Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

P.G. Valentine, L.R. Allen, A.P. Shapiro

NASA Marshall Space Flight Center

NETS 2012
March 23, 2012
Note: Funded through the NASA Human Exploration and Operations Directorate’s Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Task 4: NCPS Fuel Design and Fabrication

• Fuel Element Materials Overview & Background
 o Emphasis on Benefits of Advanced Ceramic Fuel Elements

• Goals & Materials to Be Considered

• Material Selection Considerations

• Fabrication Processes & Approach Being Considered

• Development of Carbide/Nitride Coatings for Graphite Composites

• Summary
NCPS Fuel Element Materials Overview

3 Classes of NTP Fuel Elements Under Consideration:

1. Coated Graphite Composites – led by DOE (ORNL)
 - Highest TRL approach – based upon Rover/NERVA work
 - Coatings effort at MSFC to investigate ceramic coatings**

2. Cermets – led by NASA w/ significant DOE support (INL, ORNL)
 - Intermediate TRL approach
 - Discussed in other NETS presentations

3. Advanced Ceramics – led by NASA
 - Lowest TRL approach, but with greatest performance potential
 - All-ceramic fuel elements – investigating carbides and nitrides**

** Discussed in this presentation.
Why Interest in Advanced Ceramics?

- Advanced ceramics enable highest operating temperatures, and highest I_{sp}.

![Graph showing Nuclear Thermal Rocket Performance: Specific Impulse vs. Chamber Temperature.](chart)

Region of Interest

Modified version of S. Borowski chart.
Benefits of Advanced Ceramics

Carbide and/or nitride fuel elements have the potential to enable the highest performance class of fuel elements being considered for NTP.

- Many refractory carbides and nitrides have extremely high melting points, thus enabling very high operating temperatures (and high I_{sp})
 - Allows I_{sp} improvements of roughly 200 s over Rover/NERVA-type materials
 - Enables increases in operating temperatures of roughly 600 to 800 K

- More stable (resistant to hot hydrogen attack) than graphite or graphite composite fuel elements fabricated with uranium oxide or carbide particles

- Solid solution (single-phase) elements more resistant to degradation via carbon diffusion and CTE-mismatch induced stresses

- Advanced bi- and tri-carbide single-phase solid solutions have the potential to operate at temperatures well above the melting point of uranium carbide (2800K for UC, 2860K for UC$_2$)
Program Goal for NTP Fuel Elements

To Operate:
• At extremely high temperatures (3200K, or above),
• For “long” lifetimes (at least 10 hrs.),
• In a very reactive environment (hot H₂ propellant),
• With little or no degradation.

Modification of chart from D.R. Koenig, LA-10062-H, 1986
Past Efforts with All-Ceramic Fuels

• **AEC/NASA: Rover/NERVA – NF-1 (1972)**
 - (UC-ZrC)C “Composite”
 - 47 of 49 cells in furnace
 - (U, Zr)C (0%, 3%, 8% Zr impregnation)
 - 2 of 49 cells in furnace
 - 8% Zr elements demonstrated minimum fracture behavior

• **Russia**
 - (U, Zr)C
 - 1993 – 1996 (LUTCH / Univ. of Florida Collaboration)
 - (U,Zr,Nb)C
 - (U, Zr, Ta)C
 - (U,Zr)CN
 - (U,Zr)CN / W

• **NASA Space Exploration Initiative (1989-1993)**
 - (U, Zr)C

• **Los Alamos National Lab (2006) – NASA funded**
 - DUO$_2$-ZrC

• **University of Florida (2000’s; 2005-2008)**
 - Research performed for DOE
 - TaC
 - WC
 - ZrC
 - (U, Zr, Ta)C
 - (U, Zr, Nb)C – explored several different mole fractions in Hot Hydrogen samples
Goals for All-Ceramic Fuel Element Effort

- **Primary:** Demonstrate the feasibility of using carbide and/or nitride ceramic powders for fabricating all-ceramic nuclear fuel element components.
 - Determine two candidate ceramic fuel element fabrications approaches.
 - Each “approach” is defined by both the constituent materials employed and the fabrication methods and processes used.
 - Binary and/or ternary carbide material compositions are of greatest interest.

- **Secondary Goals:** Besides fully characterizing the constituent powder materials used and defining all fabrication processing steps and procedures, the following will be accomplished:
 - Assess resistance to thermal environment – melting point, vaporization losses, phase stability, overall durability, projected useful lifetime
 - Assess resistance to hot hydrogen attack
 - Assess resistance to nuclear reactor radiation environment – will require DOE support
 - Characterize microstructural morphology and crystallographic phases present
 - Determine critical material properties and physical characteristics – fracture toughness, porosity content/distribution, other TBD
Materials To Be Considered

- Carbides & Nitrides of the transition metals of groups IVB thru VIB of periods 4 thru 6 of the Periodic Table.
- To be combined with uranium carbide or uranium nitride.

