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Abstract 

This paper discusses the development and implementation of a geospatial data processing method and 
multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) 
classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-
woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the 
observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products 
by almost two decades, assuming the availability of one cloud free Landsat scene from any season for 
each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, 
and validate the method that was applied to derive LULC products for nine dates at approximate five year 
intervals across a 34-year time span, using single dates of data for each classification in which forests 
were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined 
using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-
added products. Each classification’s overall accuracy was assessed by comparing stratified random 
locations to available reference data, including higher spatial resolution satellite and aerial imagery, field 
survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall 
Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, 
generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product 
accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed 
for all nine dates, yielding effective results regardless of season. This classification method yielded 
products that were used to compute LULC change products via additive GIS overlay techniques.  

Keywords: Coastal monitoring, land use land cover mapping, decision rule image classification, 
Landsat, C-CAP, Alabama  

1. Introduction 

The goal of this paper is to report a set of techniques that can be used by the coastal zone 
mapping community to derive generalized United States (U.S.) coastal land-use land cover 
(LULC) maps that supplement those from NOAA’s Coastal Change and Analysis Program (C-
CAP). This method employs combined use of Landsat time series data and C-CAP products with 
the purpose of extending coastal LULC change maps across a multi-decadal era that begins 
approximately two decades before the first C-CAP products described by Dobson et al. (1995). 

There is much uncertainty about the extent and impacts of LULC change for many coastal areas 
of the U.S., though much less from the early 1990s onwards. C-CAP products show coastal zone 
change in the U.S. since the mid-1990s with approximately a five-year interval between 
beginning and ending dates. The products from this service have supported coastal studies to 
determine the impacts of recent historical LULC change (Loveland et al. 1999, Wolter et al. 
2006, C-CAP 2011). The first C-CAP products of the mid-1990s were produced independently 



from the USGS-based National Land Cover Database (NLCD) products that began in the early 
1990s. Starting in the 2001, these two LULC mapping efforts were more closely coordinated. As 
of 2006, these products are fully integrated; they remain separate products but are produced in 
synch with each other at 5-year intervals (Xian et al. 2011). 

Recent urban expansion along the coastal zone of the U.S. has been a concern to managers and 
planners responsible for habitat conservation and restoration (U.S. Commission on Ocean Policy 
2004, Gulf Coast Ecosystem Restoration Task Force, 2011).  Several recent studies identify the 
relationship between urban growth and declining water quality, bio-diversity, and/or native 
habitat quality and availability (White et al. 2006). For example, the USGS identified 
urbanization as the driver for the 4% reduction in forested cover from 1973-2000 across the 
eastern U.S. (Drummond and Loveland 2010). Deluca et al. (2008) found that development (e.g., 
urbanization and agriculture) near the estuarine coastlines of the Chesapeake Bay region is the 
main stressor affecting estuarine water bird community integrity, and that estuarine ecosystem 
integrity can be impaired even with extremely low levels of coastal urbanization. Urbanized 
watersheds in coastal southern California reduced native amphibian biodiversity and increased 
numbers of non-native crawfish (Riley et al. 2005).  

Continued coastal wetland habitat loss due to urbanization in the southeastern U.S. is a 
recognized threat and concern. In particular, the northern Gulf of Mexico coastal region has 
experienced noteworthy human population growth in recent decades, associated with 
environmental degradation. Such coastal habitat degradation is further exacerbated by other 
factors such as coastal erosion, subsidence, sea level rise, and land loss (National Ocean Service 
2008). Also, given that 52% of the U.S. population currently lives in coastal counties (NOAA 
2012, U.S. Census Bureau 2012), additional current and historical geospatial information on 
coastal LULC trends are required by the coastal conservation and restoration communities to 
support development, implementation, and promotion of more effective coastal zone 
management and policies. 

The C-CAP products only started in the mid-1990s. This is problematic for many LULC change 
studies that require longer time series to better identify when urbanization and other LULC 
change occurred. In many prominent urban centers across the U.S. coastal zone, much of the 
urbanization occurred prior to the 1990s. Such urbanization has caused impacts to the water 
quality of many estuaries. Given that C-CAP is refreshed on average every 5-years, another 
potential problem arises when fresher, more up-to-date coastal LULC change products are 
required. This can be the case with coastal regions that are being heavily developed or at risk for 
additional habitat loss due to urbanization. Needs for interim products also arise when natural 
and manmade disasters occur, such as hurricanes and oil spills. In such cases, these interim 
LULC change products support early impact assessments of the disaster in the affected region. 

