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In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering 
target spacecraft is presented. The disturbance forces on the chaser and target spacecraft 
and the thrust forces on the chaser spacecraft are considered in the analysis. The control 
algorithm developed in this paper uses the relative distance and relative velocity between the 
target and chaser spacecraft as the inputs. A general formula of reference relative trajectory 
of the chaser spacecraft to the target spacecraft is developed and applied to four different 
proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral 
rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the 
proximity relative motion with the control algorithm are derived. It is proven in the paper 
that the tracking errors between the commanded relative trajectory and the actual relative 
trajectory are bounded within a constant region determined by the control gains.  The 
prediction of the tracking errors is obtained. Design examples are provided to show the 
implementation of the control algorithm. The simulation results show that the actual relative 
trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors 
match those calculated in the simulation results. The control algorithm developed in this 
paper can also be applied to interception of maneuver target spacecraft and relative 
trajectory control of spacecraft formation flying.  

I. Introduction
RAJECTORY control of spacecraft rendezvous has been studied for many years. For the most of the studies, the 
target spacecraft doesn’t maneuver by firing thrusters during the rendezvous [1-5]. Using the linearized 

Tschauner-Hempel equations, spacecraft rendezvous with target spacecraft in an arbitrary elliptical orbit was 
analyzed [1]. The constrained regulation problem is solved based on a parametric Lyapunov differential equation 
approach. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft 
are not considered in the analysis in [1]. The six-degree-of-freedom elliptical orbit rendezvous and docking problem 
were investigated using an adaptive discrete-time robust nonlinear filtering technique [2]. However, the disturbance 
and thrust forces on the target spacecraft are neglected in the relative motion dynamics in [2]. 

In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is 
presented. The relative motion equation of the maneuvering target spacecraft and chaser spacecraft is developed. 
The acceleration due to thrust forces on the target spacecraft for maneuvers is included in the equation. The 
disturbance forces, such as aerodynamic drag and solar pressure are also considered in the equation. The relative 
motion is governed by a nonlinear time variant differential equation. 

The target spacecraft orbit variation, due to its maneuvers, imposes a challenge for the control system design. 
The control algorithm developed in this paper uses the relative distance and relative velocity between the target and 
chaser spacecraft as the inputs. The relative distance and relative velocity can be measured by a lidar sensor. A 
reference relative trajectory of the chaser spacecraft to the target spacecraft are formed based on the required 
rendezvous, such as approaching the target spacecraft and circling it or approaching the target spirally and docking 
with it eventually. The reference relative trajectory can be in the in-track plan of the target spacecraft or the cross-
track plan. The thrust command output from the control system is calculated based on the differences of the relative 
distance and the reference relative trajectory as well as the measured relative velocity. 

Several proximity and rendezvous maneuvers are realized using the control algorithm described in this paper. 
The first proximity maneuver is in-track circling, in which the chaser spacecraft circulates the target spacecraft at a 
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circular orbit relative to the target with a constant rate.  The relative circular orbit is in the target spacecraft’s in-
track plan. Similarly the cross-track circling is to circulate the target spacecraft in the target spacecraft’s cross-track 
plan. In the next two rendezvous maneuvers the chaser spacecraft approaches the target spacecraft along a spiral 
trajectory in the target spacecraft’s in-track or cross-track plans. Design examples and simulation results are 
presented at the end of the paper to demonstrate the performance of the control algorithm. The control algorithm 
developed in this paper can be applied to interception of maneuver target spacecraft and relative trajectory control of 
spacecraft formation flying also.  

II. Proximity Relative Motion Model 
The proximity relative motion model of chaser spacecraft relative to target spacecraft has to be established 

before the rendezvous trajectory control algorithms can be developed. In Figure 1, the target spacecraft orbit frame

otx , oty , otz  and the chaser spacecraft orbit frame ocx , ocy , ocz  are depicted. The trajectory dynamics for the 
target spacecraft in the inertial frame is  

tdt aa
R
RR ���� 3���              (1) 

R  is the distance vector from the center of gravity to the target spacecraft and � is the gravitational parameter of 

the planet. dta  is the target spacecraft acceleration with respect to (wrt) the inertial frame due to the disturbance 

forces, such as aerodynamic drag, solar pressure. ta  is the target spacecraft acceleration wrt the inertial frame due to 
the spacecraft thrust forces. 

