enforce each mREST server to have a specific list of resources, it is more
general to define a set of resource “types” that encompass all of the possible resources
that an LSE designer might wish to employ. Resources of a given type will exhibit
similar behavior even if their content is different. A list of all the allowable resources
types is provided in Table 5 with more detailed descriptions provided in the following
subsections.

Table 5: mREST Resource Types

Resource Type Description

Document
A document that the LSE manages without making any attempts to process or
convert to another format; designed for relatively static resources

Component The lowest level piece of data in the LSE resource tree

Collection
A collection of other resources; the representations for each of the resources in the
collection are provided in the response

Catalog
A catalog listing of other resources; similar to a collection except that the
representations for the resource in the catalog are not provided in the response

Controller
A controller resource performs an action on other resources or data in the LSE;
sometimes also called a callback resource

Datalog A datalog resource is used to present data that has been recorded locally on the LSE.

Redirect A redirect resource forwards all requests to another resource on the LSE.

5.1.1 Document Resources
A document resource is a resource that can be of any format. The mREST server does
not attempt to translate or otherwise process the content of a document resource.
Document resources are best used for the storage of documents that are updated and
retrieved at a relatively low frequency. The command set for a document resource is
shown in Table 6. Documents that must not be corrupted may be read-only, the server is
only required to support “GET”.

Table 6: Methods for mREST Document Resources

Method Data Payload Resource Behavior

GET -- Return document resource

update

24

METECS-R-XXX
Rev: DRAFT

PUT Full document representation Update existing document resource

POST Full document representation Create new document resource

DELETE -- Delete existing document resource

5.1.2 Component Resources
A component resource is the lowest-level piece of data in the LSE resource tree.
Typically, a single parameter in the LSE would be mapped to a single component
resource. However, a component resource could also consist of a list of parameters if the
LSE designer does not wish to map each parameter to a single resource. The drawback to
this approach is that there would be no way of accessing just one of the parameters in the
list via the resource tree. The recommended approach is to map each parameter to a
single resource and then use a collection resource to provide a grouping of several
parameters. The command set for a component resource is shown in Table 7.

Table 7: Methods for mREST Component Resources

Method Data Payload Resource Behavior

GET -- Return resource representation

PUT Component resource representation Update existing component resource

POST Component resource representation Create new component resource

DELETE -- Delete existing component resource

5.1.3 Collection Resources
A collection resource is a grouping of other resources in the LSE resource tree. Typically
a collection will include a group of component resources but it is acceptable to include
any type of resource in the collection. A collection can even include other collections.
When a collection resource representation is requested, the server returns the
representations for each of the resources in the collection. The command set for a
collection resource is shown in Table 8.

Table 8: Methods for mREST Collection Resources

Method Data Payload Resource Behavior

GET -- Return representations for all resources in collection

PUT Collection resource representation Update each resource in collection

POST Listing of resources in collection Create new or modify existing collection resource

DELETE -- Delete existing collection resource

update

25

METECS-R-XXX
Rev: DRAFT

5.1.4 Catalog Resources
A catalog resource is a listing of other resources in the LSE resource tree. A catalog is
similar to a collection except that the representations for the resource in the catalog are
not provided in the response. The command set for a collection resource is shown in
Table 9.

Table 9: Methods for mREST Catalog Resources

Method Data Payload Resource Behavior

GET -- Return listing of resources in catalog

PUT -- --

POST Listing of resources in catalog Create new or modify existing catalog resource

DELETE -- Delete existing catalog resource

5.1.5 Controller Resources
A controller resource shall be used to execute a callback function which performs an
action on other resources or data in the LSE. This action may happen immediately or be
delayed until a scheduled time or for a period of time. Execution of the controller may
also take a significant amount of time. A separate set of children resources to record the
execution input, status, and process id (PID) shall be created each time a controller is
executed (Figure 7). These status resources provide a mechanism for the server to return
an immediate response while also providing a way for the client to continually check the
controller status even after the controller execution has completed.

update

26

METECS-R-XXX
Rev: DRAFT

Controller
Resource

Controller Exec
Resource (UUID-1)