C-CAP products use 30 meter Landsat data with spectral bands in the visible, near infrared, and 
mid-infrared. C-CAP products have a relatively high classification scheme specificity of 24 



standard coastal LULC classes (NOAA CSC 2012). This high specificity, however, is a potential 
impediment to the derivation of C-CAP products from Landsat MSS data, which has a nominal 
spatial resolution of 79 meters and bands only in the visible and near infrared portions of the 
spectrum. Not all members of the coastal zone management community require such high 
specificity to conduct basic, yet meaningful, coastal LULC change detection (e.g., Ellis et al. 
2011). For example, some coastal zone managers are simply interested in determining basic 
LULC trends. Therefore, high classification schemes are not necessary to suit their needs and 
may add to the complexity of the task at hand, especially when it comes to interpreting all of the 
possible change categories. At full specificity, a two-date C-CAP change detection product could 
have as many as 576 potential change categories. In contrast, a more general classification 
scheme using seven classes only has 49 potential change categories. 

Even if the high classification specificity of C-CAP products did not pose interpretation 
challenges to some product users, it seems unlikely that such classifications could be developed 
from Landsat MSS, due to the latter’s lower spatial, spectral, and signal resolution compared to 
the Landsat TM and ETM+ data used for C-CAP product generation. In addition, the availability 
of Landsat MSS is more incomplete and therefore less likely to occur for multiple growing 
seasons over a 1-2 year span, compared to Landsat TM and ETM+. However, even with Landsat 
TM and ETM+ data, the availability of both leaf-on and leaf-off cloud free data existing it is not 
guaranteed for a targeted year and locale. In many coastal areas across the country, the cloud 
cover is prohibitively high to allow multiple seasons of cloud free data for a given Landsat path 
and row to be obtained. If a high specificity classification scheme is not required, a potential 
solution is to recode and generalize the classification scheme and consider only the classes most 
needed for general assessment of coastal LULC change.  

There is an opportunity to conduct LULC change assessments spanning the Landsat era of 40 
years plus, doing so at roughly 5-year and/or 10-year intervals. However, for such a method to be 
successful, it needs to be conducted using a simplified LULC classification scheme and with as 
few as one data set per 5-year interval. The simplified LULC scheme adopted in this study is 
based on end-user (resource manager) requirements as described by Ellis et al. (2011) and 
comprises: the following categories: 1) open water; 2) barren; 3) upland herbaceous; 4) non-
woody wetland; 5) upland forest; 6) woody wetlands; and 7) urban. This scheme can also be 
readily applied to recoded (generalized) C-CAP and NLCD products.  In doing so, this creates an 
opportunity to employ either C-CAP or NLCD products when developing of coastal LULC 
products over an extended time series, going back to the beginning of the Landsat era in 1972. 

We used Mobile Bay, Alabama to test and demonstrate this approach. This method was applied 
to compute and analyze trends for general coastal LULC types across a 34-year era (1974-2008). 
Such products were developed to aid the Mobile Bay National Estuary Program (NEP), who 
required multi-decadal LULC change products and analyses to support coastal conservation and 
restoration decisions in this region (Ellis et al. 2011).  



Mobile Bay is an ecologically rich and economically vital coastal region found along the 
northern Gulf of Mexico (Figure 1). This prominent coastal estuary has been subjected to 
gradually increasing urbanization over the past several decades (Ellis et al. 2011). Along with the 
expansion of urbanization comes a corresponding increase in impervious cover, which in turn 
increases runoff and water pollution (Schueler 1994, Arnold and Gibbons 1996, Brabec et al. 
2002, Schueler et al. 2009). While data on impaired waterways, watersheds, shorelines, and 
estuaries are collected and reported by the U.S. Environmental Protection Agency (EPA) (e.g., 
EPA 2008) and NOAA (e.g., Kimbrough et al. 2008, NOAA 2012), there was a need by the 
Mobile Bay NEP to obtain LULC trend information at the regional and watershed scales to help 
assess the environmental quality of different watersheds draining into Mobile Bay.  

