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Abstract   
We present our strategic experiment and thermochemical analyses on combustion flow using a subframe 
burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising 
ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In 
the presentation, we briefly describe an experimental methodology that generates transferable calibration 
standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic 
technology was applied to simultaneous measurements of temperature and chemical species in a swirl-
stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of 
the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it 
impact on the subsequent combustion process in the model combustor.  
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STRATEGY   
 Advance a point-wise single-shot laser Raman 

diagnostics 
 A series of experiments: 

           1. Calibration on reference burners; 
           2. Testing on realistic burner; 
           3. Increase chemical complexity. 

GOAL 
Provide accurate quantitative scalar data for “benchmark tests” for CFD combustor code. 

TECHNICAL CHALLENGE   
 Simultaneous measurements: temperature, 

major species, mixture fraction. 
 Accuracy: uncertainty <5%. 
 Optically-harsh environment: high pressure, 

geometric limitation, optical interference; two-
phase flows. 
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SE-5 High-Pressure Turbulent 
Combustion Facility 

  Pressure up to 30 atm 
  Gaseous and liquid fueled combustion 
  Advanced laser diagnostics 
  Air can be preheated to 1000F 

APCD Combustion Diagnostics Facility  
  Diagnostic development & calibration 

Facility 
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  Developed a patent-pending optical gating scheme: Subframe Burst Gating (SBG). 
  First-ever single-shot polarization-resolved Raman spectroscopy in liquid-fueled 

combustion, that enabled interference (noise)-free scalar measurements. 
  Significantly improved signal visibility (5 times) in combustion while eliminating a 

need of a conventional mechanical shutter for gating. 

Interference-free Raman spectroscopy 
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Single-shot background-free measurement 

 A fuel-rich n-heptane flame 
 A pair of orthogonally-polarized 

Nd:YAG 532-nm pulsed lasers 
(650 mJ/pulse) 



Raman Spectra 
CH4/air flames, fuel-rich, Hencken burner,  

500-shot averaged  

Species:  
Super-pixel Integration  

Temperature:  
Stokes/anti-Stokes ratio of N2 
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n0: Excitation frequency (cm-1); ns: Raman shift (cm-1);  
h: Planck’s constant (J/s); c: Speed of light (cm/s); 
k: Boltzmann constant (J/K); T: Temperature (K)  

Calibration Experiment (I) 

 
Species 

 
Integration limits 

(nm) 

Integration Width 

(nm) (pixels) 

CO2 

(v1,2v2) 565.5, 578.0 12.5 48 

O2 578.0, 581.7 3.7 14 

CO 596.7, 601.7 5.0 19 

N2 601.8, 608.4 5.4 24 

CH4 (v1) 625.4, 631.9  6.5 25 

H2O 644.9, 662.1 17.2 66 

H2 662.2., 685.1 22.9 84 



 Diagnostic thermometry cross-
check (premixed CH4/air flat-flame) 

 Stokes/anti-Stokes (SAS) ratio of 
N2 vibrational Q-branch band vs. 
CARS (Meier, DLR) 

Calibration Experiment (II) 
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Calibration Experiment (III) 

 Temperature profiles of the reference standard (calibration) gaseous 
flames: H2/air flat-flame; CH4/air flat-flame; C7H16/air flat-flame. 
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Calibration Experiment (IV) 

 Complete transferable Raman 
calibration matrix: 
empirical/theoretical calibration 
coefficients to determine the major 
species concentration. 

 Corrections of crosstalk between 
O2 and CO2. 
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Calibration Experiment (V): 
calibration matrix 

Si  = ΛEL ki,j(T) Ni 

Ni: Number density, species i 
Λ:  Optical throughput/efficiency  
EL: Excitation laser energy  
ki,j: Raman calibration matrix element  
Si:   Raman scattering signal  
       (super-pixel count) 

, or 
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 True scalar value (compared w/ adiabatic chemical equilibrium): C7H16 flat-flame test. 
 Measurement accuracy:  

Species CO2 O2 N2 CO H2O  H2 

Uncertainty 2.1% 6.9% 1.4% 8.5% 1.0% 5.6% 

Calibration Experiment (V) 

Ni  = (1/ΛEL) ki,j
-1(T) Si  Inverse matrix formula 

for N.D. determination  



a. 

