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Gamma-ray binaries are stellar systems containing a neutron star or black 

hole with gamma-ray emission produced by an interaction between the com-

ponents. These systems are rare, even though binary evolution models pre

dict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi 

Large Area Telescope (LA]) shows that IFGL JI018.6-5856 exhibits inten

sity and spectral modulation with a 16.6 day period. We Identified a variable 

X-ray counterpart, which shows a sharp maximum coinciding with maximum 

gamma-ray emission, as well as an 06V«f) star optical counterpart and a 

radio counterpart that is also apparently modulated on the orbital period. 

IFGL J1018.6-5856 Is ·thus a gamma-ray binary, and its detection suggests 

the presence of other fainter binaries in the Galaxy. 

Two types of interacting binaries containing compact objects are expected to emit gamma 

rays (1): microquasars - accreting black holes or neutron stars with relativistic jets (2) - and 

rotation-powered pulsars interacting with the wind of a .biniuy companion (3). Microquasars 

should typically be powerful X-ray sources when active, and hence such gamma-ray emitting 
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systems may already be known X-ray binaries. Indeed, the bright X-ray source Cygnus X-

3 is now known to be such a source (4, 5). The existence of pulsars interacting with early 

spectral type stellar companions is predicted as an initial stage in the formation of high-mass 

X -ray binaries (HMXBs) containing neutron stars (6). These interacting pulsars are predicted 

to be much weaker X-ray emitters, and may not yet be known, or classified, X-ray sources. 

Gamma-ray binaries may thus not be as rare as they appear to be, and many systems may await 

detection. 

A gamma-ray binary is expected to show orbitally-modulated gamma-ray emission due to 

a combination of effects, including changes in viewing angle and, in eccentric orbits, the de

gree of the binary interaction, both of which depend on binary phase. Periodic gamma-ray 

modulation has indeed been seen in LS 5039 (3.9 day period), LS I +610 303 (26.5 days), and 

Cygnus X-3 (4.8 hours) (4, 7,8), and gamma-ray emission is at least orbital phase dependent 

for the PSR B1259-63 system (3.4 years) (9). However, the putative gamma-ray binary HESS 

J0632+057, for which a 321 day X-ray period is seen, has not yet been shown to exhibit periodic 

gamma-ray emission (10). PSR B1259-63 contains a pulsar, and LS 5039 and LS I +61 0 303 

are suspected, but not proved, to contain pulsars, whereas Cygnus X-3 is a black hole candi

date. A search for periodic modulation of gamma-ray flux from LAT sources may thus lead to 

the detection of further gamma-ray binaries, potentially revealing the predicted HMXB precur

sor population. The first Fermi LAT (11) catalog of gamma-ray sources ("IFGL") contains 1451 

sources (12), a large fraction of which do not have confirmed counterparts at other wavelengths 

and thus are potentially gamma-ray binaries. 

In order to search for modulation we generated light curves for all IFGL sources in the 

energy range 0.1 - 200 GeV employing a weighted photon method (see Supporting Online 

Material; SOM). We then calculated power spectra for all sources. From an examination of 

these, in addition to modulation from the known binaries LS I +61 0 303 and LS 5039, we noted 
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the presence of a strong signal near a period of 16.6 days from IFGL JlOI8.6-5856 (Fig. 

I). IFGL JlOI8.6-5856 has a cataloged 1 - 100 GeV flux of2.9xlO-8 photons cm-2 s-1, 

making it one of the brighter LAT sources. The source's location at right ascension (R.A.) = 

10h 18.7m , declination (dec!.) = -58° 56.3' (J2000; ± 1.8',95% uncertainty) means that it lies 

close to the Galactic plane (b = -1. 7°), marking it as a good candidate for a binary system. 

IFGL JlOI8.6-5856 has been noted to be positionally coincident with the supernova remnant 

G284.3-1.8 (12) and the TeV source HESS Jl018-589 (13), although it has not been shown 

that these sources are actually related. 

The modulation at a period of 16.6 days has a power more than 25 times the mean value 

of the power spectrum, and has a false alarm probability of 3 x 10-8 , taking into account the 

number of statistically independent frequency bins. From both the power spectrum itself (14) 

and from fitting the light curve we derived a period of 16.58 ± 0.02 days. The folded light 

curve (Fig. I) has a sharp peak together with additional broader modulation. We modeled this 

to determine the epoch of maximum flux by fitting a function consisting of the sum of a sine 

wave and a Gaussian function and obtained Tmax = MID 55403.3 ± 0.4. 

