When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

Colleen A. Wilson-Hodge
(NASA/MSFC)
Collaborators

MAXI data from http://maxi.riken.jp
The Crab Nebula 1999-2011

- Light curves for each instrument are normalized to its average rate from MJD 54690-54790.
- RXTE/PCU2 - Black
- BAT - Red
- IBIS/ISGRI - Green
- JEM X2 - orange
- SPI - Light blue
- GBM - Blue squares
- Instruments on four separate spacecraft show ~7% decline in Crab (nebula+pulsar) flux from summer 2008 to summer 2010.

Wilson-Hodge et al. 2011, PoS(HTRS 2011), 043
RXTE PCA Spectra

- Colors denote “rising”, “declining” and “flat” intervals.
- Photon index softens from 2.15 to 2.17 during 2008-2010 flux decline
- Individual observations fitted, results averaged
- PCU2 layer 2&3 data
- Absorbed Power-law
- N_H fixed 0.97×10^{22} cm$^{-2}$
Comparing “rising”, “declining”, and “flat” intervals

- Photon index softened from 2.14 to 2.17
- Softening occurring in declining phases
- Hardening during initial rise.
- Similar results in PCU 3 & 4
Evidence for Softening in Swift/BAT

- Color scheme matches RXTE Softening during 2008-2010 decline
- Earlier intervals consistent with constant hardness
- Harness ratios 14-50 keV/50-100 keV BAT 58-month survey data
- 50-day averages
Spectral Softening in GBM

54690-54763

• GBM 8-1000 keV Earth occultation measurements
• Beginning and end of decline interval
• Spectral index increases from 2.11 to 2.17
RXTE Mission-long Light Curves

- Very active period 2001-2010
- December 2011 flux is at or below level before 2001.
- Larger variations in 15-50 keV band
- 3 PCUs, layers 2&3
- Count rates corrected for dead time and response
Recent Data 2008-2012

<15 keV

15-50 keV
20-year Crab Nebula Light Curve

15-50 keV

50-100 keV
Summary & Conclusions

• The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010.
• We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline.
• We will miss RXTE, but will continue our monitoring program using Fermi/GBM, MAXI, and Swift/BAT.