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ABSTRACT 

 
 From 1995 to the present the friction stir welding (FSW) process has been under 
study at Marshall Space Flight Center (MSFC). This is an account of the progressive 
emergence of a set of conceptual tools beginning with the discovery of the shear 
surface, wiping metal transfer, and the invention of a kinematic model and making 
possible a treatment of both metallurgical structure formation and process dynamics in 
friction stir welding from a unified point of view. 
 It is generally observed that the bulk of the deformation of weld metal around the 
FSW pin takes place in a very narrow, almost discontinuous zone with high deformation 
rates characteristic of metal cutting. By 1999 it was realized that this zone could be 
treated as a shear surface like that in simple metal cutting models. At the shear surface 
the seam is drawn out and compressed and pressure and flow conditions determine 
whether or not a sound weld is produced. 

The discovery of the shear surface was followed by the synthesis of a simple 3-
flow kinematic model of the FSW process. Relative to the tool the flow components are: 
(1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow 
with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a 
smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The 
rotating plug flow picks up an element of weld metal, rotates it around with the tool, and 
deposits it behind the tool (“wiping metal transfer”); it forms plan section loops in tracers 
cut through by the tool. Radially inward flow from the ring vortex component retains 
metal longer in the rotating plug and outward flow expels metal earlier; this interaction 
forms the looping weld seam trace and the “tongue and groove” bimetallic weld contour. 
The radial components of the translational and ring vortex flows introduce parent metal 
intrusions into the small grained nugget material close to the tool shoulder; if this feature 
is pronounced, “nugget collapse” may result. 

Certain weld features, in particular internal banding seen in transverse section as 
“onion rings” and associated surface ridges called “tool marks”, have long implied an 
oscillation flow component, but have only recently been attributed in the literature to tool 
eccentricity.  

Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to 
the shoulder, varies as pressure distribution on the tool determines where sticking	
occurs. Simplified power input estimates balanced against heat loss estimates give 
reasonable temperature estimates, explain why the power requirement changes hardly 
at all over a wide range of RPM’s, and yield isotherms that seem to fall along boundaries 
of parameter windows of operation.  



Key, apparently complex structural and dynamic features of the FSW welding 
process seem to have been successfully modeled and understood.  
 

1995: FSW COMES TO MSFC 
 
 In 1995 Marshall Space Flight Center (MSFC) engineer Jeff Ding brought a 
friction stir welding (FSW) apparatus to MSFC to see if solid state welding could 
eliminate fusion-welding problems of the new Li-containing aluminum alloy mandated for 
the Light Weight Space Shuttle External Tank. 

The author of this paper was assigned to study the physical basis of the FSW 
process. While technology per se does not require that its developers understand it, and 
much technological development has been and still is carried out by pure cut-and-try 
experimentation, understanding the physical basis of what one is doing suggests 
innovations, reduces risk of dangerous mistakes or wasted effort, and is occasionally 
critical to solving problems [1] holding back development. The MSFC welding group has 
long backed up its technological development efforts with research into the 
fundamentals underlying the technology. 
 At the time the earliest notions of FSW as chaotic mixing had given way to the 
“extrusion theory” of the friction stir mechanism. Frictional heating at the tool/metal 
interface was conceived as softening the weld metal adjacent to the tool. The softened 
metal was extruded back around the tool as the tool moved forward. 
 It was not clear what friction coefficient should be used. Nor was it clear how the 
extrusion theory related to tracer experiment results [2,3] or to the complex structural 
features of the weld. There was a mental image of a mechanism, but no real 
understanding, neither kinematic nor dynamic, of the process. 
 

LATE 90’s: THE DISCOVERY OF THE SHEAR SURFACE 
 
 Records no longer preserve the precise year, perhaps it was 1998, in which it 
was realized that the sharp cylindrical interface seen in Figure 1 between parent metal 
and the finely recrystallized metal in the wake of the FS weld could be treated as a shear 
surface like the shear surface in the shear plane model of the metal cutting process [4]. 
In metal cutting, chips with the same kind of extreme grain refinement as in the FS weld 
wake are observed [5].  
 An estimate of the mean shearing rate  across the shear surface can be made. 
 

