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 Update and quantify the expected 5 – 10% achievable BLI vehicle-level 
performance benefit

 Leverage previous open-literature BLI system studies

 Perform high-level, propulsion-system-focused, vehicle-level system study 
using UTRC’s Integrated Total Aircraft Power Systems (ITAPS) experience

 Develop a distortion-tolerant fan stage design that simultaneously targets 
less than 2% reduced efficiency and less than 2% reduced stall margin 
relative to a clean-inflow baseline

 Utilize full-wheel, unsteady 3-D CFD fan design capability

 Ensure fan design consistent with achieving maximum BLI vehicle-level fuel 
burn benefits

N+2 Program Goals
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Limiting Theoretical Benefits
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Max Benefit for 12.4% BLI (aircraft upper 

center area, LE to TE)

(Smith1, 1993)

3-engine flush,

AR = 1

Propulsive Efficiency BLI Benefit for Advanced HWB Aircraft (Boeing N2A-EXTE)

Relative to Clean-Inflow, Advanced Technology Podded Baseline

3-engine, 

AR = 3

3-engine, 

AR = 7

Distributed Fan 

Propulsion, AR = 7

5-engine, 

AR = 4

R = 1

R = 0
R = 1

R = 0

Max Benefit for 11% BLI (aircraft upper 

surface to x/c = 0.8)

(Smith1, 1993)

5-engine, 

AR = 2

1Smith, L. H., Wake Ingestion Propulsion Benefit. AIAA Journal of Propulsion and Power, Vol. 9, No. 1, Jan. – Feb., 1993
2Lord, W. K., Personal Communication. Pratt & Whitney, May 2010
3Tillman, T. G., Hardin, L. W., Moffitt, B. A., Sharma, O. P., Lord, W. K., Berton, J., and Arend, D., System-Level Benefits 

of Boundary Layer Ingesting Propulsion.  Invited presentation, AIAA 49th Aerospace Sciences Meeting, January 2011.

Max Benefit for 15% BLI (ideal propulsor, 

aircraft upper center surface to x/c = 0.9)

(Lord2, 2010)

Propulsion / airframe integration configuration can determine ingested boundary layer 

drag fraction & resulting maximum achievable upper benefit

Theory (Smith1) Cycle Analysis 

(NPSS3)

AR = Inlet Aspect Ratio (Width / Height)
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System Study Approach

Parameter Units

Engine BLI benefit % TSFC

Nacelle drag reduction % Aircraft Drag

Nacelle weight reduction % TSFC

Inlet weight increase % TSFC

Inlet excess pressure loss % TSFC

Flow control bleed / hp 

extractions

% TSFC

Fan efficiency reduction % TSFC

BLI Benefits

BLI Penalties

• High-level system study to define design directions & 

enabling technology investments

• Advanced technology baseline propulsion system (BPR = 16, 

FPR = 1.35 UHB propulsion system)

• Study based on engine sensitivities & aircraft trade factors for 

a single, advanced UHB engine cycle

• Impact of propulsion / airframe integration and engine weight 

not addressed (i.e., aircraft volume changes, external contour 

modifications, inlet / airframe design, etc.)

• Engine sensitivities obtained using NPSS models; other 

inputs from simple, low-order models

• Aircraft trade factors from ITAPS advanced commercial 

transport aircraft (similar to Boeing BWB reference aircraft)

Engine Sensitivities Help Identify Technology Challenges:

High-performance, 

distortion-tolerant fan

Low-loss, distortion-

optimized inlet

Flow control extraction penalties 

challenging in light of limiting 

theoretical benefits



System Study Results

• Boeing N2A-exte reference vehicle (using UTRC ITAPS large commercial transport blended 

vehicle trade factors)

• Podded, aft, advanced technology UHB baseline propulsion system (BPR = 16, FPR = 1.35)

• 5-engine architecture relative to 5-engine podded baseline to highlight BLI benefit

• Study was carried out for a fixed engine cycle and did not incorporate engine weight or 

propulsion / airframe integration effects on the aircraft

• Comparatively small ingested drag fraction for the study aircraft limits the maximum 

achievable benefit (upper, center fuselage boundary layer yields D / T ~12-15%)

AR = Inlet Aspect Ratio (Width / Height)

Propulsion system architectures that provide system-

level benefits require low-loss, low-drag inlets

BLI benefit limited by viscous drag accessible 

on N+2 vehicle upper surface (D / T = 12-15%)1

1Figure & CFD solution from  the Boeing Company, Kawai, R. T., Friedman, D. L., 

and Serrano, L., Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet 

Configuration and System Studies, NASA CR-2006-213534, December 2006.