Figure 1. Spacecraft redezvous geometry and coordinates. 

The equation of motion of the chaser spacecraft in the inertial frame is given by 

cdcc aa
rR
rRrRR ��

�

�
���� 3�������            (2) 

r  is the relative distance vector from the target spacecraft to the chaser spacecraft. dca  is the target spacecraft 

acceleration wrt the inertial frame due to the disturbance forces. ca  is the target spacecraft acceleration wrt the 
inertial frame due to the thrust forces. Using Eq.(1) and Eq.(2), the differential equation of the relative motion can be 
obtained as 
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Note that the above equation has simple form because the differential equation is written in the inertial frame IX ,

IY , IZ . In general, the disturbance forces and the thrust forces are calculated in the spacecraft body frame. The 
accelerations in the inertial frame can be obtained by transform the disturbance forces and the thrust forces from the 
body frame to the inertial frame as 

t

dt
I
bt

dt m
FAa �                (4) 

t

t
I
bt

t m
TAa �                (5) 

c

dc
I
bc

dc m
FAa �                (6) 

c

c
I
ot

c m
TAa �                (7) 

I
btA is the transformation matrix from the target spacecraft body frame to the inertial frame. I

bcA  is the 

transformation matrix from the chaser spacecraft body frame to the inertial frame. dtF  is the disturbance forces on 

the target spacecraft wrt the target spacecraft body frame. tm   and cm  are the target and chaser spacecraft mass 

respectively. tT   is the target spacecraft thrust forces wrt its own body frame. However, cT  is the chaser spacecraft 

thrust forces wrt the target spacecraft orbit frame otx , oty , otz  because the rendezvous trajectory control algorithms 
are formed in the target spacecraft orbit frame as described in the next section. The chaser spacecraft thrust forces 
wrt its own body frame bcT  can be calculated by                  

c
bc
otbc TAT �               (8) 

Eq.(3) describes the relative motion between the target and the chaser spacecraft. No simplification and 
approximation are made in Eq.(3). The equation includes all the forces acting on the target and the chaser spacecraft. 
The target spacecraft can perform any maneuver by firing the thrusters. 

III. Trajectory Control Algorithms and Performance 
This section develops the trajectory control algorithm to control the chaser spacecraft relative motion to the target 
spacecraft. The control algorithm calculates the chaser spacecraft thrust forces wrt the target spacecraft orbit frame

cT  as 

� 
 � 
� �cmd
ot
Icmdv

ot
Icmdrcc rrArKrArKmT ���� �����         (9) 

rK  and vK  are control gains, which can be matrix or scalar. r  is the relative distance vector from the target 

spacecraft to the chaser spacecraft expressed in the inertial frame. ot
IA  is the transformation matrix from the inertial 

frame to the target spacecraft orbit frame, which transforms r to the orbit frame. r�  is the relative velocity, which is 
the derivative of the relative distance vector wrt the inertial frame. The relative distance and relative velocity can be 
measured by a lidar sensor. cmdr  is the commanded reference relative distance, which is formed based on the type of 
the relative motions, such as approaching the target spacecraft and circling it or approaching the target spirally and 
docking with it eventually. cmdr�  is the commanded relative velocity, which is the derivative of the commanded 

relative distance vector wrt the target orbit frame. cmdr��  is the derivative of cmdr�  wrt the target orbit frame. 

cmdr  can be determined in the target orbit frame by the azimuth angle �  and the elevation angle �  as shown in 
Figure 2. The commanded reference relative distance is given by 
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)(trm  is the magnitude of the commanded relative distance.�  and �  depend on the desired relative motions. In 

the following expression�  and �  are changing in constant rates ��  and �� with the time. 
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0
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             (11) 

 The initial values of �  and �  are determined such that the commanded relative distance is equal to the actual 
relative distance at the beginning in order to make the control smooth.  