The gamma-ray spectrum of IFGL JlOI8.6-5856 shows substantial curvature through the 

LAT passband. To facilitate discussion of the lower « I GeV) and higher energy (> I GeV) 

gamma rays, we adopted as our primary model a broken power law with photon indices r 0.1-1 

and r 1- 10 for energies below and above I GeVrespectively. The best-fit values (see SOM) are 

r 0.1-1 = 2.00 ± 0.04.t•t ± 0.08,y,t and r 1-10 = 3.09 ± 0.06,t.t ± 0.12,y'b along with an integral 

energy flux above 100 MeV of(2.8 ± O.I,t.t ± 0.3.y,t) x 10-10 erg cm-2 S-1. A power law with 

exponential cutoff (7,8), dN/dE = No (E/GeV)-r exp( -E / Ee), gives an acceptable fit with 

r = 1.9 ± 0.1 and Ee = 2.5 ± 0.3 GeV (statistical errors only). Although this spectral shape is 

qualitatively similar to that of pulsars and also LS I +61 ° 303 and LS 5039, so far no detection 

of pulsed gamma-ray emission has been reported (15). 
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To investigate variability on the 16.6 day period we folded the data into 10 unifonn bins in 

orbital phase, and within each phase bin refit the broken power law parameters. The resulting 

folded light curve (Fig. 2) indicates substantial variability in both the source brightness and 

spectral shape. In agreement with the detection of multiple harmonics of the orbital period in 

the power spectrum, there appear to be two primary features. For phases 0.2-0.6, the spectral 

curvature decreases and the peak of the spectral energy distribution lies below the LAT passband 

(indicated by f 0.1-1 > 2). The onset of this soft spectrum is approxinIately coincident with a 

rise in X -ray emission and a peak in radio emission discussed below. A weaker peak appears 

in the low-energy « 1 GeV) , -ray flux at phase 0.5 (Fig. 2). For the remaining phases, the 

LAT spectrum hardens with a comparatively sharp rise to, and fall from, a peak around 1 Ge V 

(f O.1- 1 < 2, f 1- 10 > 2). The variable spectral shape implies that only a modest fraction of the 

flux could be steady, magnetospheric emission from a pulsar. 

We undertook observations of the location of IFGL JlOI8.6-5856 covering the 0.3 - 10 

keV energy range using the X-ray Telescope (XRT) onboard the Swift satellite. The first ob

servation was obtained on 29 September 2009 with an exposure of 5 ks. A single source was 

detected in the XRT image (Fig. 3) within the LAT error cirCle. We then obtained additional 

observations from January to April 20 II to search for X-ray variability (see SOM) and found 

large amplitude variability. Folded on the gamma-ray ephemeris (Fig. 4), there is a sharp peak 

in X-ray flux, coincident with the gamma-ray peak. However, in addition to this, a sinewave-like 

periodic modulation is also seen that peaks near phase 0.3 to 0.4. 

Swift Ultra-Violet/Optical Telescope (UVOT) (16) observations were obtained simultane

ously with the X-ray observations. The X-ray source is positionally coincident with a bright 

source seen in the UVOT inIages (Fig. 3, SOM) which in turn is coincident with a soUrce in the 

United States Naval Observatory B 1.0 catalog at (J2000.0) R.A. = 10h 18m 55' .60 ± 0.1", dec!. 

= -580 56' 46.2" ± OJ". Spectroscopic observations of the optical counterpart were perfonned 
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using the South African Astronomical Observatory 1.9m telescope and the 2.5m telescope at 

the Las Campanas Observatory. Absorption lines due to H, He I and He II identify it as an early 

type star. We used a spectral atlas (17) to estimate the spectral type. He II ),4686 is present 

in absorption which indicates a main sequence star. The ratio of He II ),4541 to He I >.4471 

implies an 06 spectral type. Weak emission is seen from N III but not He II, which indicates 

an ((f)) classification. We therefore estimate the spectral type as 06V((f)). This is very similar 

to the spectral type of LS 5039 (18). Interstellar absorption bands provide an estimate of the 

reddening; from the features at 4430 and 5780 A, we derive E(B - V) = 0.9 and 1.6 respec

tively. Taking V ~ 12.6 from measurements with the All Sky Automated Survey (AS AS) (19) 

we derive a distance, d = 5 ± 2 kpc, allowing for uncertainties in the reddening and spectral 

classification. 