Modification of Sargent-Welch Scientific Company chart, 1968
Material Selection Considerations

- **Primary Material Properties and/or Issues:**
 - **Melting Point** --- generally, the higher, the better
 - **Nuclear Absorption Cross-Section** --- both material choice and neutron energy level
 - **Vaporization Rate** --- including any dissociation issues
 - **Hydrogen Compatibility / Reactivity** --- testing to be performed at MSFC
 - **Phase Stability** --- equilibrium vs. metastable, stoichiometric vs. non-stoichiometric
 - **Coefficient of Thermal Expansion (CTE)** --- esp. important for multi-phase materials
 - **Thermal Conductivity** --- also important for multi-phase materials
 - **Crystallographic Phase Relationships** --- volume change transformations
 - **Diffusion Rates** --- both self-diffusion and uranium transport issues
 - **Thermal Shock Characteristics** --- includes fracture toughness assessments
 - **Cost / Availability** --- are any desired materials difficult to obtain?

- **Initial efforts will concentrate on determining candidate materials, and how to fabricate viable material compositions and microstructures. How to fabricate prototype geometrically-accurate fuel element components will occur later.**
Melting Points, n° Cross-Sections

<table>
<thead>
<tr>
<th>Compound</th>
<th>Melting Point (K)</th>
<th>Compound (continued)</th>
<th>Melting Point (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr<sub>23</sub>C<sub>6</sub></td>
<td>1850</td>
<td>TiC</td>
<td>3340</td>
</tr>
<tr>
<td>Cr<sub>3</sub>C<sub>2</sub></td>
<td>2080</td>
<td>UC</td>
<td>2800</td>
</tr>
<tr>
<td>HfC</td>
<td>4220</td>
<td>UC<sub>0.98</sub></td>
<td>2798</td>
</tr>
<tr>
<td>HfC<sub>0.88</sub></td>
<td>4200</td>
<td>UC<sub>2</sub></td>
<td>2860</td>
</tr>
<tr>
<td>Mo<sub>2</sub>C</td>
<td>2795</td>
<td>V<sub>2</sub>C</td>
<td>2440</td>
</tr>
<tr>
<td>MoC</td>
<td>2870</td>
<td>VC</td>
<td>3083</td>
</tr>
<tr>
<td>NbC</td>
<td>3890</td>
<td>VC<sub>0.75</sub></td>
<td>2920</td>
</tr>
<tr>
<td>NbC<sub>0.85</sub></td>
<td>3871</td>
<td>W<sub>2</sub>C</td>
<td>3050</td>
</tr>
<tr>
<td>NbC<sub>2</sub></td>
<td>3353</td>
<td>WC</td>
<td>3050</td>
</tr>
<tr>
<td>TaC</td>
<td>4260</td>
<td>ZrC</td>
<td>3690</td>
</tr>
<tr>
<td>TaC<sub>0.88</sub></td>
<td>4273</td>
<td>ZrC<sub>0.81</sub></td>
<td>3693</td>
</tr>
<tr>
<td>TaC<sub>2</sub></td>
<td>3600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Thermal Neutron Absorption Cross Section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0035</td>
</tr>
<tr>
<td>N</td>
<td>1.9</td>
</tr>
<tr>
<td>Cr</td>
<td>3.05</td>
</tr>
<tr>
<td>Hf</td>
<td>104.1</td>
</tr>
<tr>
<td>Mo</td>
<td>2.48</td>
</tr>
<tr>
<td>Nb</td>
<td>1.15</td>
</tr>
<tr>
<td>Ta</td>
<td>20.6</td>
</tr>
<tr>
<td>Ti</td>
<td>6.09</td>
</tr>
<tr>
<td>V</td>
<td>5.08</td>
</tr>
<tr>
<td>W</td>
<td>18.3</td>
</tr>
<tr>
<td>Zr</td>
<td>0.185</td>
</tr>
</tbody>
</table>

Rating Scale:

- **Worst**
- **Best**
Conductivities, CTE’s, Vapor Pressures

Table Rating Scale:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Thermal Cond. (W/m·K)</th>
<th>CTE (10^6/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr₃C₂</td>
<td>19</td>
<td>10.2</td>
</tr>
<tr>
<td>HfC</td>
<td>22</td>
<td>6.8</td>
</tr>
<tr>
<td>MoC</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Mo₂C</td>
<td>N/A</td>
<td>5.6</td>
</tr>
<tr>
<td>NbC</td>
<td>30</td>
<td>6.9</td>
</tr>
<tr>
<td>TaC</td>
<td>22</td>
<td>6.6</td>
</tr>
<tr>
<td>TiC</td>
<td>50</td>
<td>7.9</td>
</tr>
<tr>
<td>WC</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>W₂C</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>UC</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>UC₂</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>VC₀.₇₅</td>
<td>39</td>
<td>8.4</td>
</tr>
<tr>
<td>ZrC</td>
<td>20</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Carbide Temperatures @ Vapor Pressures - Margrave 1967

![Graph of Carbide Temperatures @ Vapor Pressures - Margrave 1967](image)

Legend:
- TaC
- NbC
- ZrC
- HfC
- MoC
- Mo₂C
- NbC
- TiC
- WC
- W₂C
- UC
- UC₂
- VC₀.₇₅
- Cr₃C₂
Initially, efforts will focus on fabricating coupons for material performance and microstructure evaluations. Towards the end of the current project, increasing emphasis will be given to fuel element geometrical manufacturing concerns.