	          (1) 

 
 
In equation (1) r is the radius of the shear surface,   is the angular velocity of the metal 
inside the shear surface (taken to be approximately the same as that of the tool), and 
is the thickness across the shear surface. Scaling  very roughly from Figure 1 at 0.001 
inch implies a shear rate of 4x103 sec-1.  
 In the following years it became clear how the shear surface, essentially an 
“adiabatic shear zone” [6,7], depends upon a strain-rate insensitive (plastic) constitutive 
equation. The shear surface is embedded in a widely distributed, slower flow field, 
possibly a viscous creep. The author has generally ignored the rotational “viscous creep” 
component, but the radial and axial components (embodied in the ring vortex flow	
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component--see below) have very visible effects upon weld structure and must be taken 
into account. 
 

	

	
	

Figure 1. Midsectional plan-view of macrostructure around FSW pin, tool spindle rotating 
counterclockwise at 220 RPM, travel to the right at 3.5 inches per minute in 0.317 inches 
thick 2219-T87 aluminum alloy. The weld was suddenly stopped and the pin backed out 
of its cavity, which has been replaced by a bubble-filled mounting medium. Note the very 
sudden refinement in structure at the shear surface. Note the increased thickness of the 
rotating plug of weld metal beneath the shear surface on the retreating edge of the pin to 
accommodate backflow of metal around the pin. In sections closer to the shoulder the 
shear surface moves out to enclose a wider expanse of rotating plug metal. 
 

 
1999: KINEMATIC FSW MODEL 

 
 In 1999 things came together and the simplified kinematic FSW model emerged 
[6,7,8,9]. The model was comprised a superposition of three components: 1. a uniform 
translation of V with respect to the tool, 2. a rotating cylindrical plug of radius r  and 
angular velocity   embedded in a continuum, and 3. a ring vortex circulation like a 
smoke-ring encircling the tool with local radial and axial velocity field components 
specified as needed. Each component flow field ( ) is simple enough so that it 

can be seen by inspection to conserve volume. Hence the superposition  
also conserves volume: 
 

    (2)
 

 
ROTATING PLUG EFFECTS 
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 The main effect of a rotating plug superposed upon a translating flow is to 
rotate, then release those elements of weld metal encountering the plug. 
Originally we took a merry-go-round as an analogue for the rotating plug as 
shown in Figure 2. If one were to walk straight across a rotating platform, the 
radial velocity component would initially take one deeper onto the rotating 
platform, then, with the shift onto the opposite side brought about by the platform 
rotation, the radial velocity component would take one back off the platform. 
Symmetry would take one off the platform along the same line as upon entering. 
	
	

	
	
	 	
Figure 2. Early presentation (internal 14 February 2000) of the rotating plug model. A 
segment of the line of marching figures marches across a merry-go-round platform and 
is whisked forward. A similar displacement occurs when a rotating plug runs through a 
tracer line [2].  
 
 

The radial trajectory of an element of metal inside the rotating plug is 
approximately:  
 

         (3) 
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Figure 3. Lateral weld seam oscillation on plan-view of bimetallic FS weld: 2219 
aluminum alloy on upper (advancing) side, 2195 on lower (retreating) side courtesy of G. 
Bjorkman of Lockheed Martin. Pin site (central hole) is 12.7 mm (0.5 inch) in diameter.  
The straight, unwelded seam on the right of the central hole becomes the wavy, welded 
seam on the left. While the 2219 metal appears to have entered the shear surface and 
been subjected to the grain refinement produced by its high shear rate, the 2195 metal 
appears to have been rotated around the tool in a slower peripheral flow resulting in a 
broader flow region and retaining more of the parent metal structural features. 

 
 

 
 Weld metal flows around the tool in an eccentric crescent of metal of thickness 
 incorporated into the rotating plug. The crescent is obvious in Figure 1, where the 
pin occupies almost all the area inside the crescent. Flow enters the forward shear 
surface at volume rate , and is removed at volume rate . By equating 
the two and integrating: 
 

         (6) 

 

It will be noted that the eccentricity  needed to accommodate backflow around the 

tool by “wiping metal transfer” is not very large.  
 