 

Figure 1. Study area location within Northern Gulf of Mexico. Study area, state, and city boundaries are 
shown as cyan, blue, and purple vectors, respectively. The image backdrop is from a 90-meter digital 
elevation model derived from NASA Shuttle Radar Topography Mission data. The large city polygon 
within the study area pertains to the City of Mobile, Alabama. 
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2. Previous Landsat-based LULC change assessments for U.S. coastal regions 

Since the launch of Landsat 5 in 1984, several studies have employed multi-date Landsat 
imagery for assessing LULC change in the Gulf of Mexico coastal region (e.g., Ramsey and 
Laine 1997, Kelly 2001, Ramsey et al. 2001, Nelson et al. 2002, O’Hara et al. 2003, Yang and 
Liu 2005, Hilbert 2006, Martinez and Shealand 2009) and in other coastal regions of the United 
States, such as the Chesapeake Bay (Goetz et al. 2004, Jantz et al. 2005) of the Atlantic seaboard 
and the San Diego region of the Pacific coast (Rogan et al. 2003). Table 1 provides a summary of 
coastal LULC change studies that employed Landsat as the primary data source. Most, if not all, 
of these were conducted specifically for aiding resource assessment and management of specific 
coastal regions. Also, while most of these studies employed either Landsat TM data or a 
combination of Landsat TM and ETM+ data, one study by Nelson et al. (2002) used only 
Landsat MSS data (Table 1). In addition, only two studies employed data from Landsat MSS, 
TM, and ETM+ (Hilbert 2006, Ellis et al. 2011).  

There are many image change detection methods that are used with Landsat data products, 
though not all are suitable for multi-temporal LULC change analysis. The main methods include 
image differencing, Principal Components Analysis (PCA), and post-classification change 
analysis (Lu et al. 2004). Image differencing is generally accomplished by subtracting one date 
of a given vegetation index from another (e.g., current versus historical date of NDVI). In some 
cases, analysts use a given spectral reflectance band instead of a vegetation index for image 
differencing based change detection.  PCA change analysis is typically performed by classifying 
a two channel stack consisting of the same PC band computed for two dates. In doing so, the PC 
bands are derived from multispectral data collected for each of the two dates. The use of image 
differencing and PCA techniques tend to be used for change detection and do not necessarily 
provide information on the context of the change. Such context can be derived by comparison 
comparing change products to ancillary LULC data. In contrast, post classification change 
analysis usually involves the use of raster GIS techniques to derive a change product based on 
two dates of LULC classifications. In addition, a combination of change detection techniques is 
sometimes used to derive improved end products. For example, Klemas (2011) discusses use of 
image differencing and post-classification-based change analysis for deriving coastal LULC 
change products.  

Based on available literature summarized in Table 1, most of the U.S. coastal LULC change 
studies have employed post-classification change techniques. For coastal LULC work, single 
date LULC products are generated using a variety of image classification procedures. For 
example, Ramsey et al. (2001) used a decision rule approach to improve a coastal LULC 
classification for Mermentau River Basin in coastal Louisiana, combining the original C-CAP 
coastal LULC classification method described by Dobson et al. (1995) along with GIS-masks of 
LULC “subregions”.   Sader et al. (1995) employed a similar expert-defined rule based 
classification method for classifying forest wetland classification areas of Maine that were either 
on or near the coast. O’Hara et al. (2003) later used this method to assess coastal LULC change 



in Mississippi for 1991-2000, using decision rules in conjunction with LULC specific spectral 
signatures for two (leaf-on and -off) dates of Landsat data acquired per year. In all three studies, 
the use of decision rule classification methods employed rules in conjunction with multiple input 
data layers to reduce classification confusion between similar LULC classes. 

More recently, decision tree classifiers have been applied to produce regional coastal vegetation 
change products for the Chesapeake Bay area (Goetz et al. 2004) and San Diego, California 
region (Rogan et al. 2003). Decision tree classifiers have been used with Landsat and other 
geospatial data to compute national LULC data sets, beginning with the 2001 NLCD (Homer et 
al. 2004) and C-CAP (C-CAP 2011) products. The decision tree classification method differs 
from those employed by Ramsey et al. (2001) and Sader et al. (1995) in that the decision rules 
are defined by software, as opposed to the expert, in relation to the input data layers. In general, 
the decision tree classifier approach is used to compute higher specificity LULC products with 
reasonable overall accuracies. One potential disadvantage is for these techniques to be fully 
effective, a significant amount of training data accompanied by multiple Landsat scenes from 
multiple seasons are required. 