Controller Input
Resource

Controller Status
Resource

Controller PID
Resource

Controller Exec
Resource (UUID-2)

Controller Input
Resource

Controller Status
Resource

Controller PID
Resource

Controller Exec
Resource (UUID-n)

Controller Input
Resource

Controller Status
Resource

Controller PID
Resource

Controller Status Resources

Controller
Resource
Controller
Resource

Controller Exec
Resource (UUID-1)

Controller Input
Resource

Controller Input
Resource

Controller Status
Resource

Controller Status
Resource

Controller PID
Resource

Controller Exec
Resource (UUID-2)

Controller Input
Resource

Controller Input
Resource

Controller Status
Resource

Controller Status
Resource

Controller PID
Resource

Controller Exec
Resource (UUID-n)

Controller Input
Resource

Controller Input
Resource

Controller Status
Resource

Controller Status
Resource

Controller PID
Resource

Controller Status Resources

Figure 7: Controller Status Resources

Each time a controller resource is executed, a “controller exec” resource shall be created
which contains a universal unique identifier (UUID) referring to that execution instance.
A “controller input” resource shall also be created to document the input parameters that
were passed to the controller upon execution. The “controller status” resource shall
provide status information about the current execution of the controller. The controller
input and status resources shall continue to exist on the server until they are deleted by
the client or the LSE is reset.

If the controller is in the midst of execution, a “controller PID” resource shall contain the
actual process identifier (PID) on the LSE machine. This resource will not exist if the
callback has not begun execution or if its execution has completed. A client can kill the
controller process by sending a DELETE command to the “controller PID” resource (or
the “controller exec” parent resource).

A controller resource shall be executed by sending a POST command with the
appropriate inputs for the controller. The server shall create the associated controller
children resources and respond with the “controller exec” resource representation. PUT
and DELETE are not required to be supported for the main controller resource. The
command set for the main controller resource is shown in Table 10.

update

27

METECS-R-XXX
Rev: DRAFT

Table 10: Methods for mREST Controller Resources

Method Data Payload Resource Behavior

GET -- Return all status resources for this controller

PUT -- --

POST Controller input parameters Execute controller resource and create status resources

DELETE -- --

A GET to any of the controller status resources shall return the resource representation
for that resource. A DELETE to any of the status resources shall delete that resource and
all of its children from the resource tree. If the controller PID resource is deleted, the
associated process on the LSE hardware shall be killed and the status resource updated to
reflect the fact that the controller was killed by client request. PUT and POST methods
are not required to be supported for controller status resources. The command set for the
controller exec, input, and status resources is shown in Table 11.

Table 11: Methods for mREST Controller Exec, Input, Status, and PID Resources

Method Data Payload Resource Behavior

GET -- Return respective status resource representation

PUT -- --

POST -- --

DELETE -- Delete resource and all associated children

5.1.6 Datalog Resources
A datalog resource shall be used to present data that has been recorded locally on the
LSE. The datalog resource is essentially a list of parameters with each record tagged
with a timestamp for when the data was logged. An ATOM link to the controller exec
resource that created the datalog shall be provided as part of the resource. An ATOM
link for each resource that is included in the datalog shall also be provided.

The creation and updating of a datalog resource is handled internally to the LSE (see
Section Error! Reference source not found.) so the only methods supported for this
resource are GET and DELETE as summarized in Table 12.

Table 12: Methods for mREST Datalog Resources

Method Data Payload Resource Behavior

GET -- Return resource representation

PUT -- --

POST -- --

update

28

METECS-R-XXX
Rev: DRAFT

DELETE -- Remove datalog resource

5.1.7 Redirect Resources
A redirect resource shall be used to map one resource to another resource on the LSE.
All requests received at a redirect resource are automatically forwarded to the target
resource. The command set for a redirect resource is shown in Table 13.

