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This presentation contains Wind-US results presented at the 1st Propulsion Aerodynamics Workshop.  The 

The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion 

Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational 

computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from 

representatives from government, industry, academia, and commercial software companies.  Participants were 

were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and 

mesh type and refinement, solver numerical schemes, and turbulence modeling. 

 

The first set of challenge cases involved computing the thrust and discharge coefficients for a series of convergent 

convergent nozzles for a range of nozzle pressure ratios between 1.4 and 7.0.   These configurations included a 

included a reference axisymmetric nozzle as well as 15°, 25°, and 40° conical nozzles.  Participants were also asked 

also asked to examine the plume shock structure for two cases where the 25° conical nozzle was bifurcated by a 

bifurcated by a solid plate.  The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 

ratio of 1.52 and an offset of 1.34 times the inlet diameter.  Boundary layer profiles, wall static pressure, and total 

and total pressure at downstream rake locations were examined. 
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Workshop Objectives 

• Assess the accuracy of computational fluid dynamics 

for air breathing propulsion applications. 

– Surface static pressure predictions 

– Inlet recovery and distortion 

– Nozzle thrust and discharge coefficients 

• Assess current numerical prediction capability. 

–  (e.g., mesh, numerical schemes, turbulence modeling, 

computing requirements, and modeling techniques) 

• Develop practical guidelines for 2-D and 3-D 

simulations. 

• Select CFD studies will be performed as a blind trial 

and compared with the available experimental data 

during the workshop. 
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Workshop Test Cases 

• Reference Axi-Nozzle 

 

 

 

 

 

• 25° Conical Nozzle with 

splitter plate 

 

 

 

• 15,25,40° Conical Nozzles 

 

 

 

 

 

• Serpentine Inlet (S-Duct) 

[Blind test case] 
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Workshop Format 

• Each group will give a 10 minute presentation for 

each of the two test cases. 

– Nozzles will be discussed in the morning. 

– S-Duct will be discussed in the afternoon. 

• Organizers will present consolidated results versus 

experimental data and try to summarize the overall 

findings. 

• Select results will be presented at the 2013 AIAA 

Joint Propulsion Conference. 
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Through Convergent-Conical Nozzles, Including a 
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Basic Engineering, pp. 926-932 , Dec. 1972. 
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PAW Nozzle Cases 

 Instance 1 (complete) 

– 4 axisymmetric nozzles (3.0in Dia) 

• Reference 

• 15° conical 

• 25° conical 

• 40° conical 

– NPR: 1.4-7.0 

– 40 simulations 

– Requested data: 

• Cd,Cv 

• Mwall on nozzle wall 

• Mwall from rake in jet plume 

 Instance 2 (complete) 

– Compare jet plume for NPR=4.0: 

• 25° conical, axisymmetric 

• 25° conical w/Splitter plate 

– Requested data: Flowfield p,T,M,θ 

 Instance 3 (in progress) 

– Time-accurate simulation of splitter plate 

vortex shedding for NPR=1.6 
•  25° conical w/Splitter plate 

– Requested data: flowfield snap-shot 
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25° Conical Nozzle 

w/Splitter Plate 

Reference Conical Nozzle 25° Conical Nozzle 
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Computational Strategy: Solver 

• Wind-US v3.165 

– RANS / Hybrid-LES solver 

– Structured and unstructured grids 

– Numerous turbulence models, 

numerical schemes, and  

boundary conditions 

 

• All cases: 
– Structured grid solver 

– RANS with SST turbulence model 

(no compressibility corrections) 

– Roe 2nd-order physical spatial 

integration scheme (default) 

– Minmod TVD grid flux limiter 

(default) 

– Inflow: p0, T0 held 

– Outflow: pinf held 

 

 

• Axisymmetic, NPR≤2.0 

– Δt=2.0e-8 s on fine grid 

 

• Axisymmetic, NPR≥2.5 

– CFL#=0.10 on fine grid 

 

• 3D w/Splitter plate, NPR=1.6 
– Δt=2.0e-8 s on fine grid 

– Fixer mode average for jet plume 

zones 

– DQ limiter on for jet plume zones 

– Also trying Spalart Detached Eddy 

Simulation (DES) method 

 

• 3D w/Splitter plate, NPR=4.0 
– CFL#=0.10 on fine grid 

– Fixer mode average for jet plume 

zones 

– DQ limiter on for jet plume zones 
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Computational Strategy: Grids 

• All Grids 

– Structured, point-matched 

– Created with Pointwise 

– Based on PAW-supplied 

structured grids 

– (Δs)wall=1e-4 inches 

– (Δs)exit=1e-4 inches 

 

• Axisymmetric, Reference: 

– 74,230 grid points 

– 6 zones 

• Axisymmetric, Conical: 
– 71,466 grid points 

– 6 zones 

• 3D w/Splitter Plate: 
– 14,085,532 grid points 

– 68 zones 
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Axisymmetric 25° Conical Nozzle 

25° Conical Nozzle 

w/Splitter Plate 

      rexit 

      rnozzle 
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Convergence 

• Sequence grid: 

– Coarse: every 4th point 

– Medium: every 2nd point 

– Fine: all points 

• Axisymmetric, constant 

CFL#: 
– 70,000-120,000 iterations  

• Axisymmetric, constant Δt: 
– 300,000-400,000 iterations 

• 3D, splitter plate, constant 

CFL#: 
– 250,000 iterations 

• 3D, splitter plate, constant Δt: 
– URANS: 500,000 iterations 

– DES: 420,000 iterations 
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Nozzle Exit: Cd and CV 

Jet Plume: Centerline u and TKE 

Shown: 40° conical nozzle 

w/NPR=4.0. Centerline u and 

TKE took longer to converge 

than Cd and CV. 