Most of the coastal LULC classification studies described above included assessments of % 
overall classification accuracy and overall Kappa value. The Kappa statistic provides a means to 
quantify and assess classification agreement with reference data so that it is adjusted for 
agreement due to random chance (Congalton 1991). In a study of global vegetation maps, 
Monserud and Leemans (1992) rated observed Kappa values according to an eight class system 
describing quality of agreement: 1) no agreement is 0-0.05; 2) very poor is 0.05–0.20; 3) poor is 
0.20–0.40; 4) fair is 0.40–0.55; 5) good is 0.55–0.70; 6) very good is 0.70–0.85; 7) excellent is 
0.85–0.99; and 8) perfect is 0.99–1.00. 

NLCD products were originally produced at 10-year intervals, starting in 1992 and at 5-year 
intervals starting in 2001. The 1992 NLCD products were produced using less advanced 
techniques that resulted in lower overall accuracies compared to the decision-rule based NLCD 
products of circa 2001 onwards. Circa 2001 NLCD LULC product resulted in average overall 
accuracies of 85% and 79% for Anderson Levels 1 and 2, respectively (Wickham et al. 2011). In 
contrast, the 1992 NLCD LULC products yielded average overall accuracies that ranged from 
80% and 58% for Anderson Level 1 and 2 schemes, respectively (Wickham et al. 2011). 

C-CAP products have been computed at 5-year intervals starting in 1996. The C-CAP products 
have higher classification scheme specificity for the wetland classes compared to NLCD, 
mapping the wetland classes according to the Cowardin wetland classification scheme 
(Cowardin et al. 1979). At full specificity, C-CAP products are produced with a targeted overall 
accuracy approaching 85% and targeted individual class accuracies of approximately 80% 
(NOAA-CSC 2011).  



Unfortunately, the earliest available NLCD product is for 1992, which is 20 years after the 
launch of the initial Landsat system. Considering both NLCD and C-CAP, the lack of pre-1990s 
LULC products represent a data gap for coastal zone managers interested in assessing coastal 
change across the entire Landsat era of now more than 40 years. This is potentially problematic 
for studies of coastal areas subject to gradual conversion and degradation of native habitats to 
urban land uses and in need of more comprehensive coastal conservation and restoration 
planning. Such activities can benefit greatly from the consideration of coastal LULC data prior to 
when more modern era habitat conversion and degradation had occurred. 

In many cases, coastal land management units occur within a single or few Landsat scenes. 
These areas do not typically require land cover mapping products with high classification 
scheme specificities associated with the NLCD or C-CAP products. However, these areas require 
spatio-temporal change analysis over a prolonged time frame that either precedes and/or 
proceeds the availability of either C-CAP or NLCD products. Given that the C-CAP and NLCD 
provide useful LULC data for their production years, there exists an opportunity for leveraging 
such products with other LULC products that can be derived with Landsat data for years either 
preceding or subsequent to available years of C-CAP and NLCD products. Furthermore, the C-
CAP and NLCD products employ hierarchical classification schemes that can be generalized to a 
simpler scheme that is slightly more specific than Anderson Level 1 scheme but less specific 
than Level 2 (Anderson et al. 1976). Such a simplification increases the overall accuracy of the 
LULC classification (Wickham et al. 2011).  

Table 1. Summary of published U.S. coastal LULC change studies based on multi-temporal Landsat data. 

