NASA’s Behavioral Health Support for International Space Station (ISS) Missions

Gary Beven, MD
NASA Flight Surgeon
Chief of Aerospace Psychiatry
Human Space Operations Branch
Behavioral Health & Performance Group
Johnson Space Center

Cleveland Clinic Department of Psychiatry and Psychology Grand Rounds
September 13, 2012
NASA’s Behavioral Health Support for ISS Missions

- Intro to Johnson Space Center and the Behavioral Health and Performance Group
- A brief history of long duration space flight
- The challenges of long duration space flight
- What services we provide for ISS crews
- Some lessons learned from ISS support
- Exploration mission predictions and needs
Basic Goals

• Too much great information for a one hour presentation!

• Will only scratch the surface (sorry)

• If you come away with a greater appreciation for human spaceflight history and a basic understanding about how NASA provides behavioral health support to space station crews I will have succeeded.
Johnson Space Center
Johnson Space Center
Mission Control Center
• **Aerospace Medicine**
 - Aerospace medicine is a sub-discipline of preventive and occupational medicine that ties together physics, physiology, life support, engineering, and medicine to protect aircrew and patients in the realm of aerospace

• **Flight Surgeon**
 - Operational practitioner of aerospace medicine
 - Flight surgeons are physicians who are primarily responsible for the medical evaluation, certification and treatment of military aviation personnel — e.g., pilots, naval flight officers, navigators/combat systems officers, and astronauts

• **Space Medicine**
 - Space medicine is the practice of medicine related to astronauts and space missions

• **Aerospace Psychiatry**
 - Merging of the disciplines of aerospace medicine, space medicine and psychiatry
 - Focus on maintaining peak mental/psychological fitness of aviators and astronauts in challenging circumstances and environments
5 NASA Civil Service Flight Surgeon/Psychiatrists in History of the Human Space Program

- Patricia Santy, MD: 1984-1991 Author of *Choosing the Right Stuff*
- Chris Flynn, MD: 1996-2004 Initial long duration mission experience
- Frank Carpenter, MD: 2001-2008
- Gary Beven, MD: 2005-present

- Prior to 1984 psychiatric consultation to the space agency was performed by contractors or military psychiatrists
JSC’s Behavioral Health and Performance Group (BHP)

- BHP is a component of the JSC Human Space Operations Branch
 - ISS mission psychological/behavioral health support
 - Astronaut candidate psychological and psychiatric screening
 - Clinical evaluation and care of astronauts and dependants
 - Occupational mental health evaluation of NASA divers, pilots and flight controllers
 - Consultants to the JSC Human Research Program
 - Consultants to NASA flight surgeons, ISS crew surgeons, the Astronaut Office, and JSC management
 - Consultants to the JSC Employee Assistance Program Office
 - Great group of civil servants and contractors
BHP Mission

• The JSC BHP is focused on ensuring that ISS crew members are psychologically prepared for the rigors of long duration spaceflight

• BHP provides individualized behavioral health and psychological support services directly to ISS crew members and their families before, during and after each ISS mission

• Our goal is a safe, productive, and enjoyable spaceflight experience—hopefully a peak life event

• We have a great team of civil servants and contractors, a wonderful task and do it extremely well
JSC Behavioral Health & Performance Team
SPACE PSYCHOLOGY AND PSYCHIATRY

2nd Edition

M. Kanas and D. Manzey

kindle edition
Edward Everett Hale
March 3, 1822—June 10, 1909

- American Author and Unitarian clergyman
- Wrote short story “The Brick Moon” in 1869
- Tale describes the construction and orbital launch of a 200 foot sphere made of bricks (accidentally carrying people)
- First known fictional description of a satellite and space station

Note: In 1865 Jules Verne had published his novel, *From the Earth to the Moon*, which includes the notion of human spaceflight but not the idea of an artificial satellite or space station.
Konstantin Tsiolkovsky
September 17, 1857—September 19, 1935

• Soviet rocket scientist and pioneer in astronautic theory—*the father of human spaceflight*

• First scientific theorist of space travel and rocket propulsion

• In 1903 wrote “The Exploration of Cosmic Space by Means of Reaction Devices”—58 years before Yuri Gagarin’s flight in 1961

• Published over 500 works including the first space station designs.

• “I'm absolutely sure, based on my theories, that interplanetary journeys will become a reality.”
V2 Rocket

Vergeltungswaffe 2--"Retaliation/Vengeance Weapon 2"

- World’s first ballistic missile
- First human artifact to achieve suborbital spaceflight
- Progenitor of all modern rockets and missiles
- 3000 launched in WWII causing 7500 casualties
- 20,000 slave laborers died during their manufacture
Dr. Wernher von Braun

Developer of the V2 and preeminent rocket scientist of the 20th Century

- Nazi developer of V2 rocket
- Surrendered to Americans at end of WWII to prevent soviet capture
- Spent 5 years in “exile” at Ft Bliss in El Paso, TX
- Became relevant, and his Nazi past “forgiven”, due to technical needs of the cold war
- Developed the Redstone Rocket and the Saturn V
- Became Director of the Marshall Space Flight Center
Sergei Korolev
The Soviet "Chief Designer"

- In Soviet Gulag until start of WWII
- Sent into occupied Germany to capture V2 technology in 1945—arrived just after Americans had left
- Preeminent Russian rocket scientist of 20th century
- Developed the R7 and Sputnik
Soviet R7 Intercontinental Ballistic Missile
Initial launch test in May, 1957