Table 13: Methods for mREST Redirect Resources

Method Data Payload Resource Behavior

GET -- Return representation of target resource

PUT -- Update existing target resource

POST Redirection target resource Create new or modify existing redirect resource

DELETE -- Delete existing redirect resource

5.2 Standardized Controller Resources

5.2.1 Contents collection?

5.2.2 Synchronization (/mrest/sync)
System time on the server host. Generally provided as-is, a client can determine whether
the server is tightly synchronized. If not, the condition may be reported to an operator
and the client may compensate execution start times in schedule requests to controller
resources. This resource shall be provided if schedulable controller resources are
implemented.

5.2.3 Data Logging (/mrest/controllers/logdata)
Datalogging on an LSE shall be managed via a controller resource (Section 5.1.5). A
datalog is initiated by sending a POST command to the datalog resource at
/mrest/controllers/logdata with the appropriate inputs. Upon execution, the datalog
controller shall provide the standard controller response as well as an ATOM link to a
datalog resource (Section 5.1.6) which contains the resulting data records.

The only input that shall be required for a datalog controller is a list of the resources to be
recorded. This will result in the LSE recording a single snapshot of the provided
resources.

The option to provide a starttime/offset, endtime/duration, and/or an interval shall also be
supported. If a start time or offset is provided, the LSE will wait the specified amount of
time before datalogging is initiated. If an endtime or duration is provided, the LSE will
stop logging data at the appropriate time. If an interval is provided, the LSE will create a

update

29

METECS-R-XXX
Rev: DRAFT

new record at each interval. If an interval is not provided, the LSE will only log a single
snapshot and thus any endtime or duration input would be ignored.

A list of the input parameters for a datalog controller is provided in Table 14.

Table 14: Inputs for Datalog Controller Resource

Input XML Element Description

Start Time <starttime>

XML formatted date/time when datalogging should begin

An offset can be provided in lieu of a start time

Datalogging shall begin immediately if a start time or offset is not
provided

Offset <offset>

The elapsed time to wait before datalogging should begin

A start time can be provided in lieu of an end time

Datalogging shall begin immediately if a start time or offset is not
provided

End Time <endtime>

XML formatted date/time when datalogging should end

A duration can be provided in lieu of an end time

Only a single record shall be recorded if an end time or duration is
not provided

Duration <duration>

The duration in seconds of datalogging

An end time can be provided in lieu of a duration

Only a single record shall be recorded if an end time or duration is
not provided

Interval <interval>
The interval in seconds between each datalog record

Only a single record shall be recorded if an interval is not provided

Resources <resource>
The resource path to be logged

Any number of resource elements can be listed but at least one must
be provided in order for the datalog to contain any records

In summary, to command the LSE to record a single snapshot of data, the client would
provide the following inputs:

1. A list of the resources to be logged

2. An optional start time or offset.

To command the LSE to initiate cyclic data logging, the client would provide the
following inputs:

1. A list of the resources to be logged

2. An interval for the cyclic data logging

3. An optional start time or offset

4. An optional end time or duration

update

30

METECS-R-XXX
Rev: DRAFT

The XML document in Table 15 is an example of the XML input for a datalog controller.
This example lists four resources to include in the datalog which will occur cyclically for
5 seconds at a 1 second interval starting at the specified date and time. This will result in
the output of five records in the associated datalog resource.

Table 15: Sample XML Input for Datalog Controllers

XML Document

<?xml version='1.0' encoding='UTF-8'?>

<mrest:controller xmlns:atom='http://www.w3.org/2005/Atom'
xmlns:mrest='http://www.mrest.org/2012/mREST' >

<mrest:controller_input>

 <mrest:starttime>2012-05-15T16:31:35</mrest:starttime>

 <mrest:duration>5.0</mrest:duration>

 <mrest:interval>1.0</mrest:interval>

 <mrest:resources>

 <mrest:resource>/mrest/test/pint/dyndata</mrest:resource>

 <mrest:resource>/mrest/test/pint/dyndata</mrest:resource>

 <mrest:resource>/mrest/test/pfloat/dyndata</mrest:resource>

 <mrest:resource>/mrest/test/pstring/dyndata</mrest:resource>

 </mrest:resources>

 </mrest:controller_input>

</mrest:controller>

If the “starttime” element was not included in the input, then data logging would execute
immediately. If the “interval” element was not included, then the “duration” element
would be ignored and only a single snapshot of the listed resources would be recorded.