Publication Coastal Region Duration of Time Series Data Source(s) 

Ramsey and Laine (1997) Southern Coastal LA 1990-1993 TM 

Kelly (2001) Coastal NC 1984-1992 TM 

Ramsey et al. (2001) Mermentau Basin, LA 1990-1996 TM 

Nelson et al. (2002) Barataria Basin, LA 1972-1992 MSS 

O 'Hara et al. (2003) Jackson County, MS 1991-2000 TM, ETM+ 

Rogan et al. (2003) San Diego County, CA 1990-1996 TM 

Goetz et al. (2004) Chesapeake Bay, MD/VA 1990-2000 TM, ETM+ 

Jantz et al. (2005) Chesapeake Bay, MD/VA 1990-2000 TM, ETM+ 

Yang and Liu (2005) Pensacola Bay, FL 1989-2002 TM, ETM+ 

Hilbert (2006) Grand Bay, MS 1974-2001 MSS, TM, ETM+

Martinez and Penland (2009) Pontchartrain Basin, LA 1982-2005 TM 

Ellis et al. (2011) Mobile Bay, AL 1974-2008 MSS, TM, ETM+
 

3. Data acquisition 

Given the need for LULC classification products, cloud free to nearly cloud free Landsat data 
sets were acquired for 9 dates at roughly 5-year intervals from 1974-2008 (Table 2). These 



included data sets from Landsat MSS, TM, and ETM+ systems. Data sets from all four seasons 
were selected in lieu of the project being started prior to the advent of universally free Landsat 
data and also the limited availability of cloud free data for the area during the targeted years. The 
majority of the selected data sets (7 dates) were either from the fall (3 dates) or the winter (4 
dates) time frames. The selected data sets included those that contained hardwood forests that 
were either vast majority leaf-on (2 dates), vast majority leaf-off (4 dates), or partial leaf-off (3 
dates). The acquired data included data at two spatial resolutions: 1) the Landsat MSS scenes 
provided visible and near infrared reflectance data at 60 meter resolution; and 2) the Landsat TM 
and ETM+ visible, near infrared and mid-infrared reflectance data sets were acquired at 30 meter 
resolution. For the leaf-off winter dates, there was variability noted in terms of observable 
flooding in the swamp forests. Overall, the selected Landsat data sets represent a diverse set of 
observation dates and growing conditions for assessing the multi-seasonal viability of the 
classification technique used in the study. 

 Table 2. Landsat data sets selected for LULC classification and change analyses. 

Date # 
Acquisition 
Date 

Acquisition 
Season 

Phenological State of 
Deciduous Forest 

Landsat 
Sensor 

1 11/12/1974 Fall Mixed leaf-on/off MSS 

2 10/26/1979 Fall Mixed leaf-on/off MSS 

3 9/6/1984 Summer Majority leaf-on MSS 

4 2/22/1988 Winter Majority leaf-off TM 

5 9/26/1991 Fall Majority leaf-on TM 

6 1/27/1996 Winter Majority leaf-off TM 

7 3/5/2001 Winter Majority leaf-off ETM+ 

8 3/24/2005 Spring Mixed leaf-on/off TM 

9 3/16/2008 Winter Majority leaf-off TM 
 

Several ancillary remote sensing data sets and derivative products were acquired to aid LULC 
product development and validation, including various vintages of high resolution aerial data 
from Digital Ortho Quarter Quad (DOQQ), National Aerial Imagery Program (NAIP), USGS 
National Wetland Research Center (NWRC), and Google Earth sources. Other acquired high 
resolution data included airborne hyperspectral data from the US Army Corp of Engineers 
(USACE), high resolution commercial satellite data (e.g., IKONOS and QuickBird) and 
declassified Corona satellite data. We also acquired Landsat-based LULC products from the 
NLCD for 1992 and 2001 and from C-CAP for 1996, 2001, 2005 (pre-Hurricane Katrina), and 
2006 (the latter is a specialty assessment product in lieu of Hurricane Katrina). We also collected 
ground reference data for aiding assessment of the 2008 LULC classification results. During the 
field survey a subset of the randomly selected sample locations used in the 2008 LULC product 



accuracy assessment (see Section 4 for additional information on product validation method) 
were visited. At each visited location, GPS, digital photography, and notes were gathered to field 
check and further describe the predominant LULC type. Other historical National Wetland 
Inventory (NWI) maps and ground reference data for the 2002 NWI product were acquired from 
the USGS NWRC, along with documentation by Handley and Wells (2009). 

4. Methods 

LULC classification products were produced from all nine dates using Erdas IMAGINE® 
software (Leica Geosystems 2005) and the method described below. Initially, reflectance data for 
each acquired date were copied into a multichannel data stack, consisting of four reflectance 
bands for MSS data and six reflectance bands for TM and ETM+ data. We co-registered all nine 
dates of Landsat data to a common map projection, using the previously ortho-rectified 1991 
data set as the reference. The latter was ortho-rectified as part of NASA’s Scientific Data 
Purchase program (Goward et al. 2008). 