- World’s first ICBM
- First two stage rocket
- 5.4 ton payload
- Single 3 megaton nuke
- 5000 mile range
- 1,000,000 lbs thrust!
- Launch vehicle for Sputnik
- Baikonur complex in Kazakhstan developed to launch the R7
- Built to neutralize huge US bomber numerical advantage (B-52’s)
Sputnik 1

"Простейший Спутник-1", or *Elementary Satellite 1*

October 4, 1957
RED MOON RISING

Sputnik and the Hidden Rivalries That Ignited the Space Age

MATTHEW BRZEZINSKI
Laika—first mammal in space
First orbital death
November 3, 1957

The first dog in space, the two-year-old Laika, blasted off on November 3, 1957. Her spacecraft, Sputnik-2, was to make a long, seven-day orbital flight and was not expected to return.
NASA’s Mercury 7

- Alan Shepard USN
- Gus Grissom USAF
- John Glenn USMC
- Scott Carpenter USN
- Wally Schirra USN
- Gordon Cooper USAF
- Deke Slayton USAF

Mercury Seven was the group of seven Mercury astronauts selected by NASA on April 9, 1959.

They are also referred to as the **Original Seven** and **Astronaut Group 1**.
NASA Astronaut Selection

• 20 Astronaut Classes 1959 to 2009

• 339 total astronaut candidates selected

• 1996 largest class—44

• Current active astronauts: 51

• 6200 Applications for class of 2013 (currently being reviewed)
Class of 2009 Applicants

- First astronaut selection exclusively for long duration crew members

- 3535 applications (on-line application via usajobs.gov)

- 113 “semifinalists” invited to Round 1 initial Astronaut Selection ASB interview, medical history review and psychological testing

- 48 “finalists” invited back for Round 2 ASB interview, full medical testing, behavioral interview and assessment (roughly 10 per week)

- 9 Astronaut candidates chosen
Astronaut Candidate Selection

• Extensive medical/psychiatric screening for all final candidates:

 – Comprehensive history and physical examination by NASA flight surgeon
 – Examination by neurologist
 – Examination by otolaryngologist
 – Examination by optometrist
 – Hearing booth audiology assessment
 – 24 hour ECG monitoring
 – Cardiac stress testing with VO2 max
 – Echocardiogram
 – Cardiac EBCT
 – Carotid Doppler
 – Thyroid ultrasound
 – Pulmonary function tests
 – Dexascan
 – MRI and MRA of brain
 – MRI of the sinuses
 – Colonoscopy
 – CXR
 – Abdominal and renal ultrasound
 – GYN exam for females including mammogram and pelvic ultrasound
 – Extensive lab work
 – Psychiatric/psychological examination (3 hours)
 – Psychological testing (4 hours)
Yuri Gagarin—First human in space
12 April, 1961
Yuri Gagarin Statue in Star City, Russia
Freedom 7 Mission
First American in Space

On May 5, 1961, Alan Shepard piloted the Freedom 7 mission

“Let’s light this candle!”
“One of the finest books ever written about the space program. On nearly every page of this fine book, I learned something new. Neal has given Shepard’s unique humanity a chance to emerge from not only the legend that NASA built around him but the one he built around himself. Alan Shepard, it turns out we didn’t know you, after all. Light this candle, indeed.”

—HOMER HICKAM, author of ROCKET BOYS

LIGHT THIS CANDLE

The Life & Times of ALAN SHEPARD

NEAL THOMPSON

With a new Foreword by Chris Kraft, bestselling author of Flight: My Life in Mission Control
Valentina Tereshkova

- First woman to fly in space
- Launched June 16, 1963 on Vostok 6
Yuri Gagarin & Valentina Tereshkova
First man and woman in space
Boris Yegorov
First Physician in Space
Flew on Voskhod 1 Mission
October 12, 1964
Joseph A Walker

The first American civilian to fly in space on July 19, 1963
An unsung hero of human spaceflight

- The first NASA pilot to fly the X-15
- Flew the X-15 24 times, including the only two flights that exceeded 100 kilometers
- Walker became the first human to fly into outer space twice
Sally Ride
First American Woman in Space
Flew June 18, 1983 on STS-7
Spaceflight is inherently dangerous
Spaceflight Deaths

- 18 crew deaths during spacefight
 - 1967 Soyuz 1—1 death
 - Trauma from Earth surface impact
 - 1971 Soyuz 11—3 deaths
 - Asphyxia from cabin breech
 - 1986 Space Shuttle Challenger—7 deaths
 - Trauma from Earth surface impact (mission never reached space)
 - 2003 Space Shuttle Columbia—7 deaths
 - Asphyxia from cabin breach or trauma from object impact
Vladimir Mikhaylovich Komarov

First inflight human fatality in history of spaceflight
April 23, 1967

Just before impact, Soviet premier Alexey Kosygin told Komarov his country was proud of him. An American NSA listening post in Istanbul noted Komarov’s reply was inaudible, though persistent rumours stated that Komarov died cursing the spacecraft designers and flight controllers.
Space Stations

• No major propulsion system

• No landing system

• Other space vehicles are required for transport to and from

• **Monolithic stations** (Salyut stations and Skylab) constructed and launched in one piece, then manned later by a crew

• **Modular stations** (Mir and ISS) have a core unit and additional modules with different purposes were added later

• Question: How many space stations have their been in history?
History of Long Duration Spaceflight

• 41 years of space station operations (1971-2012)