Radio observations of the IFGL JlOI8.6-5856 region were obtained with the Australia 

Telescope Compact Array (ATCA) at frequencies of 5.5 and 9 GHz. A faint radio source at 

R.A. = 10h 18m 55'.580, dec!. = -58 0 56' 45.5" (± 0.1", 0.3" respectively) is coincident with 

the stellar position. The radio source was clearly seen to be variable (Fig. 4). Unlike the 

gamma-ray and X-ray modulation, there is no obvious brightening in the radio at phase zero. 

Instead it appears that the radio may be following the smoother sine-wave like component of 

the X-ray modulation. 

IFGL JlOI8.6-5856 shares many properties with LS 5039. They are both fairly steady 

gamma-ray sources on long timescales, their periodic modulations have not shown large changes, 

and their optical counterparts are of a very similar spectral type. The X-ray light curve of 

LS 5039 appears to be highly repeatable (20,21), and the X-ray lightcurve oflFGL JlOI8.6-5856 

also shows repeatable behavior with a flux increase around phase 0 repeated over four orbital 

periods. The lack of variability in UV/optical brightness is also reminiscent ofLS 5039 (22,23). 

This suggests that there is little ellipsoidal modulation of the primary star and hence that it sub-
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stantially underlills its Roche lobe. On the other hand, the relative phasing of the gamma-ray 

spectral modulation and fiux modulation differ from those of LS 5039 where the spectrum is 

softest when the flux is highest (8). Also, for LS 5039 the phases of maximum X-ray and 

gamma-ray do not coincide (8,21). The brightest peak in the folded gamma-ray light curve 

of lFGL JlOI8.6-5856 at phase 0, is associated with the hardest gamma-ray spectrum and is 

coincident with X-ray flaring and minimum radio emission. Finally, lFGL JlOI8.6-5856 has 

a much longer orbital period. 

The gamma-ray modulation observed in lFGL JlOI8.6-5856 could be due to anisotropic 

inverse Compton (IC) scattering between stellar photons and high-energy electrons that varies 

with orbital phase, as proposed for LS 5039 and LS I +61 0 303 (7,8). However, the modulation 

amplitude is considerably lower in IFGL JlOI8.6-5856 «(frnax - frn;n)/(fmax + froin) ~ 25%) 

compared to LS 5039 (~ 60%). Modulation amplitude should increase with eccentricity, and is 

highest for systems viewed edge-on (24); however, in the case ofLS I +61 0 303, the modulation 

fraction has been observed to undergo large changes (25). If the IC scattering interpretation is 

correct, then this implies that IFGL JlOI8.6-5856 has both low inclination and low eccentric

ity. For comparison, the eccentricity ofLS 5039 has been reported to be in the range of 0.3 to 

0.5 (18,26,27). Although a low inclination angle implies that it would be difficult to measure 

the radial velocity of the companion from optical studies, the small Doppler shifts predicted 

would facilitate a pulsation search at Ge V energies. 

The gamma-ray spectral variability of IFGL JlOI8.6-5856 over the orbit is also reminis

cent of LS 5039, but unlike the behavior of LS I +61 0 303. If the high energy electron distri

bution remains constant along the orbit, spectral changes are expected due to the anisotropic 

IC cross-section only if the inclination is substantial. In this case, harder spectra are expected 

to occur when the stellar photons are forward-scattered by the electrons (i.e., at inferior con

junction), which is also typically when the scattering rate is at its orbital minimum. However, 
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for IFGL 11018.6-5856 the hardness ratio and flux are correlated, unlike for LS 5039 (8). If 

periastron passage coincides with inferior conjunction then a high photon density might com

pensate for the unfavorable interaction angle but this requires fine-tuning. The spectral variabil

ity is more likely to reflect intrinsic variations, for instance in the cooling of emitting particles. 

Moreover, both PSR B1259-63 and LS I +61 0 303 (7,9) show that a simple model may not be 

correct. The phasing of gamma-tay maximum at GeV energies is not consistent with Ie scat

tering on stellar photons, as it is delayed in both PSR B 1259-63 and LS I +61 0 303, implying 

other mechanisms may be at work. For example, there could be other seed photon sources, 

Doppler boosting, or other radiative mechanisms at work. 