 

RING VORTEX EFFECTS 
 

The ring vortex is characterized by a radial velocity v , taken positive outwards. It 
alters the trajectory of a streamline in the rotating plug (not the boundary of the plug or 
shear surface as discussed above). 
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This, too, causes a lateral shift. If the radius of the rotating plug remains constant at ro, 
then 
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Since x is negative on the trailing surface, the only way inequality (9) can be satisfied is 
for negative values of v. Hence the intrusions occur next to the shoulder, where v is 
inward/negative, and not away from the shoulder, where v is outward/positive; this is as 
observed. Neglecting lateral shift [Equations (5) and (8)], the intrusions penetrate into 
the refined “nugget” metal from both sides to a depth 
 

         (10) 

	

Note that the intrusion is zero if  and if , all the way to the centerline, . 

If the lateral shift is taken into account, the intrusions are shifted toward the advancing 
side of the tool and the retreating side intrusion is exaggerated. 

 
 

 
 
 

	
	
	
	
	
	
	
	
	

	
Figure 5. Flow arms (ring vortex/translational flow) at the top of a transverse section of 
conventional friction stir weld of in 5 mm thick 2195-T6 aluminum alloy courtesy of J. 
McClure, University of Texas at El Paso. A lateral shift toward the advancing side (ring 
vortex/rotating plug flow) on the left, axial displacements (ring vortex flow), and an “onion 
ring” band structure (oscillation) are visible. 
 

 
Ring vortex effects are sensitive to tool design. Tools may be designed to 

produce multiple ring vortices or distorted ring vortices, with special structural effects. It 
is the ring vortex flow component that entrains contaminants on the weld metal surface 
and that may carry the contaminants deep into a weld.  Ring vortex effects are also 
sensitive to RPM, through temperature and mechanical driving effects. 
 

OSCILLATION EFFECTS 
 

The kinetic FSW model presented a new opportunity for interpretation of various 
features exhibited by FS welds. Certain features implied an oscillation. One such 
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Presumably equation (9) breaks down at the weld edge where . To correct for 
the edge regions one would have to add to the  term an estimate of an oozing 
rate out from under the shoulder perpendicular to the direction of motion. A cursory 
observation suggests that the striation heights vary with . Along the centerline where 
the tool displacement is  and , the contour (h vs. x) of the “tool marks” 
can be estimated: 
 

       (12) 

 
 
Further work needs to be done to understand banding and “tool marks”. The contours of 
the “tool marks” don’t seem to be sinusoidal. The banding contrast appears to be a result 
of deformation texture [14]. Presumably the textural distinctions are acquired as the pin 
pumps metal toward and away from the “tool mark” striations along the hottest and most 
easily deformed channels in the weld metal, i.e. along the shear surface. These 
channels are abandoned in the wake of the weld. In longitudinal section about a tool 
cavity they appear to be deformed by the ring vortex flow to bulge in the outflow region 
to form the “onion ring” band structure and to fall back into the shear surface and 
disappear in the inflow region close to the shoulder. 
 

VARIETIES OF ROTATING PLUG 
	
 Conventional FSW rotating plugs start out as a blob on the bottom of a 
penetrating tool. Where the pressure P is low enough to permit it, slippage occurs, that is 
slippage occurs at: 
 

           (13) 

 
where  is the weld metal flow stress and  is the coefficient of friction at the tool/weld 
metal interface. If the pressure is higher than inequality (13) permits, the surface seizes 
and shear in the weld metal takes over. Unlike the slip mechanism, the shear 
mechanism is not confined to the tool/weld metal interface, but can move out into the 
weld metal to reduce the torque required to rotate the tool and/or the penetration or 
translation force requirement. It may be anticipated that as a chain breaks at its weakest 
link Nature will select the shear surface shape easiest to deform, and the shapes of the 
shear surface may be estimated by minimal principles (i.e. calculus of variations).  
 As the pin penetrates deeper into the weld metal surface, metal must flow up to 
the surface to make room for it. At the surface the pressure is zero, but below the 
surface the pressure builds as it must force metal out against shearing resistance from 
the adjacent metal. Suppose that a smooth (not threaded) pin of radius r  is being 
inserted into weld metal and that the pin slips at shear forceP . The metal upflow is 
taken to be in the shape of a hollow cylinder of thickness . The shear force on the 
external surface is taken to be . Along the slipping hollow cylinder the pressure P then 
changes with depth z  according to: 
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J. Talia at Wichita State University introduced a fixed shoulder (detached from 
the pin) to enable high-rotational speed FSW by eliminating the excessive heating 
contribution of the rotating shoulder; a transverse weld structure [15] exhibiting a coarse 
structure around the pin and a refined nugget structure under the pin suggests slippage 
around the pin with attachment of a rotating plug to the bottom surface of the pin. 