• Space Stations (10 total):

 – Salyut stations 1—7 (Russia) April 19, 1971—February 7, 1991; 38 Missions (11 long duration) Note: Salyut 2 was never manned

 – Skylab (US) May 14, 1973—July 11, 1974; 3 missions (2 long duration)

 – Mir (Russia) February 20, 1986—March 23, 2001; 39 missions (28 long duration)

 – International Space Station (ISS) November 20, 1998—present; (32 long duration missions so far)
Salyut 1—the World’s 1st Space Station (April 19, 1971)
Salyut 1

- Soyuz 10 crew unable to board due to docking mechanism failure
- Soyuz 11 crew spent 23 productive days on orbit
- Tragedy on reentry
Salyut 1

- First space station crew died during Soyuz 11 reentry on 24th day in space secondary to decompression (and no pressure suits) on June 30, 1971. It was de-orbited in October, 1971 before it could be revisited.
Salyut 2

- Launched April 4, 1973
- Salyut 2 was never manned due to depressurization and flight control failure after achieving orbit
Skylab—NASA’s First Space Station (1973-74)

Skylab 2 (May 25, 1973) was the first NASA space station mission
28 days in space

Joe Kerwin, Pete Conrad, Paul Weitz
Skylab—NASA’s First Space Station (1973-74)

Skylab 3 (July 28, 1973) was the first long duration crew in History—59 days in space

Owen Garriott, Jack Lousma, Al Bean
Skylab—NASA’s First Space Station (1973-74)

Skylab 4 (November 16, 1973) was the second long duration crew in History—84 days in space

Gerald Carr, William Gibson, Edward Pogue
Salyut 3 (1974-75)

- One 16 day mission
- Launch June 25, 1974
- No further NASA space station Missions until mid 1990’s on Mir
Salyut 4 (1974-77)

- First Russian long duration space mission (63 days) in 1975
- Two expeditions (3rd failed due to launch abort)
Salyut 5 (1976-77)

- Two missions including Soyuz 21 Expedition of 49 days
Salyut 6 (1977-82)
First Space Station involving ultra-long expeditions

17 Expeditions 1977-1981
Five long duration missions including 1980 EO-expedition of 185 days (first 6 month mission)
Salyut 7 (1982-91)

- Six long duration missions
- 12 Expeditions
- EO-3 Expedition in 1984 of 237 days!
Diary of a Cosmonaut: 211 Days in Space
Valentin Lebedev
The record-breaking living-in-space adventure experienced by two Russian cosmonauts.
Mir (1986-2001)
First Modular Space Station

- 28 long duration missions
- 3 cosmonauts completed single missions greater than one year in duration
- Shuttle—Mir Program (1995-1998)
- Manned continuously for 8 days shy of ten years (1989-1999)
Shuttle—Mir Crew Members
1995-1998

NASA’s First Modern Era Long Duration Astronauts

Norman Thagard, Shannon Lucid, Dave Wolf
John Blaha, Jerry Linenger, Michael Foale, Andy Thomas
Valeriy Vladimirovich Polyakov, MD

- Single spaceflight duration record holder—437.7 days on Mir!
- January 1994 to March 1995
- Russian cosmonaut
- Medical doctor
- Two Mir missions totaling 679 days
Spaceflight History—STS 114 Commander Eileen Collins & ISS 16 Commander Peggy Whitson
International Space Station
The International Space Station

ISS Basic Facts:
- Mass 924,739 pounds
- Habitable Volume: 13,696 cubic feet
- Pressurized Volume: 32,333 cubic feet
- Module Length: 167.3 feet (51 meters)
- Truss Length: 357.5 feet (109 meters)
- Solar Array Length: 239.4 feet (73 meters)
- 191 ft long x 146 ft wide x 90 feet height (current size)
- Power Generation: 8 solar arrays = 84 kilowatts
- Orbit—180 nautical miles
- Speed—17,239.2 mph (15.79 orbits per day)
- Estimated cost $100 billion
- Continuously occupied since 2000
- 36 NASA long duration crewmembers to date
- Maximum crew of six (began June 2009)
- First female space station commander Peggy Whitson (ISS Expedition 16)
Relative Size of ISS
ISS Expedition 1 Crew

• NASA astronaut Bill Sheperd, the first ISS Commander with cosmonauts Yuri Gidzenko and Sergei Krikalev
ISS Expedition 32 Crew
Currently in Orbit
The International Space Station

- ISS NASA crew members—36 long duration astronauts thus far (3 have flown twice)

 - Expedition 1 Bill Shepard--2000
 - Expedition 2 Jim Voss & Susan Helms (first female)
 - Expedition 3 Frank Culbertson
 - Expedition 4 Dan Bursch & Carl Walz
 - Expedition 5 Peggy Whitson
 - Expedition 6 Ken Bowersox & Don Pettit (STS 107 disaster)
 - Expedition 7 Ed Lu
 - Expedition 8 Michael Foale
 - Expedition 9 Mike Fincke
 - Expedition 10 Leroy Chiao
 - Expedition 11 John Phillips
 - Expedition 12 William McArther
 - Expedition 13 Jeffrey Williams
 - Expedition 14 Michael Lopez-Alegria & Suni Williams
 - Expedition 15 Clay Anderson
The International Space Station