 
 Modified angled 6-jet (1 mm dia. each) 

gaseous fuel Lean-Direct Injection 
 CFD friendly design 
 Interchangeable between gaseous and 

liquid fuel injectors 
 Swirler (1” cup): 60-deg and 45-deg. 
 Latest run: Φ = 0.74, P = 250 psia, 940 

slm air.   

Simulation Credit: C. Wey (RTB) 

Single-Cup LDI Burner for Validation 
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Shortwave-pass filter 

Longwave-pass filter 

532nm, 8ns, 10Hz, 
<700 mJ/pulse 

Raman Diagnostics Setup (point-wise): 
New Dual-SBG Detection 
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Raw spectral data (10-Hz repetition rate). 
Raman frequency signature  →  Chemical composition 
Random changes in intensity  → Turbulent mixing 
Simultaneous measurements of multiple variables → Combustor code  

validation 

Single-Shot Raman Spectra 
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Scalar Contour (averaged) 

 
 Temp: ave. low 700 K; ave. 

high 1400 K. 
 Side-spreading, low-profile 

flame (indicated by the 
temp). 

 Majority of mixing within 8 
mm height. 

 Almost no residual fuel 
above 15 mm height. 

 Predictable CO2, H2O 
(combustion product) 
profiles in post-flame zone. 

Temp. Mix. Frac. 
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CH4 

O2 CO2 H2O 

x 

r 

CH4 air 
Φ = .74 
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Scalar Contour (standard deviation) 

 
 Temp RMS shows the region with swirl-induced 

turbulent-chemistry interaction. 
 Mixture fraction and fuel RMS support the idea. 

Temp. Mix. Frac. CH4 
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Thermochemical Analysis (I) 

Near fuel exit plane:  
(x,r) = (2,0) – (2,16) 

x 

r 

 
 Highly turbulent (mixing) 

region indicated by the largest 
scatter in mixture fraction 
(scatter plots). 

 Reaction incomplete (3-scalar 
correlation).  

 Co-existence of cold fuel and 
oxidizer – unburnt pockets. 

r 
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Thermochemical Analysis (II) 

Intermediate height:  
(x,r) = (16,0) – (16,16) 

x 

r 

 
 Reaction zone: reached at the 

highest temp (approx. 2000K 
with the widest temp 
distribution (PDF/scatter plot).  

 Unique bimodal distribution 
(PDF) – recirculation zone. 

 Little fuel residual (3 scalar 
correlation). 

r 
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Thermochemical Analysis (III) 

r 

Post flame:  
(x,r) = (42,0) 
– (42,16) 

x 

r 

 
 Post-flame zone: 

homogeneous, well-reacted 
region indicated by normal 
(narrower) distribution. 

 No residual fuel. 
 Very little scatter in mixture 

fraction (end of fuel-air mixing) 
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Thermochemical Analysis (IV) 

50 s-1 

1400 s-1 

Adiab. equil.  

 
 Overall profile agreement with 

laminar flame calculation (UC 
Berkely) – precision of the 
measurement. 

 Large number of samples (mixing 
and reaction zone) out of adiabatic 
equilibrium condition – nature of 
non-premixed turbulent flames. 

 Dominant partially premixed 
combustion regime. 

 A majority of the measured 
samples (at the post flame zone) 
indicated complete or near-complete 
reaction. 

 Mixing-only conditions (i.e., 
preheated to below-ignition-point 
temperature) following the global 
equivalence ratio of the flame: 
Evidence of fast premixing. 

Post-flame Near burner 
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High-Speed Raman Scattering Measurements 

 
 Diagnostics for combustion dynamics and instability. 
 Demonstration in a fuel-lean H2-air flat-flame. 
 Single-shot Raman spectra at 1 kHz data rate with a 527-nm DPSS Nd:YLF 

laser (30 mJ/pulse, 30W) and a high-speed image-intensified CCD camera. 
  Trade-off: data rate vs. accuracy  
 10-kHz system under development.  

O2 

N2 

H2O 

1 kHz rep. rate 
20 single-shots 



Summary 

 
 Significant upgrade to SE5 high-pressure turbulent combustion 
validation facility (nasa grc): available for code-validation 
experiments. 
 Unconventional laser Raman diagnostics (double-SBG) is 
invented for routine operations. 
 Generated one-of-the-kind quantitative multi-scalar data for 
swirl-stabilized combustion at 250 psia (17 atm). 
 Our thermochemical analysis explored nature of the turbulent 
flame structure.  
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