The gamma-ray energy flux of IFGL 11018.6-5856 implies a luminosity of ~8 x 1035 (d15 

kpc? ergs S-l (E > 100 MeV), while the implied X-ray luminosity is highly variable with 

fluxes up to ~1034 (dI5kpc? ergs S-l. For comparison, the gamma-ray luminosity ofLS 5039 

is ~2x 1035 (dI2.5 kpC)2 ergs S-l (25). This is somewhat surprising; compared to LS 5039 the 

longer orbital period by a factor 4 implies a major axis larger by a factor 2.5 so that the mean 

stellar radiation density seen by the compact object is smaller by a factor 6. The higher gamma

ray luminosity of IFGL 11018.6-5856 indicates the power injected in non-thermal particles 

must therefore be substantially higher in IFGL 11018.6-5856 than in LS 5039. The similarity 

with LS 5039 suggests that we may be observing a rapidly rotating neutron star interacting 

with its companion. This raises the possibility that the neutron star rotation period might be 

detectable as is the case with PSR B 1259-63. However, our observations cannot definitely 

exclude an accreting neutron star or black hole. 
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Fig_ 1. Power spectrum of the LAT weighted photon light CU1Ve (E > 100 MeV) of 
lFGL 11018.6-5856. The power spectrum is oversampled by a factor of 4 compared to its 
nominal resolution. The red dashed line indicates the 16.6 day period and the blue dashed lines 
the second, third and fourth harmonics of this. The dashed black line is a fit to the continuum 
power. The inset shows the weighted photon light curve folded on the 16.6 day period. 
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Fig. 3. Swift XRT X-ray (left) and UVOT-WI (right) images of the region around 
IFGL 11018.6-5856. The X-ray/optical counterpart is marked by an arrow near the center 
of both images. The LAT 95% confidence ellipses from the IFGL (12) and 2FGL (28) catalogs 
are marked. 
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Supporting Online Material (SOM) 

Fermi-LAT Data Analysis 

The Fenni LAT is a pair conversion telescope designed to cover the energy band from 20 MeV 

to greater than 300 GeV (11). Fenni operates predominately in a sky-survey mode where the 

entire sky is observed every ~3 hours. Analysis was perfonned using Version 9, Release 18 of 

the Fenni Science Tools!, Pass 6 "DIFFUSE" class events, and the P6_V3J)IFFUSE instrument 

response function (IRF). The LAT data set used here covers the interval from MJD 54,682 to 

55,669 (4 August 2008 to 18 ApriI2011). This is somewhat longer than the data set used in an 

initial analysis (29). In order to maximize signal-to-noise while allowing the use of short time 

bins we employed a weighted photon technique to extract the light curves that were used in the 

period searches. This method is similar to aperture photometry. However, the probability that 

a photon came from the source of interest is calculated and probabilities are summed, rather 

than photons. This approach builds on previous work (30,31) and has been successfully applied 

to increase the sensitivity for Fenni pulsar searches (32). The probability that a photon came 

from the source of interest was calculated using gtsrcprob based on the fluxes and spectral 

models of the first Fenni LAT Catalog (12). 

Power spectra were calculated for all sources in the lFGL catalog in order to search for 

sources that displayed periodic modulation and so would be candidate gamma-ray binaries. 

Because time bins have large variation in exposure we weighted each time bin's contribution 

to the power spectrum by its relative exposure (4). For all power spectra the height of the 

strongest peak relative to the mean power level was calculated. In addition, all power spectra 

were visually inspected to enable the identification of sources where power was concentrated 

at a single frequency, indicating a possible binary, rather than broad band modulation such as 

I http://fenni.gsfc.nasa.gov/ssc/dataianalysis 



exhibited by active galactic nuclei. 

We note tbat, due to tbe strong energy dependence of both tbe LAT point-spread function and 

the diffuse Galactic background, high energy photons are weighted appreciably more heavily 

tban low energy photons. In light curves, tbis spectral dependence emphasizes hard features. 

Accordingly, tbe weighted-photon light curve for lFGL Jl018.6-5856 is dominated by a hard 

peak at phase 0, while tbe soft feature at phase 0.5 is only revealed by likelihood analysis. 