• ISS NASA crew members (34 total so far)
 – Expedition 16 Peggy Whitson (#2) & Dan Tani
 – Expedition 17 Garrett Reisman & Greg Chamitoff
 – Expedition 18 Mike Fincke (#2) & Sandy Magnus
 – Expedition 19/20 Mike Barratt, Tim Kopra & Nicole Stott
 – Expedition 21/22 Jeff Williams (#2) & TJ Creamer
 – Expedition 23/24 Tracy Caldwell Dyson; Doug Wheelock; Shannon Walker
 – Expedition 24/25 Scott Kelly
 – Expedition 25/26 Cady Coleman
 – Expedition 26/27 Ron Garan
 – Expedition 27/28 Mike Fossum
 – Expedition 29/30 Dan Burbank
 – Expedition 30/31 Don Pettit (#2)
 – Expedition 31/32 Joe Acaba (in orbit)
 – Expedition 32/33 Suni Williams (in orbit--#2)
ISS 20 First Six Person Crew
(we are still pretty new at this)
Russian Soyuz being moved by rail to the launch site
Launch of ISS 20 Crew
Soviet R7 Launch in late 1950’s
Looks a lot like the modern Soyuz!
500th Man in Space
Chosen for the honor by his STS 127 crew

Chris Cassidy

EXPERIENCE: Ten years as a member of the U.S. Navy SEAL Teams. Specialized tactics include long range special reconnaissance (vehicular and foot patrols), direct action building assaults, non-compliant ship-boardings, desert reconnaissance patrols, combat diving, underwater explosives, and a variety of air operations, to include parachuting, fast roping, and rappelling. Awarded the Bronze Star with combat ‘V’ and Presidential Unit Citation for leading a 9-day operation at the Zharwar Kili cave complex – a national priority objective directly on the Afghan/Pakistan border two weeks after 9/11
Why do crews need BHP Support?
The challenges of long duration spaceflight are many

- Prolonged training period (approx 2.5 years with single flow to launch)
- Prolonged microgravity and its physical consequences (bone and muscle loss)
- Solar radiation exposure
- Sleep and circadian cycle difficulties including sleep shifting
- Isolation/separation from family and friends
- Closed environment with limited privacy
- No fresh air or fresh food
- No running water (no showers)
- Incessant background noise
- High workload
- Multiple languages (English, Russian, Japanese, European languages)
- Cultural differences among international crew members
- Potential for crew-crew conflict and crew-ground conflict
- Prolonged post mission rehabilitation period

- ISS astronauts are exceptionally skilled, intelligent and fit (physical and mental) individuals doing what they have long dreamed of and prepared for, but work and live in an extremely challenging and unforgiving environment
The challenges of long duration spaceflight—it’s a marathon, or perhaps a long series of sprints.

ISS missions require entirely different training, expectations, pace, and mission requirements.
The Challenges of ISS Mission Training

- Long duration spaceflight mission training is long challenging

- 2.5 years of basic astronaut skill training following astronaut selection and then 2.5 years of ISS mission training

- Total span of initial training to post flight period end is 6 years

- Fluency in Russian

- Half of training in Russia and other overseas locations including Europe, Canada and Japan (continual sense of jet lag)

- Russian Soyuz training for launches, landings, emergency egress and survival
The Challenges of ISS Mission Training

• In depth training in all ISS systems (medical, environmental, electrical, propulsion, communications, computers, etc.)

• Robotics training

• EVA training (space walk)

• Extensive medical screening

• Challenging for families—especially those with small children

• Postflight rehabilitation
The Challenges of ISS Mission Training

- Aerial view of Star City, Russia and the Gagarin Cosmonaut Training Center (GCTC)
Gagarin Cosmonaut Training Center (GCTC)
The Challenges of ISS Mission Training

- ISS 16 Commander US astronaut Peggy Whitson training in Baikonur, Kazakhstan in preparation for her Soyuz TMA-11 launch
The Challenges of ISS Mission Training

- ISS 14 Commander US astronaut Michael Lopez-Alegria during Soyuz training at the Gagarin Cosmonaut Training Center
The Challenges of Long Duration Spaceflight

Long Duration Missions: Physically and Emotionally Exhausting

ESA Cosmonaut Jean-Pierre Haignere upon landing from Mir after 188 days
The Challenges of Long Duration Spaceflight

Soyuz Landing Site in Kazakhstan (after 4 to 8 Gz orbital reentry)
The Challenges of Long Duration Spaceflight

ISS 6 Crew recovery from Soyuz landing in Kazakhstan
The way long duration space travel was envisioned back in 1968….spacious, clean, relaxing, aesthetically pleasing
The Challenges of Long Duration Spaceflight

Sandy Magnus and Yuri Lonchakov on ISS 18
The Challenges of Long Duration Spaceflight

ISS 15 Commander in the Zvezda Service Module
Sample Events That Have Occurred During Long Duration Missions over past 39 years (Russian & US)

- death of family members and friends
- depressed mood
- crew friction
- excessive sleep shifting
- hot or noisy cabins
- mixed/same gender crews
- dark and crowded station
- work underload/overload
- anger with ground team
- periods of low motivation
- mild anxiety
- delayed return to Earth
- onboard fire (Mir)
- Depressurization (Mir)

- over scheduling and insufficient timeline control
- physical reactions to stress
- frustration
- inappropriate or incorrect direction from ground
- language difficulties
- isolation
- cultural misunderstandings
- persistent system and comm failures
- terrorist activities (9/11)

- But for the most part—excitement, contentment, joy, exhilaration, fulfillment…
Long Duration Mission Stressors Have Impact

