Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

R. Beck1, J. Arnold1, M. Gasch1, M. Stackpoole1, P. Wercinski1, E. Venkatapathy1, W. Fan2, Jeremy Thornton2 and C. Szalai3

1NASA Ames Research Center, 2ERC Corporation, 3Jet Propulsion Laboratory

9th International Planetary Probe Workshop, Toulouse, France, 16th-22nd June 2012

Systems Engineering Approach to Material Development

Mission Application Assessment
- • 4.5 m diameter composite heatshield structure
 - Peak heat rate 7260 W/m², peak shear 440 Pa, peak pressure 4.2 atm (9 sigma design values)
- • COTS LCD entry
 - Generic environments include 20% margin
 - Highest heat load for a capsule shallow trajectory (79,440 W/m²)
 - Heat tubes for capo and lift (190 W/m²), Max shear 101 Psa (liftoff), Max pressure 0.25 atm (liftoff)

Performance Goals
- Demonstrate performance capability of conformal ablator under relevant aerothermal heating conditions
- Go to survive MSL-like heating, pressure, and their environments
- Go to survive COTS-like heating loads

Key Performance Parameters

Table: Conformal Ablative Key Performance Parameters

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPI-1</td>
<td>Scalable to MSL, other COTS environments, and other future missions</td>
</tr>
<tr>
<td>KPI-2</td>
<td>High heat loading on the 35° cone</td>
</tr>
<tr>
<td>KPI-3</td>
<td>Low heat loading on the 35° cone</td>
</tr>
<tr>
<td>KPI-4</td>
<td>Area efficiency and structural strength</td>
</tr>
</tbody>
</table>

CA250 Project Schedule

- FY2012 1st Half
- FY2012 2nd Half
- FY2013 1st Half
- FY2013 2nd Half

Conclusions & Outlook

Vision
- Recent focus of the TPS community has been on ablatives
- Lessons learned:
 - Only 2 rigid TPS alternatives (PICA and ABOAT) have been maturing each having significant integration issues
 - Use ablative-to-failure makes direct bonding problematic
 - Existing systems are expensive and time consuming to install
 - Work was initiated under ETDO and ARMD to develop improved TPS

The Vision is to develop and deliver a high strain-to-failure conformal TPS to TRL 5 capable of reducing the cost and complexity of protecting an flight aerodynamically

Why Conformal?
- Larger TPS per kit reduces overall cost and weight and reduces assembly and integration needs
- Can be flown before TPS allows broader structure design options for rapid assembly structures

Ablative TPS - Conformal TPS

Conformal Ablation

- PIKA - PIKATM Ablator
- High heat loading on the 35° cone
- Low heat loading on the 35° cone
- Area efficiency and structural strength

Perform Arc Jet Testing and Materials Properties Testing to Downselect Best Material

Establish Industry Partnerships for Scale-Up

- Industry Request for Information - Conformal TPS Manufacturing Scale-Up
 - Objective:
 - Manufacturing Plan for full-scale conformal ablative materials at least 1 m diameter which includes the necessary processes, procedures, equipment, and services required
 - Non-destructive methodologies necessary to examine variations in the casted structure and the resulting conformal ablative and bond verification
 - Proposed specifications for certified TPS processing and R&D evaluation of the ablative materials
 - Design and manufacture of a 1-meter class manufacturing demonstration unit (MDU)
 - Vendor will be required to supply small-scale samples for testing followed by large-scale materials for application to the 1-meter diameter MDU
 - Current maximum available thicknesses of carbon felt is ~2 cm, the Project is working to develop thicker felt (6-7 cm) with industry partners
 - Work to be done in projects TRU 1 in 2 years
 - Technology transfer for scale up and evaluation of industry materials
 - Development of attachment and seal techniques
 - Further Arc jet tests and thermal properties tests to provide data for development of a mid-life material response model
 - Develop mid-life material response model
 - Manufacturing MDU
 - Develop NDE techniques to evaluate material and bond conformance
 - Develop material specifications
 - Begin technology push to new missions

Game Changing: we are looking to create a high strain-to-failure TPS with dramatic reduction in cost and complexity

Work-to-date shows promise that we can achieve our TRL 5 goal for conformal ablator with industry partnerships and focused testing