Laboratory Evaluation of Drop-in Solvent Alternatives to n-Propyl Bromide for Vapor Degreasing

Mark A. Mitchell
George C. Marshall Space Flight Center

Nikki M. Lowrey
Jacobs Technology, Inc.

Environment, Energy Security, & Sustainability Symposium
New Orleans, LA
May 21-24, 2012
Acknowledgements

• This study was performed for the U.S. Army Research Laboratory
 – MIPR Number: MIPR2AO80BW013

• Alternative solvents for these tests were supplied by:
 – 3M
 – DuPont Fluoroproducts
 – AGC Chemicals Americas, Inc.
Ground rules for this study

• Test solvent effectiveness in the vapor phase only
 – Effectiveness using spray, immersion, ultrasound, etc. were not evaluated in this study

• Alternative solvent candidates must:
 – Have lower expected toxicity than nPB
 – Not be a Hazardous Air Pollutant (HAP)
 – Not be an Ozone Depleting Substance (ODS)
 – Have no flash point
 – Be compatible with existing vapor degreasers
Solvents Tested

- Ensolv® n-Propyl Bromide (baseline)
- Alternative solvents tested were all azeotropes or azeotrope-like blends of trans-1,2 dichloroethylene with other solvents.
 - tDCE is an effective solvent on greases and oils but is too flammable for use in vapor degreasers
 - Non-flammable solvents are blended with tDCE to suppress flammability while maintaining solvency
 - Blending may also lower VOC content, GWP and cost, and improve exposure limits.

Ensolv® Enviro Tech International, Inc.
Alternative Solvents Tested:

- Novec™ HFE 72DE (3M) 113°F
- Vertrel® SDG (DuPont) 109°F
- Azeotrope A1 R&D Solvent (DuPont)* 118°F
- AE3000ATE (Asahi Glass Co., Ltd)* 108°F
 (nPB 156°F)

*These solvents are not yet approved by the EPA for use in the United States. Samples were provided by the suppliers “for laboratory use only”.

Note: Perfluorobutyl Iodide was to be included in this study but a suitable sample was not available in the required time frame.
What is an Azeotrope?

- A mixture of two or more liquids at a ratio where, when boiled, the resulting vapor has the same composition as the liquid.
- This lends stability to maintain the properties of the blend over time, critical in vapor degreasing applications.
Materials Compatibility Tests

- Test coupons were immersed in boiling solvent for 30 minutes; observed and weighed before & after
- Materials Tested:
 - Aluminum 7075-T6
 - Magnesium AZ31B-H24
 - Steel Maraging C-250
- No degradation was observed with any of the solvents.
Cleaning Effectiveness Tests

- A standard contaminant was applied to aluminum 2219 coupons and baked for 2 hours at 130°F.
- All coupons were photographed and weighed:
 - Before contamination
 - After contamination and baking
 - After vapor degreasing for 30 minutes
- Photos were taken in bright white and long wave ultraviolet light
- Clean control coupons, degreased and not degreased, were included.
Mixed, brushed on, and baked two hours at 130°F:

2 parts* MIL-PRF-83282
 Fire resistant, synthetic hydrocarbon base hydraulic fluid

1 part* MIL-PRF-81322
 General purpose aircraft grease

1 tenth* part Carbon Black

*by weight

*ADS-61-PRF Performance Specification, Cleaners, Aqueous and Solvent, For Army Aircraft
Contaminant applied to test coupons

Aluminum 2219 sheet – 2.5 in. x 6 in.
Cleaning Results – Set 1

Smooth coupon surface, contaminant removed same day as applied
(Typical visual appearance and average percent removal)
Cleaning Results under UV – Set 1

Smooth coupon surface, contaminant removed same day as applied
(Typical appearance under UV and average percent removal)
Cleaning Results – Set 1

Cleaning Effectiveness Ranges and Averages Set 1

Three solvents show very similar results.
Cleaning Results – Set 2, aged contaminant

Smooth coupon surface, contaminant removed 7 days after application
(Typical visual appearance and average percent removal)
Cleaning Results – Set 2, aged contaminant

Smooth coupon surface, contaminant removed 7 days after application
(Typical appearance under UV and average percent removal)

- **Ensolv nPB**: 96.2% removed
- **Novec HFE 72DE**: 94.8% removed
- **Vertrel SDG**: 99.1% removed
- **Azeo A1**: 97.5% removed
- **AE3000ATE**: 98.9% removed
Cleaning Results – Set 2, aged contaminant
Cleaning Results – Set 3, rough surface

Grit blasted coupon surface, contaminant removed same day as applied
(Typical visual appearance and average percent removal)
Cleaning Results – Set 3, rough surface

Grit blasted coupon surface, contaminant removed same day as applied
(Typical appearance under UV and average percent removal)
Cleaning Results – Set 3, rough surface
Combined Cleaning Results

Cleaning Effectiveness Ranges and Averages - Combined

Cleaning efficiency

Solvent
Cleaning effectiveness versus tDCE content

Cleaning Effectiveness versus % tDCE

Solvent Range of % tDCE

Solvent Range of % Cleaning Effectiveness - All Sets

* tDCE% as shown in the Vendor Technical Data Sheet
** tDCE% as shown in the Material Safety Data Sheet
Results

- All solvents were compatible with metals tested
- All solvents cleaned in the range of or better than n-propyl bromide
 - Vertrel SDG cleaned the most consistently; AE3000ATE was very close.
 - All but Vertrel SDG showed reduced cleaning effectiveness on aged contamination
- Cleaning effectiveness did NOT correlate with tDCE%
- Cleaning effectiveness of any of these solvents may be adequate for the end use

- Results may vary with other materials, contaminants, and hardware configurations
Observations about the test method

- Both carbon black and ultraviolet light were useful visual indicators of contaminant residues.
- Despite the two-hour bake, contaminant aged just a few days was more difficult for some solvents to remove.
- Results varied between smooth and roughened test coupons.
- Contaminant aging had a more significant impact on cleaning effectiveness than surface roughening.
Conclusions

- Based on this limited laboratory study, solvent blends of trans-1,2 dichloroethylene with HFES, HFCs, or PFCs appear to be viable alternatives to n-propyl bromide for vapor degreasing.
 - The lower boiling points of these blends may lead to greater solvent loss during use.
 - Additional factors must be considered when selecting a solvent substitute, including stability over time, VOC, GWP, toxicity, and business considerations.
Questions?

www.nasa.gov