)0()0( rAr ot
Icmd �             (12) 

Figure 2. Commanded relative trajectory in the target spacecraft orbit frame 

The commanded reference trajectories for several proximity maneuvers are developed. The first proximity 
maneuver is in-track circling, in which the chaser spacecraft circulates the target spacecraft at a circular orbit 
relative to the target with a constant rate.  The relative circular orbit is in the target spacecraft’s in-track (x-z) plan. 
The commanded reference trajectory is given by 
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The magnitude of the commanded relative distance mr  is constant for the in-track circling orbit. �  is the 

constant circling orbit rate. 0�  is determined by Eq.(12). Similarly the cross-track circling is to circulate the target 
spacecraft in the target spacecraft’s cross-track (y-z) plan. The commanded reference trajectory can be expressed as 
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In the next two rendezvous maneuvers the chaser spacecraft approaches the target spacecraft along a spiral 
trajectory in the target spacecraft’s in-track or cross-track plans. For in-track spiral rendezvous the commanded 
reference trajectory is 

� 


� 
�
�
�

�

�

	
	
	




�

��

�
�

0

0

cos)(
0

sin)(
)(

��

��

ttr

ttr
tr

m

m

cmd
              (19) 

� 
 � 


� 
 � 
�
�
�

�

�

	
	
	




�

����

���
�

00

00

sin)(cos)(
0

cos)(sin)(
)(

�����

�����

ttrttr

ttrttr
tr

mm

mm

cmd

�

�

�         (20) 

� 
 � 


� 
 � 
�
�
�

�

�

	
	
	




�

���

���
�

0
2

0

0
2

0

cos)(sin)(2
0

sin)(cos)(2
)(

������

������

ttrttr

ttrttr
tr

mm

mm

cmd

�

�

��        (21) 

� 
� 
 � 
�
�

�
�

�

������
�
�

�

fiifimfmimi

fmf

imi

m

tttttttrrr
ttr
ttr

tr
/

)(        (22) 

� 
 � 
�
�
�

�����
��

�
fiifmfmi

fi
m tttttrr

ttortt
tr

/
0

)(�         (23) 

it  is the starting time of the spiral and ft   is the ending time. mir  is the initial commanded relative distance and 

mfr   is the distance at the ending time. For rendezvous mfr   is zero. Similarly, the commands for the cross-track 
spiral rendezvous are given by 
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)(trm  and )(trm�  are determined by Eq.(22) and Eq.(23). 
When the control algorithm in Eq.(9) is substituted into Eq.(3), the closed-loop differential equations of the 

proximity relative motion in the inertial frame is given by 
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In general, Eq.(27) is a 3 dimensional nonlinear time variant differential equation. In order to measure the 
performance of the algorithm, the difference between the commanded relative trajectory cmdr  and the actual relative 

trajectory r  is defined as � , which is given by 
rAr ot

Icmd ���                   (28) 

Eq.(27) can be rewritten in terms of �   as 
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The rotation rate vector ot�  of the target spacecraft orbit frame otx , oty , otz can be written as 

� 
Tzotyotxotot ���� �               (31) 

Matrix ot�  is given by 

�
�
�

�

�

	
	
	




�

�
�

�
��

0
0

0

xotyot

xotzot

yotzot

ot

��
��
��

            (32) 

If the gain matrixes vK  and rK  are positive definite, and )(tf  is zero, it can be proved that 0��  is a 
globally asymptotically stable equilibrium point of Eq.(29). It means that the actual relative trajectory r will track 
the commanded relative trajectory cmdr  and eventually converges to cmdr . Usually )(tf   is not zero especially when 

the target spacecraft maneuvers during the chaser spacecraft approaching. However, )(tf  can not be unlimited 
because the accelerations due to the target spacecraft thrust and the disturbance forces are limited. If )(tf  satisfies 
the bound 

� 
zyxiftf ii ,,)( max ��            (33)      
with  

� 
Tzyx ffff maxmaxmaxmax �           (34) 

Then it can be proved that �  is globally uniformly ultimately bounded as    

max
1 fKr

���               (35) 
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as time approaches infinity. The tracking error of the close-loop system with the control algorithm converges and is 
bounded to 

max
1 fKr

� . The equation shows that increasing the gain matrix rK  can reduce the final tracking error. 

Eq.(35) can be used to estimate the final errors between the actual relative trajectory and the commanded relative 
trajectory. The estimate by Eq.(35) is consistent with the  simulation results as shown in the next section. 