Precursor Component / Coupon Preparation Methods:

- Uniaxial Pressing
- Cold Isostatic Pressing (CIP) --- wet bag process ★
- Slip Casting
- Tape Casting

Component / Coupon Fabrication Methods:

[Most will include a final high temperature heat treatment.]

- Extrusion
- Sintering ★
- Hot Pressing ★
- Hot Isostatic Pressing (HIP) ★
- Reaction Pressing ★

★ Primary processes to be investigated.
All-Ceramic Fuel Element Approach

Advanced ceramics development effort consists of three primary phases:

- **Materials and Processes Analysis and Development**
 - Conduct investigations aimed at determining compositions and thermal process cycles that yield ceramic microstructures and phases appropriate for NTP fuels
 - Solid solutions of interest to avoid “low-melting” uranium carbide phase
 - Small solid cylindrical coupons made via pressing and sintering
 - Thermal processing up to 3273 K (3000 °C)

- **Fabrication and Characterization of Advanced Ceramics**
 - Evaluate additional processing methods: hot pressing and hot isostatic pressing
 - Goal: dense (low porosity) materials with appropriate microstructural morphologies
 - Conduct material characterization and hot hydrogen testing

- **Development and Fabrication of Prototype Fuel Elements**
 - Fabricate test pieces with more fuel-element-like geometries:
 - Increased diameters and lengths; addition of through-holes
 - Assess path forward for fabricating all-ceramic 3200K fuel elements
Coatings for Graphite Composites

Development of Ceramic Reaction-Sintered Coatings (CRSC’s) for graphite-based fuel elements being pursued to allow additional options.

➢ Coatings for graphite composite fuel elements needed to:
 • Prevent hydrogen attack
 • Prevent fuel vaporization

➢ Overview of Ceramic Reaction-Sintered Coatings:
 • Coating process involves simultaneous eutectic melting and powder particle sintering
 o Precursor coating material reacts with outer portion of substrate (~ 50 μm)
 o Two-layer type coating microstructure, with graded interaction with substrate
 • Hard, adherent coatings formed that can withstand very high temperatures
 o Adherence through thermal cycling best when coating/substrate CTE’s are similar
 • Prior efforts conducted with both graphite and carbon-carbon substrates

➢ MSFC Coatings Effort for Graphite Composite Fuel Elements:
 • Supports Oak Ridge National Laboratory led graphite composites effort
 • Based upon prior work with CRSC’s fabricated with carbide/boride mixtures
 o As boron is undesirable, mixtures of carbides and nitrides will be investigated
Two examples of CRSC’s on 2D Carbon-Carbon Composites:

• Left: Coating made from HfB$_2$, HfC, and SiC powders; Hitco Carbon Composites, Inc. substrate provided by NASA-LaRC (Hyper-X Program). Secondary electron image.

• Right: Coating made from HfB$_2$ and HfC powders; Hitco Carbon Composites, Inc. substrate. Back-scattered electron image.

• In both images, note two-layer coatings with graded penetration layers, which promote adherence.
Coatings Applications Investigated

Prior CRSC Development Efforts:

- Propulsion
 - Nozzles, thrust chambers
 - Hot gas valve components

- Thermal Management
 - Sharp leading edges
 - Heat shields

- Fusion Energy Tokamak
 - First wall tiles

- DoD Spacecraft Shielding
 - X-ray, laser irradiation
 - Particle-, electron-beams

For both applications depicted at right:
HfB$_2$-HfC Coatings on Poco Graphite, Grade AXF-5Q.
1. Advanced ceramics offer the greatest benefits for NCPS fuels
 • Highest I_{sp} through highest operating temperature
 • More stable than graphite, or graphite composites
 • Investigated off & on over past 40+ years, but TRL is still very low

2. Current effort aimed primarily at bi- & tri-carbide materials
 • Nitride materials also of interest
 • Carbides & nitrides of Group IVB-VIB / Period 4-6 transition metals
 • Various material properties & fabrication approaches being investigated

3. Development approach initially emphasizing material microstructure
 • Latter phases will stress fabrication methods and fuel element geometries

4. Ceramics coatings for graphite composites also being developed
 • Coatings will make use of reaction-sintering process