Each date of Landsat data was classified using unsupervised clustering of Landsat reflectance 
stacks, in conjunction with a decision rule model, which compared clustering results to C-CAP 
data products to compute a seven class LULC map. We used an end-user defined classification 
scheme described in Section 1 that consisted of open water, barren, upland herbaceous, non-
woody wetlands, woody uplands, woody wetlands, and urban. This scheme has classification 
specificity similar to Anderson Level I for all categories except for the two classes of wetlands, 
which are more comparable to the Anderson Level II specificity, as discussed by Anderson et al. 
(1976). Initially, an ISODATA unsupervised classification routine found in Erdas IMAGINE 
was used for clustering the Landsat data. In doing so, each data set was clustered into 20 classes 
to separate dominantly land from water cluster classes. Using the cluster busting technique 
described by Jensen (1996), the raw data for the land dominant clusters were reclassified into 30 
cluster classes. Each resulting cluster class was interpreted and labeled to describe the 
predominant and secondary land cover types, using available reference data to attribute each 
apparent LULC type for a given cluster class. As available, such reference data included aerial 
photography, ground reference data, and raw Landsat RGBs. Given that more reference data was 
available for the most current date, we also used the Erdas IMAGINE Degrade routine to 
spatially average higher resolution aerial and commercial satellite data into Landsat TM or 
ETM+ or MSS resolutions RGBs and also for spatially averaging Landsat TM data into the 
Landsat MSS resolution. This process enabled a means to better understand the appearance of 
LULC types on the Landsat data, be it TM, ETM+, or MSS. Within the raster attribute table of 
each land classification, once the cluster class descriptions were completed, seven attribute 
columns were established so that there was one for each LULC category. For each LULC 
category, the image analyst determines whether the cluster class included each of the seven 
possible classes. In doing so, a positive association was coded 1 and a 0 was assigned for the 
converse. Afterwards, a spatial model was run to output seven different LULC maps, one for 
each targeted LULC class. At this point, the individual LULC classes are not necessarily mutual 



exclusive since certain clusters may be in fact relevant to multiple LULC classes. These binary 
LULC classifications can be thought of as a maximum potential of a given LULC class. 

C-CAP LULC reference masks for non-woody wetlands, woody wetlands, and the urban 
categories were derived by considering all dates of available standard C-CAP products. In doing 
so, the original C-CAP LULC data products for 1996, 2001, and 2005 were recoded to match 
into the aforementioned seven class LULC scheme adopted for the study. Binary reference 
masks for the non-woody wetlands, woody wetlands, and urban classes were derived to refine 
the Landsat classifications. On a per class basis, the maximum extent of urban, woody wetlands, 
and non-woody wetland LULC mask were computed from the union of the 1996, 2001, and 2005 
extent of each relevant LULC class.  

To produce a predominant land cover classification, a series of spatial models were applied. 
First, each single LULC class classification was recoded according to a weighting scheme in 
conjunction with C-CAP reference data: water = 1; barren = 2, upland herbaceous = 3, non-
woody wetland = 4, woody upland = 5, woody wetland = 6; and urban = 7. These recoded binary 
classifications were composited using a maximum value compositing routine so that the value of 
the weighting scheme could be realized. In doing so, the C-CAP-based reference masks of urban, 
woody wetlands, and non-woody wetlands were used in a decision rule capacity to reduce 
classification confusion of certain LULC classes. Application of the decision rules in conjunction 
with the weighting scheme was completed to improve separation of wetland and upland classes, 
in addition to improving the classification of urban areas. 

In some cases, additional classification refinement was required to reduce obvious classification 
error compared to reference data. Such error reduction considered three techniques: 1) raw data 
masking and cluster busting techniques; 2) heads-up digitizing followed by zonal recodes; and 3) 
GIS editing based on C-CAP wetland versus upland designation.  In particular, wetland clear 
cuts incorrectly tagged as upland herbaceous areas were edited using C-CAP wetland masks and 
omitted bridges were edited using heads-up digitizing and subsequent GIS editing. Afterwards, a 
standard color table was applied to each LULC classification. A common area mask was applied 
to each classification as a precursor to LULC change analysis, resulting in nine dates for 
finalized, refined LULC classifications (Figure 2). 