- 3 early Russian flights curtailed with psych issues as part of cause (eg, psychosomatic illness)

- Long duration space flight is qualitatively & quantitatively, different from short duration flight

- Long duration environment
 - Latent stressors (e.g., confinement, separation from home and family, social tedium, procedural snafus)
 - Gradual, chronic abrasion over time
 - Events on orbit
 - Events on earth
 - Similar to extended polar, undersea, military deployments
Previously reported and known behavioral events during spaceflight
Note—all are historical events, anecdotal in nature with no objective data

Acute Behavioral Change
STS Payload specialist despondent when experiment failed, crew concerned about potential for dangerous behavior

Acute Grief Reaction
Mir 18 – Crewmember’s mother died, mission control did not tell him, when he eventually found out he withdrew for 1 week

Minor Depression
Shuttle-Mir 3, Salyut 7

Significant Crew-Crew Interpersonal Conflicts
Soyuz 21, Soyuz T14, Soyuz TM 2

Significant Crew-Ground Control Team Conflicts
Skylab 4, Shuttle-Mir 4

Source: Jon Clark, MD, former NASA flight surgeon
Reported Behavioral Issues During Spaceflight

• Russian psychologists have identified a behavioral syndrome afflicting cosmonauts during previous long duration missions called “spaceflight asthenia”

• Asthenia has included the following characteristics:
 – Physical and emotional fatigue or weakness
 – Hypoactivity
 – Irritability and tension
 – Emotional lability
 – Appetite and sleeping problems
 – Attention and memory deficits
 – Withdrawal from others and territorial behavior

• Not thus far objectively identified in US ISS crewmembers. The question remains open as to whether or not asthenia occurs and if so whether or not its manifestations are affected by cultural factors

“Space Fog”

- Anecdotally reported, subjectively experienced, cognitive decrement during spaceflight (long and short duration)
 - Not yet objectively measured
 - No operational impacts noted/measured
 - Reported by a minority of short and long duration crew members
 - Primarily noted during period of spaceflight acclimatization
 - Problems with concentration, short-term memory, multitasking abilities, organizational skills forcing need to ultra-concentrate and perform tasks slowly and deliberately
 - Not generally reported on ISS during period of mastery (after 4-6 weeks)

- Proposed comprehensive neurocognitive inflight study has just been awarded that may help to answer questions about this phenomenon.
What has **not** been reported as occurring during space flight

- Physical confrontation/aggression
- Psychosis (hallucinations/delusions)
- Major depression or suicidality
- Mania
- Delirium (anoxia, head injury, illness)
- Panic attacks
- Use of psychiatric medication (e.g., antipsychotics or antidepressants)
- Intoxication or withdrawal
- Any other major psychiatric disorders (panic disorder, obsessive compulsive disorder, etc.)
What is currently commonly report by ISS crew members during the “average” mission

- Very good morale and crew cohesion
- Collegial and friendly cross cultural relations
- Supportive ground teams
- Personal enjoyment of mission
- Feeling of accomplishment
- Cheerful and optimistic mood (predominate mood)
- Feeling of connectedness with friends and family at home
- Periodic significant fatigue
- Not enough time to sleep as much as one wishes to (6.5 hour average during week)
- Very high workload
- Occasional and infrequent “typical” frustration and interpersonal friction caused by superficial personality differences, high workload, fatigue, lack of sleep, food, things that break (toilet), etc…
Current ISS Configuration

- Best long-duration environment in history, at a good point in its lifetime
 - High volume, low social density
 - All new and everything working pretty well
 - Plenty of spares and sufficient upmass transport
 - Multiple excellent audio & video comm avenues
 - Numerous diverse leisure outlets onboard
 - Moderate crew control over schedule
 - Well-understood flight, sleep, work & psych parameters
 - Stable international partner relations
ISS BHP Operations Support Team

- 5 BHP Ops personnel assigned to each ISS crew member
- Specific and separate team for each ISS crew member
- 1 Psychiatrist/flight surgeon
- 1 Operational Psychologist
- 1 Psychologist for WinSCAT neurocognitive test training and analysis
- 2 psychological support providers (Wyle)—prime and backup

Example: Tracy Caldwell-Dyson ISS 24 support team:
 - Gary Beven, MD, Al Holland, PhD, Kim Seaton PhD, Brooke Loofboro and Shannon Hartman
BHP Operational Service Components

• Operational Psychology Services
 – What we provide to the crew—like movies, music, family contacts, special events, etc.
 – These are services the crews universally enjoy

• Behavioral Medicine Services
 – What we gather from the crew including personal information such as—"How much are you sleeping...How are you getting along with the rest of the crew...etc."
 – WinSCAT neurocognitive testing
 – These are medical requirements (and not as much fun for the crew)
 – All behavioral medicine components are considered private medical records
ISS Behavioral Medicine Services

- Crew Medical Officer BHP Training
 - L-18 months

- Preflight psych evaluations (three 60 min mtgs)
 - L-12 months
 - L-6 months
 - L-30-60 days

- Private Psychological Conferences (PPC)
 - Every two weeks on orbit (15 min)

- WinSCAT (Space Flight Cognitive Assessment Tool for Windows)
 - Baseline established before launch
 - Every month on orbit

- Postflight psych evaluations
 - R+3, R+14 and R+30—60 (three 60 min mtgs)
International Consensus for ISS BHP Services

• BHP assessment services to all crewmembers is decided upon by international agreement