To investigate whetber tbe 16.6 day period could be due to some type of systematic effect 

we investigated tbe power spectra of two gamma-ray emitting pulsars botb located about 1.40 

from lFGL JlOI8.6-5856: PSR Jl023-5746 and PSRJl028-5819 (12). Neitber showed any 

modulation on tbe 16.6 day period. We also employed a different period searching technique 

tbat uses photons accumulated in an annulus around a source to more accurately model expo

sure variations, and uses tbe Z;;, metbod (33). This technique again showed highly significant 

modulation at 16.6 days. 

As a tbird test of tbe presence of modulation in tbe LAT light curve we extracted a light 

curve using maximum likelihood fitting. We divided tbe data into 2.0 day sections using a 

10 degree radius around lFGL Jl018.6-5856, and perfOImed fits. A power-law spectrum was 

used for IFGL JlOI8.6-5856 witb tbe flux and power-law index allowed to vary. Otber sources 

in tbe region had tbeir parameters fixed at tbeir cataloged values. Only fits tbat gave test statistic 

(TS) values greater tban 2 were used. We calculated tbe power spectrum of tbis light curve for 

periods longer tban 4 days, weighting each data point's contribution by tbe uncertainty on its 

flux value. This power spectrum again shows a peak at 16.6 days, at approximately 14 times 

the mean power level, for a false alarm probability of ~2x 10-4, allowing for tbe number of 

frequencies searched. The reduced statistical significance relative to tbe otber two tests is to be 

expected, as tbe TS cut removes some low-flux intervals, tbere are too few photons in a given 

interval to constrain tbe parameters, and 2 days is somewhat long compared to tbe modulation 
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timescale. 

We investigated the long-term stability of the modulation of the gamma-ray flux by dividing 

the total light curve into four sections and calculating power spectra separately for each interval. 

We also quantified the modulation during each of these sections by fitting sine waves. Neither 

procedure showed any significant change in period length or modulation amplitude. We note 

that the power spectrum of the entire light curve does not exhibit significant low-frequency 

noise - indicating that IFGL 11018.6-5856 is stable on long timescales. 

The statistical significance of the presence of harmonics in the power spectrum was calcu

lated using "single trial" calculations of the false alarm probability (FAP). From this procedure 

we find: 2nd harmonic, FAP = 10-4; 3rd harmonic, FAP = 0.007; 4th harmonic, FAP = 0.001. 

However, the presence of the 4th harmonic would require a somewhat shorter orbital period of 

16.55 days. Because the modulation is non-sinusoidal, a fit of just a sine wave to the periodic 

modulation does not give a good determination of the time of maximum flux in the weighted 

photon light curve. Instead, experimentation showed that a good fit to the folded light curve 

could be obtained with the sum of a sine wave (with period fixed to the orbital period) plus 

a Gaussian function with a "sigma" of 0.1 ± 0.03 of an orbital period. We adopt the time of 

maximum of the Gaussian component (MJD 55303.3 ± 0.4) as phase zero throughout. Fig. 2 

shows that this phase zero determined from the weighted photon light curve is consistent with 

gamma-ray flux maxima in the 0.1-1 and 1-10 GeV energy bands as well as the X-ray max

imum (Fig. 4). We previously reported an epoch of phase zero determined from a sine wave 

only fit (29). This contained a numerical error which fortuitously gave a time of maximum flux 

consistent with the result from the more complex model. 

We performed spectral analysis using the pointlike (32) tool with cross-checks using 

the standard gt 1 ike tool2
• In addition to the data selection outlined above, we removed events 

2http://fermi.gsfc.nasa.gov/ssc/datalanalysis 
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recorded> 1000 from the zenith and when the region of interest impinged too closely on the 

earth's limb, and we also excluded periods when the spacecraft varied from its typical survey 

profile. To model background point sources, we used a preliminary version of the 2FGL catalog. 