 

Figure 2. Results of Landsat LULC classifications for nine dates from 1974-2008.. Each classification is 
color-coded as follows: 1) water = dark blue; 2) barren = white; 3) upland herbaceous = yellow; 4) non-
woody wetland = blue; 5) woody upland = dark green; 6) woody wetland = purple; and 7) urban = red.  

Accuracy assessments were performed for all nine dates LULC classifications, using Congalton 
(1991) as a reference. In this case, accuracy refers to the measures of agreement between the 
randomly sampled test (Landsat results) and reference LULC (image interpreted results) 
classification compiled for each date. The intent of the LULC accuracy assessments was to 



derive estimators of overall accuracy for each classification. In particular, each classification’s 
accuracy will be assessed in terms of percent overall agreement and overall Kappa value. Given 
the available resources, the goal was to quantify and assess overall classification accuracy for 
each date of LULC product and was not to derive estimates of individual class accuracies. Also, 
here we define success as results with an overall LULC classification accuracy exceeding 80%. 
For each date, at least 150 locations were randomly selected using a stratified random sampling 
approach in which the drawn total samples selected per class was, for the most part, 
proportionally allocated according to class frequency. The minimum number of drawn samples 
per class was five and the maximum was about 50 (usually in regard to upland forest). On a class 
by class basis, the samples were drawn in Erdas IMAGINE by randomly selecting 3 by 3 pixel 
samples in which the majority belonged to the targeted class.  

Each of the randomly sampled locations was interpreted by trained, highly experienced image 
analysts to determine the predominant LULC class. The randomly sampled locations were 
viewed on available, temporally relevant digital geospatial reference data that included field 
survey data, high resolution orthorectified aerial photography, high resolution multispectral and 
panchromatic satellite or aerial data displays, digital elevation model data (for wetland class 
assessment), and NWI wetland cover type data (for wetland class assessment) in order to 
interpret the correct predominant LULC type. Landsat false color composites RGBs were also 
used as a reference in LULC map accuracy assessment when higher resolution imagery was not 
available. To aid in evaluation of LULC classifications from Landsat MSS data, analysts also 
viewed spatially averaged simulated Landsat MSS, TM, and ETM+ RGB displays derived from 
high spatial resolution aerial and satellite imagery. Doing so helped the image interpreters to 
further assess the appearance of the targeted LULC classes on the Landsat data versus the higher 
resolution remotely sensed data. A classification error matrix was computed for each date of 
LULC classification and summarized to compute estimates of classification accuracy.  

5. Results and discussion  

The results of the accuracy assessments are summarized in Table 3 and 4. Table 3 reports 
accuracy assessment results for individual dates of classifications. Table 4 reports the average 
percent overall agreement and Kappa values for all nine LULC classification dates, all three 
dates of MSS-based classifications, all 6 dates of TM and ETM+ classifications, and according to 
the data acquisition season used in classification. Considering all dates, the overall agreement 
between the Landsat and reference LULC classifications ranged from 83.1% to 91.3%, yielding 
an average overall agreement of 88.4%. The overall Kappa values ranged from 0.78 to 0.89 with 
an average overall Kappa of 0.85. These observed overall Kappa values range from very good to 
excellent, according to the rating scheme put forth by Monserud and Leemans (1992). 

In reference to both Tables 2 and 3, the early spring mixed leaf-on/leaf-off date of 3/24/2005 
yielded the lowest classification agreement with reference data. One factor associated with this 
date is that it is from a time of year in which deciduous forests are quite variable in terms of leaf 



status. Given Hurricane Katrina occurred later that year, it was decided to avoid using immediate 
post hurricane Landsat data for 2005. We therefore selected a 3/24/2005 data set prior to the 
hurricane as the best of what was available for 2005. This data set was the only date of 
classification that was derived using Landsat data from the spring. It is conceivable that a higher 
accuracy from spring time data could be obtained if the data was acquired later in the spring after 
full leaf out. Nonetheless, the results for 2005 were still acceptable given the objective of 
obtaining % overall agreements of 80% or higher. The Kappa value for this year is 0.78, which is 
very good, but lower than the rest of the classification dates. 