• The ISS Spaceflight Human Behavior and Performance Working Group (SHBPWG) meets annually in Moscow or Houston to discuss and implement a common behavioral monitoring and countermeasures program for all ISS crewmembers

2006 SHBPWG Meeting Toasts at the Institute for Biomedical Problems, Moscow
Crew medical officer training highlights possible “worst case” scenarios—delirium, complicated bereavement, common symptoms of major mood and anxiety disorders, and familiarization with treatment options on the ISS

- **ISS Medkit Meds:** Abilify (PO and IM); sertraline; venlafaxine; diazepam; lorazepam; Ambien; Sonata; Provigil

- **Reference:** ISS Medical Checklist section on “Behavioral Emergency”

- **Note:** Crews would ordinarily provide any emergency or even routine care under real time guidance by the flight surgeon or psychiatrist

- **For exploration class missions this would be greatly expanded into a schedule and format TBD**
ISS Behavioral Medicine Services

“Do you think you’re ready for your ISS mission?”
ISS Preflight Assessments (L-365/180/30)

- Principle pre-flight evaluation topics:
 - Training issues including perception of mission readiness
 - Training workload and fatigue levels
 - Family or personal relationship issues
 - Crew-crew training interactions, familiarity and concerns
 - NASA management issues or concerns
 - Mood and anxiety
 - Mission goals, desires, challenges and risks
 - Post mission rehabilitation or family concerns
 - Emergency notification method—bad news from whom?
WinSCAT is a brief neurocognitive test that provides a baseline level of cognition. This baseline can be used following a neurological injury on the ISS to judge severity and gauge recovery.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
<th>Preflight</th>
<th>In Flight</th>
<th>Postflight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>60 minutes</td>
<td>L-120 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurocognitive Assessment Baseline (MAT)</td>
<td>60 minutes</td>
<td>L-100 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 minutes</td>
<td>L-90 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 minutes</td>
<td>L-60, L-30, L-7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine Monitoring</td>
<td>30 minutes</td>
<td></td>
<td>Every 30 days</td>
<td></td>
</tr>
<tr>
<td>Postflight</td>
<td>30 minutes</td>
<td></td>
<td></td>
<td>R+14*, R+30 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* If clinically indicated</td>
</tr>
</tbody>
</table>
• Subtests are from the Automated Neurological Assessment Metrics (ANAM)
 – ANAM has been used extensively in neuropsychological research and is the result of 30+ years of psychological test development by the US Dept. of Defense

• In 11 to 15 minutes, WinSCAT assesses:
 – response time
 – sustained attention/concentration
 – visual working memory
 – verbal working memory

 Virtually the same test as the military pre AOR TDY neuropsych screen given to all service members (TBI baseline)
Private Psychological Conference (PPC’s)

- The Russians developed the PPC as a standard psychological countermeasure beginning with Salyut 6 and continued to use them on Salyut 7 and Mir
- NASA began using audio/video PPC’s in 2000 with ISS Expedition 1
- Performed every two weeks during ISS expeditions (all crew members)
- Private video conference between the ISS astronaut and the NASA psychiatrist or psychologist that ordinarily takes place Tue or Wed
- Typically lasts 10-20 minutes depending on subject matter discussed and mission phase
- Contents are non-recorded private and confidential events
- Written notes placed in astronaut’s private behavioral medicine record
ISS Private Psychological Conferences (PPC’s)

- The following topics are covered each PPC and these reflect the main clinical/operational concerns:
 - Sleep (duration and quality) and sleep shift issues
 - Fatigue level
 - Workload and pace of work
 - Individual and crew morale
 - Crew relationships
 - Crew-ground relationships
 - Mood
 - Cognition
 - Family and personal relationships
 - Environment and habitability issues, including food
 - Operational psychology issues or requests
 - Preparation for important tasks, such as EVA’s
09:30-10:30 FE-2 Physical Exercise (RED)
09:30-09:50 Private Family Conference (S+Ku-band)
10:30-11:30 CDR Physical Exercise (VELO+RED), day 3
10:55-11:15 Private Family Conference (S+Ku-band)
11:30-13:00 FE-1 Physical Exercise (TVIS), day 3
12:30-12:45 FE-2 Private Family Conference (S+Ku-band)
13:00-14:00 LUNCH
14:00-14:40 CDR COЖ Maintenance
14:00-14:05 FE-2 Connect LAB LTL QD’s for CDRA Activation
14:40-15:40 CDR, FE-1 Install Progress 360 Docking Mechanism
15:45-16:45 FE-1 Physical Exercise (VELO+RED), day 3
15:45-17:15 FE-2 Physical Exercise (CEVIS)

16:10-16:20 CDR Private Psychological Conference (VHF)
16:45-18:15 CDR Physical Exercise (TVIS), day 3
17:25-17:40 FE-2 Crew Discretionary Conference (S + Ku-band)

17:40-17:55 FE-1 Private Psychological Conference (VHF)
ISS PPC’s
A chat with a colleague in space
ISS Postflight Assessment
R+3; R+14; R+30-45

ISS Behavioral Medicine Evaluation Topics:

- Principle post-flight evaluation topics:
 - Mission in retrospect—level of personal satisfaction
 - Greatest challenges, frustrations, joys during the mission
 - Retrospect review of fatigue level prior to critical events such as EVA’s
 - Family reintegration issues
 - Postflight mood, anxiety and cognition
 - What are short and long-term career plans?
 - What worked and didn’t work from a BHP standpoint?
 - What BHP services need improvement or change?
Operational Psychology