The complete XML schema for the datalog controller inputs is provided in Table 16.

Table 16: XML Schema for Datalog Controller Inputs

XSD Document

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema targetNamespace="http://www.mrest.org/2012/mREST"
xmlns:xs='http://www.w3.org/2001/XMLSchema' xmlns:atom='http://www.w3.org/2005/Atom'
xmlns:mrest='http://www.mrest.org/2012/mREST' elementFormDefault="qualified">

<xs:element name="controller">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="controller_input" minOccurs="1" maxOccurs="1">

 <xs:complexType>

 <xs:all>

 <xs:element name="starttime" type="xs:dateTime" minOccurs="0"/>

 <xs:element name="endtime" type="xs:dateTime" minOccurs="0"/>

 <xs:element name="offset" type="xs:decimal" minOccurs="0"/>

 <xs:element name="duration" type="xs:decimal" minOccurs="0"/>

 <xs:element name="interval" type="xs:decimal" minOccurs="0"/>

 <xs:element name="resources" minOccurs="1" maxOccurs="1">

 <xs:complexType>

update

31

METECS-R-XXX
Rev: DRAFT

 <xs:sequence>

 <xs:element name="resource" type="xs:string" minOccurs="1"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

5.3 mREST Uniform Interface

5.3.1 HTTP Requests
XXX

5.3.2 HTTP Responses
XXX

5.3.3 HTTP Headers
XXX

5.4 mREST Server Resources

5.4.1 Identification
XXX

5.4.2 Data Logging
XXX

5.4.3 Application Specific Resources
XXX

update

32

METECS-R-XXX
Rev: DRAFT

5.4.3.1 Test Environment
XXX

5.4.3.2 Simulation Environment
XXX

5.5 mREST Resource Representations

5.5.1 Resource Representation Formats
Resources in an mREST server shall provide a default representation using the mREST
XML media type (application/vnd.mrest+xml) as defined in Appendix B.1.

The generic media type application/xml shall be mapped to the mREST XML media
type (application/vnd.mrest+xml) representation format.

Additional resource representations shall be defined using XSLT files available under the
resource /mrest/xslt. Each XSLT file provides the mapping between the default
mREST XML representation format and the additional representation format.

All XSLT files that are used to create new resource representation formats shall use a
naming convention based on the media type (application/vnd.<xslt_filename>).
For example, an XSLT file that transforms the default mREST XML format to the
mREST JSON format would be called “mrest+json.xslt” and be available at the
resource /mrest/xslt/mrest+json.

A GET to the resource /mrest/xslt shall return a list of the media type formats
supported by the mREST server.

mREST servers shall provide the capability for clients to define custom representation
formats by posting an XSLT file to the resource /mrest/xslt.

5.5.2 Media Type Negotiation
An mREST server shall choose the representation format from a list of accepted media
types and an associated query parameter in the HTTP Accept header field provided by an
mREST client.

The media type query parameter in the HTTP Accept header field provided by an
mREST client shall have a decimal range of 0.0 to 1.0 where 1.0 is used to indicate the
preferred representation format and 0.0 is used to indicate formats which the client cannot
process.

For example, a client who prefers to communicate with the mREST server using ATML
(application/vnd.atml+xml) but could also communicate using the MREST XML
format (application/vnd.mrest+xml) would provide an HTTP Accept header of the
form:

Accept: application/atml+xml;q=1.0, application/mrest+xml;q=0.8

update

33

METECS-R-XXX
Rev: DRAFT

If for some reason the mREST server was unable to provide resource representations in
the ATML format then it would fall back to the mREST XML format.

5.6 mREST Status Requests

XXX

5.7 mREST Configuration Update Requests

XXX

5.8 mREST Logical System Element Discovery

XXX

5.9 mREST Security

mRest security could include facets of HTTPS, machine-machine trust (certificates),
user/operator trust (user authentication). The security architecture has to provide an
automation-friendly environment, as the definition will allow one user to control a large
collection of software modules, but that's all defeated if he/she has to manually manage
and intervene with a large number of passwords. Further, mREST does not specify
addresses or port numbers, it delegates management of the low-level configuration to
machines. We can have firewalls, but to be general we also must support some
distributed applications where some of the system elements are outside the firewall on an
open network.