 

Seq. 2,2,2 

Seq. 1,1,1 
Seq. 0,0,0 
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Results: Instance 1 
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Results: Instance 1 
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Jet Sonic Lines (Mach=1) 

Experimental data from: 

Thornock, R. L. and Brown, E. F., “An Experimental Study of Compressible Flow 

Through Convergent-Conical Nozzles, Including a Comparison With Theoretical 

Results,” Journal of Basic Engineering, December 1972. 
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Results: Instance 2 
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With Splitter Plate 

Grid is too coarse to finely resolve shocks. 

Better resolution at plate trailing edge, 

but still too coarse downstream. 
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• Wind-US predicts correct locations of shock and expansion waves. 

• However, grid through jet plume is too coarse to finely resolve waves. 

 

Instance 2: Comparison of Wind-US and 

Experimental Shadowgraphs 
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No Splitter Plate 
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Instance 2: Comparison of Wind-US and 

Experimental Shadowgraphs 

With Splitter Plate 

• Grid through jet plume is still too coarse to finely resolve shock and expansion waves. 

• Mismatch between Wind-US and experimental wave locations partly due to difficulty in 

aligning with experimental splitter plate trailing edge location. 
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Results: Instance 3 
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URANS SST DES (w/Spalart-Allmaras) 

Time-accurate unsteady  vortex shedding 

Notes: 

• Solutions assume flow is symmetric; only 180° sector modeled. 

• Instantaneous solutions shown. 

• Downstream mesh (x/D>1.2) is too coarse to resolve vortical structures. 
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Challenges 

• For NPR≤2.0, solutions showed unsteadiness when running with 

constant CFL#. 
– Used constant time step to obtain steady solution.  Convergence required 3-4 times as 

many iterations. 

 

• For NPR≥5.0, region of unphysically large TKE increase along 

centerline following Mach disk, 2Djet downstream of nozzle exit. 
– This is a known deficiency of k-ω based turbulence models (including SST model). 

– Assumed minimal impact on solution near nozzle exit. 

 

• The provided 3D grid with splitter plate had the symmetry plane aligned 

with the splitter plate. 
– This seemed a poor choice for observing unsteady vortex formation from splitter plate. 

– Modified the grid such that the symmetry plane is perpendicular to the splitter plate. 

 

• Unsteady vortex shedding in Instance 3 required long run times. 
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S-Duct Problem Description 

• Geometry 

– D1 = 133.15 mm 

– D2 = 164.00 mm 

– Area Ratio = 1.52 

– Length = 5.23 * D1 

– Offset = 1.34 * D1 

• Flow Conditions 

– Tested in the R4MA facility at ONERA in 2006. 

Run 1112, Data Point 656 

– Stag P = 88744 Pa 

– Stag T = 286.2 K 

– massflow = 2.427 kg/s 

 (for full 360°) 

– AIP Mach = 0.3549 
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Wind-US 

• For this study,  

– Wind-US Version 3.167 

– Use symmetry & only model half of the geometry 

– Structured, point-matched grids 

– Inflow:  Specified total conditions, Mach 0.01 

– Outflow:  Specified mass flow 2.427 kg/s * 0.5 (symmetry) 

– Turbulence models 

• Menter Shear Stress Transport (SST) 

• Rumsey-Gatski Algebraic Stress Model (ASM) k-ε 

• Spalart-Allmaras (S-A) 

– Standard model without curvature correction 

• Full description of code features: 

– http://www.grc.nasa.gov/WWW/wind/index.html 
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Boundary Conditions 
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Grids 

• Modified the point-matched (medium) grid provided. 

– Added a far-field block with non-parallel boundary. 

– Improved sequencing and adjusted clustering functions. 

• 7,729,996 points (16 zones) 

• 0.0020 mm wall spacing (y+ of 1.50) 

• Fine grid (33% more points in each direction). 

– Made by redimensioning and reclustering the medium grid. 

• 17,968,012 points (16 zones further split to 58 zones) 

• 0.0015 mm wall spacing (y+ of 1.15) 

– Solutions not completed in time for inclusion. 

• Coarse grid (33% less points in each direction). 

– Equal to every other point of the fine grid. 

• 2,321,930 points (16 zones further split to 58 zones) 

• 0.0030 mm wall spacing  (y+ of 2.50) 
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Improved Zone Balancing 
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7,729,996 18,272,243 

1,009,346 2,399,963 

M
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Sequence 

1,1,1 

16 zones 59 zones 
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Challenges 

• Time & computing constraints 

• IGES model defects 

– Multiple (conflicting) curves 

– Imperfect connectivity 

• Maintaining database compliance, particularly after 

modifying the grid with Gridgen. 

• Convergence to “steady-state”. 

– Solutions shown here have not been averaged. 
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Solution Convergence 
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Medium Grid, SST 
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Solution Convergence 
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Medium Grid, SST 

Last 10 solutions plotted (1,000 cycles apart). 

Difficulty with 

iterative  

convergence. 

Near-wall regions 

converged well. 
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Boundary Layer Rake Data 
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Φ=0° Φ=90° Φ=180° 
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Boundary Layer Rake Data 
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SST ASM k-ε Spalart 
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Streamwise Pressure Variation 
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Φ=0° Φ=90° Φ=180° 



National Aeronautics and Space Administration 

www.nasa.gov 

Circumferential Pressure Variation 
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s/D1=2 s/D1=3 s/D1=4 
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Surface Skin Friction & Flow Separation 
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SST ASM k-ε S-A 

Coarse    Medium Coarse    Medium Coarse    Medium 
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Symmetry Plane – Medium Grid 
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Symmetry Plane – Medium Grid 
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AIP Virtual Total Pressure Rake 
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