System Study Identifies Key BLI-Enabling Technologies

• Inlet flow control

• Laminar flow wings

High-performance, distortion-

tolerant turbomachinery

Compact, low-loss, 

low-drag inlet



Optimization-based Parametric Inlet Design for Embedded Propulsion

25 global control points (blue) manipulate ~3000 

detailed mesh control points (red)

• Automated optimization enables exploration of wide 

regions of multi-parameter design space

• Toolset can analyze over 1000 cases in a week

• New grid morphing capability (SCULPTOR) key enabler

• Inlet aspect ratio

• Lip contour & thickness

• Duct offset & length

• Wall curvature & shape

• Upstream airframe contour

Minimize total pressure 

loss & distortion



Distortion-Optimized Inlet Design Progression

NASA Inlet A:  Baseline (AR = 1.9, L / D = 3, highly offset)

UTRC A:  Shape-optimized Inlet A with flow control

UTRC PA:  Improved UTRC A with use of high-fidelity, viscous CFD and automated optimization

UTRC P1:  Point of departure for global optimization; reduced L / D from 1.5 to 0.8; implemented 

reduced offset

UTRC P2:  Local inlet wall shape optimization of P1

UTRC P3:  Combined global / local shape optimization including inlet lip & U. S. airframe contour

UTRC P4:  Final inlet design including optimization of inlet lip & U. S. airframe contour; L / D reduced 

from 0.8 to 0.6

Inlet A UTRC A UTRC P1 UTRC P4

 

Baseline Geometry: CFD Results 

Detailed flow field solution

Throat Section                             Mid-plane Section                                AIP Section

 
Figure 1. Total pressure field for the NASA “inlet A” at reference conditions at throat section, along the inlet’s 

mid-plane, and AIP cross-section.  

Point of departure for 

UTRC P-series inlets

Aerodynamic Interface Plane (AIP) total pressure contours



NASA Inlet A
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Parametric A

UTRC P1 UTRC P2

NASA A

UTRC A

UTRC PA

UTRC P1

UTRC P2

0 0

RDEES Phase 1

RDEES Phase 2

Optimization-based Parametric Inlet Design
Design progression summary

• Inlet excess pressure loss reduced ~3x relative to Phase 1 optimized 

inlet & ~4 – 5x relative to original Inlet A starting point

• Dominant distortion harmonic amplitudes reduced ~30 – 50% relative 

to original Inlet A starting point

Largest reduction of the first 

three harmonic amplitudes

P4

P4



Fan Response to Distortion-Optimized Inlet

Fan Efficiency Reduction (%)

Inlet enables fan to meet 

performance target

Inlet A P3 Inlet

Δβ (deg.)

Excursions in Fan Blade L. E. Relative Incidence from Clean Inflow

Inlet significantly improves fan 

interaction with incoming distortion

(Two U. S. BC’s)



Fully-Coupled Inlet / Fan CFD Analysis

• Initial coupling with inlet / fan; steady CFD analysis completed

• Converged solution used to initialize fully-coupled inlet / fan / FEGV 

unsteady CFD case (~80M grid points, ~100+ processors)

• Fully-coupled unsteady analysis currently in progress to validate inlet & 

fan designs

• Future work can extend coupling to include entire propulsion system and 

airframe domain



Conclusions

• A high-level, trade-factor-based system study has demonstrated that significant system-

level benefits can be achieved with BLI propulsion

• Study used a fixed, ultra high bypass ratio advanced engine cycle and Boeing N+2 BWB aircraft; engine weight & 

propulsion / airframe integration effects were not considered

• ~3 – 5% fuel burn benefit identified for current N+2 study

• Significantly larger benefits (order ~10%) are possible for N+3 configurations where more airframe boundary layer 

may be ingested into the engines

• The benefits of flow control were found to be largely offset by engine extraction penalties for N+2 airframe & limited 

BLI available to the engines (flow control likely to trade better for N+3 configurations with higher BLI fractions)

• Benefits are relative to an aggressive baseline (pylon-mounted advanced UHB propulsion system)

• The system study has identified a low-loss inlet and high-performance, distortion-tolerant 

turbomachinery as key technologies consistent with achieving net system level benefits

• Optimization-based parametric design has yielded a significantly improved inlet that meets 

the requirements identified in the system study

• Inlet excess pressure losses reduced by ~3-5X

• Dominant distortion harmonic amplitudes reduced ~30-50%

• Inlet length reduced by over 50% relative to P-series inlet initial geometry

• Fan efficiency loss reduced from 6% to 1-2%

• Preliminary design results show that coupling effects (airframe / inlet / fan / FEGV) will 

likely play a key role in BLI propulsion design