We should consider three levels of access:

1) access denied. Server is discoverable but services not available

2) read-only. Server state or sensor data is available but control is denied

3) read-write. Server can be controlled or updated

update

34

METECS-R-XXX
Rev: DRAFT

6 mREST Manager Requirements

6.1 LSE Interface

6.1.1 Uniform Interface
XXX

6.1.2 Locations of LSE Resources
XXX

6.1.3 Data Representations of Resources
XXX

6.1.4 Caching
XXX

6.1.5 XML Validation
XXX

6.1.6 Stateless Communication
XXX

6.1.7 CallBack
XXX

6.1.8 Optimization
XXX

6.2 Operator Interface

XXX

6.3 Initialization of the System and Session Configuration

XXX

6.4 Coordination of Session Run Execution

XXX

update

35

METECS-R-XXX
Rev: DRAFT

6.5 Collection and Display of Status Data

XXX

6.5.1 Database Verification
XXX

6.5.2 Status Log Request Data
XXX

6.6 Collection of Session Manager Notes

XXX

6.7 Organization of System Session Results

XXX

update

36

METECS-R-XXX
Rev: DRAFT

7 Example Implementations

7.1 Test Flow Data Manager (TFDM)

XXX

7.2 Logical Test Element (LTE)

XXX

7.3 Standalone Test Executive (STX)

XXX

update

37

METECS-R-XXX
Rev: DRAFT

Appendix A mREST Requirements Matrix

sasdf

Table 17: mREST Requirements Matrix

Requirement Reference
1.
2.
3.
4.

5.5 Resource Representations
5. Resources in an mREST server shall provide a default representation using the mREST XML

media type (application/vnd.mrest+xml).
5.5.1

6. The generic media type application/xml shall be mapped to the mREST XML media type
(application/vnd.mrest+xml) representation format.

5.5.1

7. Additional resource representations shall be defined using XSLT files available under the
resource /mrest/xslt.

5.5.1

8. All XSLT files that are used to create new resource representation formats shall use a naming
convention based on the media type (application/vnd.<xslt_filename>).

5.5.1

9. A GET to the resource /mrest/xslt shall return a list of the media type formats supported by the
mREST server.

5.5.1

10. mREST servers shall provide the capability for clients to define custom representation formats
by posting an XSLT file to the resource /mrest/xslt.

5.5.1

11. An mREST server shall choose the representation format from a list of accepted media types
and an associated query parameter in the HTTP Accept header field provided by an mREST
client

5.5.2

12. The media type query parameter in the HTTP Accept header field provided by an mREST
client shall have a decimal range of 0.0 to 1.0 where 1.0 is used to indicate the preferred
representation format and 0.0 is used to indicate formats which the client cannot process.

5.5.2

13.
14.
15.
16.
17.
18.
19.

update

38

METECS-R-XXX
Rev: DRAFT

Appendix B mREST Resource Representations

XXX

B.1 mREST XML (application/vnd.mrest+xml)

XXX

B.2 mREST JSON (application/vnd.mrest+json)

XXX

B.3 ATML (application/vnd.atml+xml)

XXX

update

39

METECS-R-XXX
Rev: DRAFT

Appendix C mREST Resource Types

XXX

C.1 mREST XML (application/vnd.mrest+xml)

XXX

C.2 mREST JSON (application/vnd.mrest+json)

XXX

C.3 ATML (application/vnd.atml+xml)

XXX

update

40

METECS-R-XXX
Rev: DRAFT

Table 18: mREST Resource Types

Method Data Payload Resource Behavior
Document Resources

GET -- Return document resource
PUT Full document representation Update existing document resource

POST Full document representation Create new document resource
DELETE -- Delete existing document resource

Component Resources
GET -- Return resource representation
PUT Component resource representation Update existing component resource