- Direct psychological support services for ISS Crews and Families
- Meetings and briefings with crew member and family begin just after assignment—approximately 2.5 years before flight
- All products are private, personalized and provided via individualized, concierge—like service
 - Private Family Conferences (PFC)—weekly
 - Crew Care Packages (CCP)
 - Entertainment and News
 - ISS Ground Based Family & Friends Web Page
 - ISS Crew Personal Webpage
 - Crew Discretionary Events (CDE)—2 per mission
 - Private Special Conferences (PSC)—3 per mission
 - IP Phones
 - Musical instruments (guitar, keyboard, trumpet)
 - 100 Day Celebration Event
• All inflight support services are optional

• Crewmembers are free to select the services that meet their personal needs as well as their families

• BHP strives to customize support activities whenever feasible
Internet Phone (IP Phone)

- The IP Phone runs on a software program that is dependant on KU-Band satellite coverage
- There are currently 8 units on ISS
- Can be used as non-scheduled communication
- Using the IP Phone ISS crewmembers can dial any number in the world but can not receive calls

Expedition 4 Flight Engineer, Carl Waltz, using the IP Phone.
Private Family Conferences (PFC)

- Family communication is facilitated through the use of e-mail, IP Phone and two-way video teleconferences.
- Video Private Family Conferences (PFC’s) are scheduled on a weekly basis.
- BHP installs video conferencing equipment in the crewmembers’ home.
- Laptop with video camera now being used on ISS 28.

Equipment in the home

Astronaut Clay Anderson conducting a PFC onboard ISS.
ISS Ground Based Family & Friends Web Page

- By invitation only, a format where crewmembers can send down videos, photos and diaries of their experiences on ISS

This eliminates the burden for crew and family to continuously provide the same information and allows family and friends to follow the mission.
Expediton 15 Crew Web Page
Wednesday, October 24th, 2007

Recent World News Headlines

Warren Buffett posts want ad for successor OMAHA, Neb. - Legendary investor Warren Buffett renewed speculation about who will replace him at Berkshire Hathaway Inc., saying Thursday in his annual shareholder letter that he plans to hire at least one young investment manager to help succeed him. ◆ Full Story...

Madame Tussauds wax museum set for D.C. WASHINGTON - Abraham Lincoln is coming back to life just a block away from Ford’s Theatre. ◆ Full Story...

Snowstorm shuts down Midwest highways MINNEAPOLIS, Minnesota (AP) -- A deadly winter storm walloped parts of the Plains and Midwest, keeping highways and schools closed, knocking out power and piling up huge snow drifts Friday. ◆ Full Story...

Total lunar eclipse Saturday night LONDON, England (AP) -- The moon will turn shades of amber and crimson Saturday night as it passes behind the Earth's shadow in the first total lunar eclipse in three years. ◆ Full Story...

Other Headlines...
News, Information & Music

- **BHP Contributions:**
 - **NY Times Digest** – Electronic News provided every uplink. All ISS crewmembers will be subscribed through BHP, unless otherwise indicated
 - **Houston Chronicle** – sent 7 days per week to crewmembers
 - **Video Nightly News file** – sent 5 days per week to crewmembers
 - **Magazine articles** – magazine articles from crewmember’s preferred magazines can be scanned and uplinked
 - **Information from websites** frequently visited by crewmembers uplinked in .pdf format
 - **Digital Magazine Subscriptions** – see www.zinio.com for availability of magazines
 - **Video News Clips** – video clips (approx 30 minutes) are uplinked to crewmember twice per week. (e.g. TV shows, News, ESPN, etc…)
 - **Audio News Clips** – Audio files up to 3 hours each are uplinked twice per week (e.g. NPR)
 - **Podcasts** – Audio/video Podcasts are sent to crewmembers twice per week.
 - **MP3s** – Crewmembers can provide CDs to be converted to MP3s prior to flight and captured to DVD and/or uplinked as requested during flight via their personal webpage.
 - **E-Books** – Uplinked as requested (see www.MobiPocket.com or www.fictionwise.com)
 - BHP can also uplink **home video clips** at family’s request
ISS Private Video Conferences

- Expedition 5 – Peggy Whitson talks with friends in the NASA offices in Star City, Russia
Crew Discretionary Events (CDE’s)

- **Private** audio or video contacts with celebrities such as actors, professional athletes, authors, comedians, etc., for the purpose of building crew morale. These are private events and not publicized.

- *Who would you choose to talk to?*

Winning!
Music for Recreation on ISS

• Expedition 3 – Frank Culbertson playing his trumpet

• Expedition 5 – Treschev playing the ISS Guitar

• Expedition 4 – Carl Walz playing the ISS keyboard
ISS 17 Greg Chamitoff Playing Guitar
Crew Care Package (CCP)

Items that are packed in a CCP are limited by both weight and volume. Currently the maximum weight is 10 pounds per crewmember.

