Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

P.Q. Xu1,2,*, S. Pawson2, D.F. Rault3, K. Wargan1,4, P.K. Bhartia2

1. Science Applications Inti Corp. (SAIC), Beltsville, MD, USA
2. NASA Goddard Space Flight Center, Greenbelt, MD, USA
3. NASA Langley Research Center, Hampton, VA, USA
4. Science Systems and Applications Inc. Lanham, MD, USA

Contact: philippe.xu@nasa.gov, tel.: (301) 614-6525

[ABSTRACT]

The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Suomi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 km to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA’s Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The “truth” for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the “truth” and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the “truth” enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data.

This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the rms(O-A) close to 0.1ppmv from 100hPa to 0.2hPa, and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere. Additional studies are needed to evaluate the importance of the extremely high vertical resolution of the OMPS/LP ozone data.