IV. Design Examples 
In order to evaluate the performance of the control algorithm developed in this paper, two rendezvous maneuvers 

are demonstrated. In these two maneuvers, the chaser spacecraft approaches the target spacecraft along a spiral 
trajectory in the target spacecraft’s in-track or cross-track plans. The target spacecraft orbit is 488x528 km with 72 
degrees inclination. The target and chaser spacecraft masses are 600.0 and 400.0 Kg respectively. 

The initial relative distance )0(r  between the target and the chaser spacecraft is set to 10 meters. )0(r  wrt the 
target orbit frame is 

� 
Tot
I rA 1000)0( ��                (36) 

During the rendezvous the target spacecraft conducts maneuvers by firing the thrusters in all three directions. 
Suppose that the thrust forces in in-track, cross-track and radial direction of the target orbit frame is sine waves and 
given by 
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The parameters in the above expression have the following values in the simulations. 
)(0.5)(0.4)(0.2 NTNTNT zyx ���         (38) 

)(0.130)(0.60)(0.100 ststst zyx ���         (39) 

(deg)0.120(deg)0.80(deg)0.20 ��� zyx ���       (40) 

Control gains rK  and vK  are scalar and given by 

)/1(1.0)/1(1.0 2 sKsK vr ��            (41) 
The parameters in the commanded reference trajectories of the two maneuvers have the following values. 

(deg)0.0)(deg/0.1 0 �� �� s            (42) 

)(0.0)(0.10 mrmr mfmi ��             (43) 

)(0.1200)(0.200 stst fi ��            (44) 

The three components of the chaser commanded thrust forces cT  is limited to 8N. For this two maneuvers, 

maxf  is dominated by the target thrust forces and estimated by 

� 
 t
T

zyx mTTTf /max "               (45)    
and

)(112.0max
1 mfKr ��              (46) 

The actual value of the maximum of �  is slightly larger than 0.112 m because maxf  includes only target thrust 
forces.       

The time histories of the rendezvous maneuver with the chaser spacecraft approaching the target spacecraft along 
a spiral trajectory in the target spacecraft’s in-track plan are shown in Figure 3 to Figure 8.  Figure 4 shows that the 
value of the maximum of � , when it converges, is 0.118 m, which is slightly larger than 0.112 m. The 
commanded thrust forces in in-track direction reaches the limit (8N) during the first 60 seconds. 

Figure 9 to Figure 14 is the time histories of the second rendezvous maneuver. The chaser spacecraft approaches 
the target spacecraft along a spiral trajectory in the target spacecraft’s cross-track plans. The value of the maximum 
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of �   is 0.118 m also when it converges as shown in Figure 10.  Figure 12 and Figure 13 show the chaser 
spacecraft approaches the target spacecraft in the in-track, radial plan and cross-track, radial plan. As we expected, 
the chaser spacecraft approaches the target spacecraft along a spiral trajectory.  Figure 14 shows the commanded 
thrust forces calculated by the control algorithm to accomplish the desired rendezvous maneuver. The results show 
the excellent performance of the control system. 

Figure 3. Case 1: Relative Distance Figure 4. Case 1: Relative Distance (zoomed in) 

Figure 5. Case 1: Relative Velocity Figure 6. Case 1: Relative position in radial and in-
track plan 
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Figure 7. Case 1: Relative position in radial and 
cross-track plan 

Figure 8. Case 1: Thrust forces command 

Figure 9. Case 2: Relative Distance Figure 10. Case 2: Relative Distance (zoomed in) 

Figure 11. Case 2: Relative Velocity Figure 12. Case 2: Relative position in radial and in-
track plan 
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Figure 13. Case 2: Relative position in radial and 
cross-track plan 

Figure 14. Case 2: Thrust forces command 

V. Conclusion
A nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is developed in this 

paper. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are 
considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative 
velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of 
the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which 
are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-
loop differential equations of the proximity relative motion with the control algorithm are derived. The tracking 
errors between the commanded relative trajectory and the actual relative trajectory are analyzed. The prediction of 
the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. 
The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The 
predicted tracking errors match those calculated in the simulation results. 
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