- Contents for the CCP are usually supplied by family, friends and BHP for all ISS crew members.
- Care Packages are launched on all, and the European Space Agency (ESA) ATV, JAXA (HTV) vehicles and new US Commercial vehicles.
Astronaut Jeff Williams, Expedition 13, opening a CCP on-orbit.
Greg Chamitoff on ISS 17 enjoying a very popular recreation activity
This great photo was a suggestion by Al Holland during a PPC.
Photography—a favorite hobby for many
Nicole Stott on ISS treadmill
Exercise is a vital crew morale tool
Nearly as vital as sleep for some
Dinner Time on ISS
Communal meals are an important for crew cohesion
Other Support Tools

Holidays in Space

Crewmembers enjoy bringing Holiday cheer to the ISS. Each crew that visits the ISS during the Holidays receives a Stocking filled with goodies. The Stockings are provided by BHP and the Soft Goods Lab at Wyle. All stockings are made of fire retardant Nomex and artwork on each stocking is hand drawn and personalized.
ISS Ham Radio Equipment
Used primarily for school contacts (1:6 ratio)
ISS Crew Video Downlinks

• Clay Anderson participates in a Nebraska football game via a pre-recorded downlink message played during half-time.
ISS Crew 100 Day Party!

• Celebration for family, friends and coworkers on the ground celebrating 100 days on the ISS
• ISS crewmembers call the event and speak to attendees while the attendees are photographed with the “flat” crewmember
• “Flat” Clay Anderson and Gary Beven, MD at JSC the week prior to his 100 Day Party
Mission Metrics + Personal Crew Web Page
Typical ISS Mission

<table>
<thead>
<tr>
<th>Activity</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space-to-Ground w/ CDR from Home (pre-mission)</td>
<td>1</td>
</tr>
<tr>
<td>Private Family Conferences</td>
<td>21</td>
</tr>
<tr>
<td>Private Special Conferences</td>
<td>3</td>
</tr>
<tr>
<td>Crew Discretionary Events</td>
<td>2</td>
</tr>
<tr>
<td>Crew Webpage # of Files</td>
<td>1675</td>
</tr>
<tr>
<td>Sports Video</td>
<td>2</td>
</tr>
<tr>
<td>Greetings</td>
<td>6</td>
</tr>
<tr>
<td>Personal Videos</td>
<td>20</td>
</tr>
<tr>
<td>Books</td>
<td>24</td>
</tr>
<tr>
<td>Special Dates to Remember</td>
<td>25</td>
</tr>
<tr>
<td>Magazines</td>
<td>58</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>63</td>
</tr>
<tr>
<td>Photo Album</td>
<td>87</td>
</tr>
<tr>
<td>Podcasts</td>
<td>103</td>
</tr>
<tr>
<td>Internet Radio</td>
<td>110</td>
</tr>
<tr>
<td>Personal Music</td>
<td>131</td>
</tr>
<tr>
<td>TV Programs</td>
<td>204</td>
</tr>
<tr>
<td>Movies</td>
<td>265</td>
</tr>
<tr>
<td>News</td>
<td>577</td>
</tr>
</tbody>
</table>

All of this requires a lot of work to do it right.
Recipe for Success

Critical steps in the ISS BHP support services chain

1. Cadre of well trained clinicians with operational experience and dedicated support personnel
2. Clinicians begin relationship with future crews at time of astronaut selection
3. Astronaut—BHP familiarity grows over time and throughout training (e.g., annual evaluation)
4. Assignment of BHP team to crew member (and their family) at time of mission assignment
5. Adequate time with individual crew members before, during, and following spaceflight
6. Use of previous operational experience to better assist current and future crews
Challenge

• How do we transform our BHP knowledge and experience from a rich and large spaceflight environment to an exploration mission such as Mars?
The Future—Mars and other Exploration Missions

- Much greater distance from Earth—250 million miles (Mars)
- Much greater mission length—2.5 years
- Significantly greater risk—unable to return to Earth in an emergency
- Far greater consequence of hardware failure, illness, injury, or behavioral degradation
- Communication delays with Earth will make real time contact/conversation difficult or impossible (Mars round trip signal delay up to 44 minutes)
- Far greater importance will be placed on crew compatibility and psychological screening/preparation
Exploration Mission

- Life on board a smaller, perhaps more automated, vehicle for a much longer period will feel more confined and sterile—less rich and stimulating.

- Exploration missions will require a greater degree of personalized service from the BHP operations support team to counterbalance the environment:
 - Time delay issues

- Sleep and fatigue issues are unlikely to play as great a role, especially during outbound and inbound journeys:
 - May still occur during times of critical operations such as EVA’s

- The workload would be expected to be less—particularly on the outbound and inbound journeys. Productive activity will need to occur in order to avoid boredom and a sense of feeling trapped:
 - Timeline struggles are unlikely to be as much of a significant concern
Exploration Mission

• The first six weeks, the arrival and activity at destination, and the final six weeks are likely to be mission high points

• Privacy concerns will be more of an issue, especially with a mixed gender crew

• The infrequent crew friction seen on ISS, especially that borne of personality trait differences, may grow to intolerable levels on an exploration mission
 – Crew selection and preparation will be critical

• The transient neurocognitive decrement noted by some ISS crews requires objective investigation prior to an exploration mission
Exploration Mission

- ISS crew members who thrive on ISS may not have the optimal personality traits for an exploration mission
 - What are the optimal traits for either mission?

- The crew medical officer will require extensive training in the identification and treatment of behavioral health problems

- The crew will need to function autonomously and the ground will have to accept this but not allow the crew to feel abandoned
If you remain interested and want to get involved

Aerospace Medical Association

Space Medicine Association

www.asma.org

www.spacemedicineassociation.org
• Thank you to:
 – Greg Collins, MD for inspiring me to enter the field of psychiatry
 – Edwin Beven, MD, for showing me through a lifetime of dedication and service to the family and the Cleveland Clinic what it really means to be a physician