POST Component resource representation Create new component resource
DELETE -- Delete existing component resource

Collection Resources
GET -- Return representations for all resources in collection
PUT Collection resource representation Update each resource in collection

POST Listing of resources in collection Create new or modify existing collection resource
DELETE -- Delete existing collection resource

Catalog Resources
GET -- Return listing of resources in catalog
PUT -- --

POST Listing of resources in catalog Create new or modify existing catalog resource
DELETE -- Delete existing catalog resource

Controller Resources
GET -- Return all status resources for this controller
PUT -- --

POST Controller input parameters Execute controller resource and create status resources
DELETE -- --

Controller Status Resources
GET -- Return respective status resource representation
PUT -- --

POST -- --
DELETE -- Delete status resource and all associated children

IEEE P1877
Test Orchestration Interface

Purpose and Objectives

Chatwin Lansdowne
9/8/2012

What I Want to Achieve

• Architectural Objectives
• Assumptions
• Philosophy
• Trade Study Guiding Principles
• Implications for the Interface
• Measures of “Goodness”

• Can we define a software and data architecture
that will integrate on a macro‐scale…

• That we can produce and use on a micro‐scale

• How is relevant data collected and labeled
• How is mutual discovery conducted
• How is communication standardized
• How is test flow orchestrated
• How are tasks outside the test flow facilitated
• How can architecture be scalable to size of
test

Architectural Choices
for a Test Automation Strategy

Criteria for a Software Architecture
• Platform-independent: everyone

can use their own appropriate operating
system, language, and tools

• Inexpensive: quick to add, easy to
learn, simple to test and maintain

• Rapid Assembly: quick and easy to
integrate and troubleshoot

• Data Integrity: minimal translations,
meta-data capture, archive-quality
product, restore by write-back, simplified
analysis and reporting

• Self-Contained: the instructions and
documentation are in the interface

• Open Standards: architectural
interfaces can be specified by referencing
published non-NASA standards

• Non-proprietary: support multiple
COTS vendors for robustness

• Open Source: supporting user
communities are active and tools and
chunks are widely available, widely
tested, and widely reviewed

• Web-based: works with the tools you
carry in your pocket

• Data-Driven: the code can be stable,
only support-files change

• Low-infrastructure: stand-alone
capable, minimal reliance supporting
infrastructure and staff IT experts

• Modularity: operations can proceed
with broken modules

• Durability: maintenance is not required
for legacy bought-off modules on legacy
platforms

• Retrofit to compiled code:
sometimes we have to work with what’s
available…

• Convergence: a direction observed in
aerospace, test, DoD, and consumer
products industries and communities

• Versatility: the more useful it is, the
wider it will be implemented

• Scalability: scale up– or down to one

Assumptions: Performance I’m Willing to Trade

• Frequency of Data Collection: statistically summarized or triggered
captures, not streaming, conditions change 1 sec or slower”: a
“management layer”

• Test Styles: Parametric Tests‐‐ Change one variable at a time, Simulation
Runs‐‐ Multivariate, continuous or event‐driven flow

• Connectivity and Support Services: 10/100/1G/10G Ethernet; multi‐user,
multi‐platform; firewalled or private nets; everything agrees what time it
is(?)

• Data Storage and Data Types: Data is not a strip‐chart flood, but reduced
to a figure‐of‐merit or snapshot near the source. Need for past vs. present
vs. analysis performance; need named configuration save/restore; near‐
realtime analysis (ratios, differences) and display of collected data

• Allocation of Responsibility: Programming uses high‐level rapid‐
development languages and platforms have significant computing power.
Modularity allocates reliability, safety, security to the lowest practical layer.

Terrestrial, No DTN

Not
flight

What I Didn’t Say

• Security is an elephant in the room
– Presently relying on traffic security, firewalls,
routers, etc.

– Would like to identify a mechanism that allows
expensive instruments to be placed outside the
“test ops firewall”, and be managed at arm’s
length by any authorized operator controlling the
collection through automation.