S. Guerdoux [16] has constructed a finite element model such that, “Figure 137 
shows an example of a non-successful deposition in which case a void is formed at the 
lower advancing trailing side of the probe/matrix interface. It is to be noticed that the 
voids actually form on the advancing side in the actual process, for large range of alloys. 
Some voids may form periodically while other may result into so-called ‘worm holes’.” 
Radial symmetry of boundary conditions is disrupted.  

 
THERMAL EFFECTS 

 
 If the slippage area on the tool is not large, the torque M required to rotate the 
tool is: 
 

        (15) 

 
 The flow stress t is at the shear surface derives from a shear rate insensitive 
mechanism, otherwise, as for viscous constitutive equations, a shear surface 
discontinuity would be suppressed by shear rate variations. Metal flow stresses are in 
general not very strain rate dependent. The flow stress of a metal drops gradually from 
absolute zero temperature, falls precipitously at roughly half its melting temperature, and 
trails off to zero close to the melting temperature. Only the “trailing off” region is 
important for friction stir welding. Here the flow stress may be approximated roughly by a 
linear relation [17]: 
 

         (16) 

 
 Suppose that the mechanical power supplied, , is dissipated as heat 
conducted away from the shear surface QCond  at temperature T and radius r into the 
weld metal at ambient temperature Toand radius ro through thermal conductivity k and 
also as heat required QConv  to bring metal of density r and specific heat C approaching 
the shear surface at weld speed V to the shear surface Temperature T. Let the tool pin 
radius be r , the lengthw , and the shoulder radiusRS .  

	

	 (17)	

	
Given values for all the tool dimensions and material properties, the weld 

parameters, and a rough estimate of ro, to which the expression is not sensitive (it only 
appears in a logarithm), equation (17) allows an estimate of weld temperature.  

Given a fixed temperature, it is possible to estimate the relationship between the 
weld speed and tool rotational speed for an isotherm: 
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create conditions for forming holes and trenches. Low melting phases may melt and be 
redistributed. With further study it may be possible to relate processing parameter 
boundaries to specific defects. A major focus of our current research is defect formation. 
 

FORCES 
 
 Forces are a more difficult problem than torque. The drag force on a tool with 
minimal slippage area may be estimated by: 
 

   (19) 

 
But to compute the drag force one has to know how the shear stress  and pressure P
vary around the tool. Without such variation the drag of equation (19) is zero. More than 
one researcher has remarked to the author on how surprisingly low the FSW drag force 
can be. Rumors of negative drag (like an automobile wheel) exist, but the author is not 
aware of a well-attested case. One of the confusing things about drag force is that 
sometimes it drops with increasing tool RPM and sometimes it rises; over a broad range 
it may fall, then rise. This suggests two drag mechanisms operating together. Equation 
(19) has two parts, a shear drag and a pressure drag, which could be consonant with the 
observations. The drag force is not yet understood.   
 The lateral tool force is computed like the drag force, with similar difficulties. The 
plunge force of conventional FSW and the pinch force of self-reacting FSW require a 
knowledge of pressure variation with depth requiring computations like that of equation 
(14), but more elaborate.  
 Somewhat easier than absolute computations, estimates of perturbations in 
forces (or moments) due to an encounter with structures like holes, tack welds, thermal 
sinks (e.g. fixture hold-down clamps), etc. can be made through their effects on the 
shear surface.     
 