We note that 1FGL 11018.6-5856 lies close on the sky to the pulsar PSR 11016-5857 (34), 

but the LAT spatially resolves these two sources. To model diffuse emission we used the 

glUem_v02 and isotropiC-iem_v02 models of the 1FGL catalog (12). In the orbital phase re

solved spectral analysis we fixed the background model to the best-fit, phase-averaged values 

and within each phase bin refit only the parameters of the broken power law. The broken power 

law model used to fit the spectrum of lFGL Jl018.6-5856 (Fig. Sl) is favored over a simple 

power law with extremely high significance, resulting in an increase in the test statistic (35) of 

197, or approximately 140'. We note the broken powerlaw provides a TS increase of 20 over 

the exponential cutoff model. We assessed systematic errors by repeating our fits with different 

sky models, with the P6S11-.DIFFUSE IRF, which has been updated to better characterize the 

instrument's point-spread function and effective area, and with "Pass 7" data, which uses an 

improved set of algorithms for reconstructing photon events. All of these configurations are 

consistent within the quoted systematic errors. Finally, we verified that the overall behavior of 

the energy flux as a function of orbital phase was independent of the spectral model we chose 

for 1FGL 11018.6-5856. 

X-ray Observations and Analysis 

In an initial 5 ks Swift X-ray Telescope (XRT (36)) observation of the location of 1FGL Jl018.6-5856 

on 29 September 2009 (ID 90191), a single X-ray source was detected within the LAT error cir-

cle (Fig. 3). This prompted a new observing campaign (ID 31912) with Swift beginning with 

six 3-5 ks from 14 - 29 January 2011 (~1 orbital period), which revealed significant X-ray 

variability in the source. Folded on the gamma-ray ephemeris, a sharp peak in X-ray flux co-
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incident with the gamma-ray peak was found. Three further daily 2-3 ks Swift observations 

(25-27 February) around the next predicted maximum confirmed the X-ray peak ~16.6 days 

later. To cover a full orbital period, 20 daily (predominantly 2-3 ks) observations from 25 

February - 16 March were obtained. These observations confirmed two of the next predicted 

peaks and delineated a smoother periodic modulation peaking near phase 0.3 to 0.4. A final 

10 ks exposure was obtained 17 April to increase photon statistics on the main peak. From the 

90 ks cumulative exposure of these 30 monitoring observations from program ID 31912, the 

best-fit XRT position enhanced by UVOT field astrometry (37, 38) was (J2000) R.A. = 10k 18m 

55' .71, decl. = -580 56' 47.2" (90% confidence radius = 1.9"). This is consistent with the more 

precise position obtained with Chandra (39). 

For spectral analysis around the X-ray peak:, we combined all of the XRT exposures within 

phase = 0.0 ± 0.05. The data were best fit with an absorbed single power-law with photon index, 

r = 1.26 ± 0.25, absorption, nH = (0.50 ± 0.24) x 1022 cm-2, and 0.3-10 keY observed flux = 

2.6 (+0.3/ - 0.6) x 10-12 ergs cm-2 S-1 (reduced X2 = 1.03 for 27 degrees of freedom). The 

photon index and absorption around phase 0 are consistent with those derived from Chandra 

and XMM observations around phases ~0.31-0.32 and ~0.64-0.65, respectively (39). The 

(unabsorbed) 0.3-10 keY lunlinosity for these 3 phase periods varies between ~(4 - 10) x 1033 

(d/5kpc)2 ergs S-1. 

Optical Observations and Analysis 

The Swift UVOT observations of the optical counterpart of 1FGL J1018.6-5856 yield average 

magnitudes of U = 13.34 ± 0.02 (3465A), WI = 14.40 ± 0.03 (2600A), W2 = 15.44 ± 0.04 

(1928A), and M2 = 16.05 ± 0.02 (2246A). There is no notable change in the brightness from 

the averages «0.02 mag difference) in the observations. The USNO B1.0 catalog gives magni

tudes for this source of B2 = 13.1, R2 = 12.4, and 1= 11.1, that have typical uncertainties of 
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0.3 mag (40). Additionally, this optical source is coincident with 2MASS J10185560-585645 

(41) with near-infrared magnitudes of J -= 10.44, H = 10.14, and K, = 10.02 (uncertainties 

of 0.02 mag). 

Observations of the optical candidate were performed using the South African Astronomical 

Observatory (SAAO) 1.9m telescope on 7 February 2011. The Grating Spectrograph with SITe 

CCD was employed with the #7 grating. The spectrum covers approximately 3600 to 7550 A 
with a resolution of 5A. Data reduction was performed using Figaro (42). The spectrum is 

. shown in Fig. S2 and described in the main text. 