LTE LTE LTE LTE

Post‐analysis

Data

Theory

AHA Prototype Architecture Concept: Data Products

Real-time steering

Archive
product

|||

Engineering
Report

Not just
stripcharts

•Analyze before
teardown

Philosophy of Approach
Test Orchestration and Data Harvest

• Objectives
– Automate information hand‐offs between disciplines
– Capture archive‐quality, repeatable test records
– Detect emergent behavior in complex systems
– Reduce development and operations costs

• Principles
– Do not restrict tool choices
– Using documentation in‐line makes it accurate and
repeatable

– Data‐driven architecture with descriptive interface
– Simple, general, minimally‐restrictive requirements
– Build on, or make, open‐source and open standards

Technology Survey and Trade Study

• Surveyed NASA, Test COTS, DoD,
and Consumer communities for
viable approaches

• Down‐selected based on “guiding
principles” and prototyping

HL
A

Do
D A

TS LX
I

UP
nP

Ze
roc

on
f

XM
L‐R

PC
SO

AP
CO

RB
A

DC
OM JM

S
W

eb
 Se

rvi
ce

s

RE
ST

 W
eb

 Se
rvi

ce
s

AM
QP

Re
stM

S

OD
BC

 Br
idg

e D
riv

er
JD

BC SQ
L

NE
xIO

M

AT
ML

CS
V a

nd
 TS

V

Non‐proprietary with
multiple vendors
Widespread, active
user communities
Supported in the Test
industry
Multiple sources of
ready development
tools
Language and OS
independent

Long‐term Availability, No Obligation to Buy
Near‐term Support
Industry Best Practice

Near‐term Availability

Portability

…

A Revolutionary New Idea!

TOIF

Noun Based

Verb Based

HP BASIC
SCPI

SATOCMATLAS

• The HTTP command and error‐message sets
already widely adopted

• Move from Command‐Driven to Data‐Driven– with
REST, the interface is self‐describing. Scripting and
orchestrating are accomplished by manipulating
collections of discoverable “resources.”

Breaking the Information Interface
Test Support: Databases, external
support, analysis, reports, user
• Who is using what
• What’s connected to what
• Who is doing what
• What is happening and why
• Inventory/Calibration/Location

databases
• Data‐collecting services
• Data‐display services
• Data‐analysis services
• Notification services
• Who may use what

Device: Developer describes the
“Thing” and the s/w that Controls it
• How to Find it (logical)
• What it is
• Which one it is
• What it knows
• What it does
• How it is configured
• How to configure, calibrate it
• What it is doing/observing now
• What that means
• Who is using it
• Where it is (physical)
• Who may use it

The standard will specify conventional methods,
but many of the methods are optional

ServerClient

The Test Results Document

Read‐only “status” variables

Read/write “configuration” variables

Outcome is always “Aborted”

User

Software version

• Descriptions could be
loaded into tr:TestResults

12

The Test Description Document

Read‐only “status” variables
Read/write “configuration” variables

• Static metadata is best loaded
into tr:TestDescription
Future work: behaviors

13

Behavioral Description
Accommodating Alternatives

• Rather that require all software to behave the same, allow
developer to describe idiosyncrasies

• Default expected behavior: “PUT” to a resource changes the
setting(s) “immediately”

• Some describable alternatives:
– How long to wait
– What to check for successful completion: flag, counter, timestamp,

measurement…
– How to write a collection of parameters to the hardware (another PUT

after the PUTs)
– How to clear and restart sticky/accumulative indicators
– How to abort a measurement
– How to restart

• Supports configuration RESTORE from SAVEd “GET”

Modern Migration

• From dedicated
hardware …

• to “headless” USB sensors
that come with “free”
software.