CONCLUSIONS  
 
 In 1995 the solid-state FSW process was brought to MSFC with a view to 
overcoming fusion-welding difficulties of a new lithium-containing aluminum alloy 
mandated for the new Space Shuttle Lightweight External Tank. Study toward a 
comprehensive theoretical understanding of the friction stir process began at this time at 
MSFC. By 1999 the shear surface had been recognized and a kinematic model of the 
FSW process synthesized. From this time followed the semi-quantitative interpretation of 
a wide range of diverse FSW features, structural and thermo-mechanical.  
 It may be possible to increase the sharpness of the picture with Finite Element 
Modeling (FEM). Our studies suggest that: (1) the constitutive equation should include 
both a strain-rate insensitive and a strain-rate sensitive, temperature-dependent flow 
mechanism, and (2) the tool/workpiece boundary condition should be pressure-
dependent, slipping above a pressure-dependent limiting shear stress and sticking 
below.  
  Whether or not resources permit the development of a more precise 
comprehensive FSW model, the existent semi-quantitative model with its illuminating  
images of process mechanisms and its implications for tool design and parameter 
selection is available at MSFC as a conceptual tool for FSW process engineering as-is 
or with further development. 

FDrag ~    rd dr2  dz2 sin
Shear
Surface

  P  rddzcos
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LIST OF SYMBOLS 
 

 
 specific heat of weld metal 

 drag force on pin or tool 
 height of metal discharge from under tool shoulder 
 thermal conductivity of weld metal 
 moment or torque on tool 

 pressure 
QCond  heat conducted away from tool into environment 
QConv  heat convected away from tool 
 radial coordinate from center of shear surface 

	 radial coordinate from center of shear surface to approximately ambient 
temperature 	 	

 radius of tool shoulder 
 temperature 

 melting temperature of weld metal 
 ambient temperature 

 radial velocity component 
 weld speed 
 vector velocity field 
 length of friction stir pin 
 coordinate from center of shear surface in direction of weld motion 
 coordinate from center of shear surface toward retreating side of tool 
 axial coordinate along pin 

 
 rate of shear 
 eccentricity of tool 

C
FDrag

h
k
M
P

r
ro

RS

T
Tmelt

To

v
V
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w
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 1. thickness across shear surface [Equation (1)]; 2. thickness of eccentric portion 
of rotating plug [Equation (6)]; 3. thickness of metal upflow region around tool 
[Equation (14)] 

 coefficient of friction 
 angular coordinate from direction of weld motion 
 density of weld metal 
 shearing flow stress 
 angular velocity of rotating plug 

 

 drop in shear flow stress per unit rise in temperature close to melting temperature 

(taken as an approximate constant) 
 
 

FIGURE CAPTIONS 
 
1. Midsectional plan-view of macrostructure around FSW pin, tool spindle rotating 
counterclockwise at 220 RPM, travel to the right at 3.5 inches per minute in 0.317 inches 
thick 2219-T87 aluminum alloy. The weld was suddenly stopped and the pin backed out 
of its cavity, which has been replaced by a bubble-filled mounting medium. Note the very 
sudden refinement in structure at the shear surface. Note the increased thickness of the 
rotating plug of weld metal beneath the shear surface on the retreating edge of the pin to 
accommodate backflow of metal around the pin. In sections closer to the shoulder the 
shear surface moves out to enclose a wider expanse of rotating plug metal. 
 
2. Early presentation (internal 14 February 2000) of the rotating plug model. A segment 
of the line of marching figures marches across a merry-go-round platform and is whisked 
forward. A similar displacement occurs when a rotating plug runs through a tracer line 
[2]. 
 
3. Lateral weld seam oscillation on plan-view of bimetallic FS weld: 2219 aluminum alloy 
on upper (advancing) side, 2195 on lower (retreating) side courtesy of G. Bjorkman of 
Lockheed Martin. Pin site (central hole) is 12.7 mm (0.5 inch) in diameter.  The straight, 
unwelded seam on the right of the central hole becomes the wavy, welded seam on the 
left. While the 2219 metal appears to have entered the shear surface and been 
subjected to the grain refinement produced by its high shear rate, the 2195 metal 
appears to have been rotated around the tool in a slower peripheral flow resulting in a 
broader flow region and retaining more of the parent metal structural features. 
 