The optical counterpart was also observed with the 2.5m telescope at the Las Campanas 

Observatory (LCO) using the Boller and Chivens spectrograph covering the 3750 - 6900 A 
range on 5 and 6 February 2011. A 600 I mm-1 grating was used that provided a resolution 

of 3A. Data were analyzed using IRAF (43). The features from the SAAO spectrum were 

confirmed in the LCO spectrum (Fig. S3). 

Photometric V band observations were extracted from the All Sky Automatic Survey (ASAS) 

(19) data base. Approximately 604 observations were obtained between 17 February 2001 to 

I December 2009. We searched for modulation in these observations at the orbital period of 

IFGL J1018.6-5856 and no significant modulation was detected. 

Radio Observations and Analysis 

The Australia Telescope Compact Array (ATCA) observed IFGL J1018.6-5856 on ten occa

sions between 7 February and 4 May 2011. Observations were made simultaneously at 5.5 

GHz and 9.0 GHz, with bandwidths of2 GHz centered on these frequencies provided by the 

Compact Array Broadband Backend (44). Instrumental issues affected two epochs, resulting 

in only one frequency yielding useful results in each. Observations were typically made over 

e 2 - 3 hour period, and the six -element Compact Array was in several different array config-
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urations over the three month period. The radio position for lFGL n018.6-5856 reported in 

the main text was determined from an observation in the most extended array configuration, 

which provides the highest angular resolution. Where possible, PKS B 1934-638, the ATCA 

primary flux-density calibrator, was used for flux-density calibration. For those observations 

made when PKS B1934-638 was below the telescope's horizon, the secondary calibrator PKS 

B0823-500 was used. The flux density of PKS B0823-500 is known to vary slowly with time, 

and its flux density was calibrated against PKS B1934-638 within a week for the epochs it was 

used. The presence of another source in the field at 5.5 GHz, (at R.A. = 10h 18m 55', decl. = 

-58 0 59' 50", J2000) enabled a check of the flux-density calibration to be made as this source 

showed no evidence for significant variability over the first nine epochs, being 2.1 ± 0.1 mJy 

beam-l. A further consistency check was made using the flux density of the phase calibrator 

PMN n047-62l7. Although this calibrator had a variable flux density, its spectral index re

mained constant over the period of observations. The positional error obtained from the ATCA 

observations is noticeably worse in declination, as a several hour observation with an east-west 

array results in an elongated, or elliptical, beam, with poorer resolution in one direction. Our 

positional errors also take into account a ~ 1 milli-arcsec uncertainty on the location of the 

phase calibration source, but are dominated by the position uncertainty of lFGL n018.6-5856 

itself. 

The radio spectral index is clearly variable (Fig. 84), including changing from positive to 

negative, possibly because of varying absorption in the stellar wind. However, as the observa

tions were made over approximately 5 orbital periods, it is not possible to disentangle variations 

within one cycle with longer term variations and so we cannot yet identify any orbital phase de

pendence in the index variations. A physical interpretation is complicated by this ambiguity, 

and additional radio observations are required to resolve this. We note, however, that the radio 

behavior of lFGL n 018.6-5856 is different from that of LS 5039 where there is no strong 
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variation offlux or spectral index with orbital phase (45). 
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Fig. S1. The gamma-ray spectrum of IFGL Jl018.6-5856 obtained with the Fermi-LAT (black 
error bars). The red line shows the broken power-law model described in the text. 
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Fig. S2. Optical spectrum of the counterpart of lFGL Jl018.6-5856 obtained with the SAAO 
1.9m telescope. Instrumental response has been approximately removed by the subtraction of a 
5th-order polynomial. Spectral line identifications are marked. The color coding is: blue = stel
lar absorption, red = stellar emission, green = interstellar absorption, magenta = atmospheric. 
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Fig. 83. Optical spectrum of the counterpart of lFGL JlOI8.6-5856 obtained with the 2.5m 
telescope at the Las Campanas Observatory (LCO). Instrumental response has been approxi
mately removed by the subtraction of a 9th-order polynomial. Spectral line identifications are 
marked. The color coding is: blue = stellar absorption, red = stellar emission, green = interstel
lar absorption, magenta = atmospheric. 
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5.5 and 9 GHz. A conservative estimate of the uncertainty in the radio spectral index, incorpo
rating both statistical and systematic errors, of 0.2 is adopted for all measurements. The radio 
spectral index (0<) is defined by Sex v-Q

, where S is the flux density and v is the observation 
frequency. 

14 