Table 3. Results of all dates of LULC classifications in terms of % overall agreement and Kappa 

Year  Date  Landsat Sensor Total Samples Overall Agreement (%) Overall Kappa

1974 11/12/1979 MSS  150 87.3 0.84 

1979 10/26/1979 MSS  150 89.3 0.87 

1984 9/6/1984 MSS  150 90.0 0.87 

1988 2/22/1988 TM  150 91.3 0.89 

1991 9/26/1991 TM  155 89.7 0.87 

1996 1/27/1996 TM  160 86.7 0.84 

2001 3/5/2001 ETM+  150 89.3 0.87 

2005 3/24/2005 TM  160 83.1 0.78 

2008 3/16/2008 TM  192 89.1 0.86 

 

Based on data acquired in the winter, the 1988 classification showed the highest overall 
agreement and Kappa values of 91.3% and 0.89 respectively (Table 4). The 1984 classification 
from fall Landsat MSS data almost performed as well, yielding a 90% overall agreement and a 
Kappa value of 0.87. 

The six dates of Landsat TM/ETM+ classifications produced an overall agreement of 88.2% and 
an overall Kappa value of 0.85 (Table 5). The three dates of Landsat MSS classifications yielded 
a higher mean overall agreement of 88.9% and overall Kappa of 0.86. The classification results 
in terms of mean percent overall agreement appear to be quite similar for summer, fall, and 
winter LULC classifications with 90.0, 88.8, and 89.1%, respectively. The mean overall Kappa 
value is also similar for these three seasons with 0.87, 0.86, and 0.87, respectively. These results 
are based on one, three, and four dates of classifications for the respective summer, fall, and 



winter Landsat data sets. The single date of LULC classification from the spring, as discussed 
above, did not perform as well. While the results are encouraging, the study only included one 
single date LULC classification that was derived from spring data and one that was derived from 
summer data. Assessments of additional dates of spring and summer LULC classifications would 
be useful for further understanding the viability of the classification approach for use with 
Landsat data from all four seasons. 

The classification approach provided a means to compute LULC classification products for 
several dates prior to the earliest C-CAP product of 1996. It also enabled a current LULC 
classification that was subsequent to most recent C-CAP product.  

Table 4. Results of LULC classifications summarized according to all dates, all MSS dates, all TM/ETM+ 
dates, and according to season of data acquisition. 

Classification(s) Date(s) 
Landsat 
Sensor 

Mean Total 
Samples 

Mean Overall 
Accuracy (%) 

Mean 
Overall 
Kappa 

All - Mean 9 dates 
MSS, TM, 

ETM+ 
157 88.4 0.85 

All MSS - Mean 3 dates MSS 150 88.9 0.86 
All TM/ETM+ - 
Mean 

6 dates TM/ETM+ 161 88.2 0.85 

Winter - Mean 4 dates TM/ETM+ 163 89.1 0.87 

Spring - 1 Date 3/24/2012 TM  160 83.1 0.78 

Summer - 1 Date 9/6/2012 MSS  150 90.0 0.87 

Fall - Mean 3 dates MSS, TM 152 88.8 0.86 
 

6. Conclusions 

The LULC classification approach developed and used in this study produced acceptable, useful 
LULC classifications for all nine dates across the 34-year period of 1974-2008, both in terms of 
percent overall agreement and overall Kappa value. Viable LULC classifications were derived 
from Landsat data collected across all four seasons. Acceptable LULC classifications were 
produced only using a single date of Landsat MSS, TM, or ETM+ data. 

The classification approach employed in this study provides a tested method for the U.S. coastal 
zone management community to utilize in assessing general coastal LULC change over multi-
decadal periods spanning the Landsat era. The technique requires both Landsat data for targeted 
dates not covered by C-CAP products in addition to C-CAP LULC products. The success of the 
approach depends on the quality of employed Landsat data and also in part on the thematic map 
and positional accuracy of C-CAP LULC products that are used in a reference capacity. In 
particular, the C-CAP product delineation of urban zones as well as wetland and upland areas is 



a key to success in addition to the selection of quality Landsat data sets that are essentially cloud 
free. 
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