Modern Migration

• “Free” software that
requires an operator…

• to out‐of‐the box
software that can be
scripted

+ GUI
+ Streams
+ Documentation…

You know you’re on the right track
when…

You See
• Interoperability with widely

available modern COTS
• Other disciplines actively

approaching the problem
the same way

• Developers find the
complexity empowering not
overwhelming

You Don’t See
• People managing lists of IP

addresses, port numbers,
and passwords

• A wordy custom spec,
instead of references to
other external open
standards

An Unexpected Close Ally

• Interest in web/XML standards is
strong

• Security is very important
• Goals: monitoring, diagnostics,
prognostics, scheduling, dispatch
by expert systems; situationally‐
aware procedures for technician

Building Automation Systems:

Automation Hooks Architecture
API

m
REST

• Advertised
– Automated Discovery: Dynamic “Plug‐and‐

Play”
• REST Architecture

– Two commands: GET and PUT
– Versatile: co‐host support files and

hyperlinks– interface definitions,
requirements, theory of operation,
streaming data, GUI…

• HTTP
– standard messaging, error messages,

compression, security, caching

Testing

• Xml
– Archive‐quality
– Enables Data‐driven software architecture
– Foundation of artificially intelligent data

processing
– Self‐describing message format
– Create database tables by script

• hypermedia layout
– Insulates against layout changes
– Coexistence of variations
– Separate metadata for caching

• xml:ATML (IEEE 1671)
– standardizes units, arrays, time zone
– Scope includes signals, instrument

capabilities, problem reporting
– exciting opportunities for COTS tools and

radically different engineering work flows

• Orchestration features
– Health and Status Rollup
– Synchronizing and Scheduling

BACKUP

Breaking the Interface
(more specific)

Test Support: Databases, external
support, analysis, reports, user

• Who is using what “things”
• Borrowing “things”
• Support services for

“things” and Test Execs
– Database
– Plotting
– Configuration Save/Restore
– Cal Lab, Inventory records
– Instance management

Device: Developer describes the
“Thing” and the s/w that Controls it

• Advertise the information
• Current status/configuration
• What it is
• How to use it
• How to interpret the data
• What the controls do
• Capabilities
• Instance ID
• Who set it up

• Mid to low bandwidth orchestration
of both parametric and mission
simulation styles of testing

• Coordination and Data Collection
from test sets developed by many
different Vendors/specialists

• “Run‐once” and Evolving Test
Configurations, not just permanent
testbeds.

Automate What?
Mission

Simulation

Unit “Bench”
Tests

(D&D/Maintenance)

FEIT/MEIT

• Discovery, Data collection, Communication, Scalability
– Based on open systems technologies developed for WWW
– Defined standard sets of RESTful resources for data monitoring and control
– This approach is applicable to many remote or distributed monitoring and control applications

• Orchestration of Test Flow
‐ Automatic Test Markup Language provides an IEEE standard communication and data storage

language
‐ Set of Test flow concepts (next page) was defined to take advantage of these technologies
‐ No orchestration command set is required – resource‐based instead

• How are tasks outside the test flow facilitated
– Use of web services provides interoperability between human and software interfaces
– Test interfaces can be added to existing interactive control panels (Labview) to preserve

manual operation capability
– Test Flow concepts allow flows to branch off for parallel testing or debugging

• How can architecture be scalable to size of test
– Technologies are lightweight and portable
– Test elements can be run on a single PC or distributed across a network

Architectural Choices

• Logical Test Element (LTE)
– Resource‐oriented interface

• Test Flow and Data Manager (TFDM)
– Discover, overall test flow and data collection

• Standalone Test Exec (STX)
– Test specific automation/expertise

• Hierarchical Organization of Activities and Data
– Test Configuration

• Test Run
– Data Log Request

Six AHA Test Flow Concepts

Restoring the Viability of NASA’s Facilities and Developments
The need for Modern Standards and Practices

• Common tools and Portability of skills
• Agility: Flexibility and Speed

– Fewer standing, dedicated capabilities
– Reuse/redeployment of assets and people

• Increased quality and detail in Data Products
– No typos
– More statistical significance and resolution
– Ability to locate and interpret “cold” data
– Analyzing “sets” not “points”

A Scale‐to‐One Architecture

Enterprise

Community Server

Orchestrator
Developmen
t

Stackable
Orchestrator
Developmen
t

Automation without Infrastructure

IT support scales UP, but can
IT support scale DOWN?

Custom Drivers

IT infrastructure can scale UP, but can
IT infrastructure scale DOWN?

Adding Adding

^ ^

DEPENDENCIES