4. Schematic “tongue and groove” structure of bimetallic self-reacting weld. Where the 
ring vortex flow is radially inward the seam trace is held longer in the rotating plug and 
consequently is shifted toward the advancing side of the weld. At the weld center the 
ring vortex flow is radially outward, the seam trace is jettisoned sooner to the wake, and 
the seam trace is shifted to the retreating side of the weld. This sketch shows only 
general trends and not the usual complications that round off and distort the seam trace. 
Nor does it show other features that would be superimposed upon a real weld transverse 
section, for example nugget grain refinement or flow oscillations. 
 
5. Flow arms (ring vortex/translational flow) at the top of a transverse section of 
conventional friction stir weld of in 5 mm thick 2195-T6 aluminum alloy courtesy of J. 
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McClure, University of Texas at El Paso. A lateral shift toward the advancing side (ring 
vortex/rotating plug flow) on the left, axial displacements (ring vortex flow), and an “onion 
ring” band structure (oscillation) are visible. 
 
6. Formation of “tool marks” and internal banding. Lateral section of conventional friction 
stir weld cavity in 5 mm thick 2195-T6 aluminum alloy courtesy of J. McClure, University 
of Texas at El Paso. The lead angle of the tool is 3o. “Tool marks” emerge from trailing 
edge of shoulder at right where the shear surface encounters the crown surface. Bands 
emerge from lower portion of shear surface where the ring vortex flow is outward. Bands 
do not emerge from the upper region of the trailing shear surface where the ring vortex 
flow is inward. 
 
7. The rotating plug of weld metal sticks to the tool ( ) and shears past the 
stationary weld metal at the shear surface in the simplest FSW model. The part of the 
weld surface that slips ( ) is not part of the rotating plug. The sketch above 
represents the flared shear surface of an almost fully pressurized conventional FSW 
tool. As the axial plunge force on the tool is reduced, the sticking surface decreases and 
the slipping surface increases. At initial penetration with no shoulder contact, the sticking 
surface may be confined to the bottom of the pin. A relatively slow secondary flow 
throughout the rotating plug and neighboring weld metal volume may be taken into 
account in a more elaborate model. 
 
8. Approximate theoretical isotherms consist of a bundle of straight lines proceeding 
from a single point on the V-axis. This morphology roughly fits the boundaries of the 
processing parameter window. 
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1.  Visualize a basic conceptual model. Start as simply as possible.

2. Construct a mathematical representation of the model. Note:

a) Parametric trend effects.

b) Computed numerical magnitudes. 

3.  Critique the model. Look for modifications leading to greater 
verisimilitude. 

4.  Visualize a new model and repeat.

A Note on Method



Summary
1995 FSW studies begin at MSFC
1999 Annus Mirabilis:

Discovery of
Shear Surface and Rotating Plug
Wiping Metal Transfer
Ring  Vortex Circulation

Synthesis of
Kinematic FSW Flow Model

2000 Applications begin with Explanations of Tracer Patterns
2004 Oscillation Effects and FSW Band Structure
2010 Extension to Thermal and Dynamic Analyses:

Discovery of
Isotherm Parameter Window Boundaries



Shear Surface and Rotating Plug



Shear Surface and Rotating Plug



Streamlines & Shear Surface
Mathematical Representation



Rotating Plug Displacements



Ring Vortex Displacements of 
Weld Seam



Shear Surface 
Oscillation Effect



Oscillation Banding and 
“Tool Marks” with Ring 

Vortex Distortion



Ring Vortex Flow Arms and 
Lateral Displacement



Dynamic Application: 
Drag Force



Dynamic Application: 
Temperature



Conclusions

By 1999 the shear surface had been recognized and a kinematic model of the FSW 
process synthesized. This was followed by the semi‐quantitative interpretation of a 
wide range of diverse FSW features, structural and thermo‐mechanical.

Finite Element Modeling (FEM) may increase the sharpness of the picture. An FEM 
model should incorporate:

1. A dual (plastic and viscous flow) constitutive equation,
2. Pressure sensitive stick‐or‐slip boundary conditions.

The imagery inherent in the existent MSFC model makes it a potentially especially 
useful conceptual tool for FSW tool design, parameter selection, and interpretation of 
weld structural features.


