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Background & Motivation Reacting Flows

• When chemical kinetic timescales are approximately equal to flow
timescales, the chemical composition of a flowfield must be determined
as part of a simulation procedure. Such flows are in chemical
nonequilibrium.

• Molecules and atoms can store energy in various
modes.

• At hypersonic conditions these modes may not be
in equilibrium, resulting in thermal
nonequilibrium.

• The physical models and governing equations for flows in
thermochemical nonequilibrium have been simulated previously with
finite difference and finite volume techniques.

• In this work we review the physical models and implement a SUPG finite
element scheme for hypersonic flows in thermochemical nonequilibrium.
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Background & Motivation Surface Ablation

• At hypersonic entry conditions, surface temperatures may exceed
capabilities of reusable thermal protection system materials.

I Reusable materials typically limited to T < 2, 000 K.
I It is necessary then to consider ablative materials.

• Ablative materials respond to high temperatures through pyrolysis,
decomposition, blowing, and surface recession.

• Typically, ablation analysis is decoupled from the external flowfield, but
we hope to do better.

• Additionally, accurately characterizing ground test facilities requires
increased fidelity.

• As we will see, however, more accurate numerical modeling results in
unique numerical challenges, necessitating novel numerical algorithms.
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Physical Modeling Governing Equations

Governing Equations
• Extension from a single-species calorically perfect gas to a reacting

mixture of thermally perfect gases requires species conservation
equations and additional energy transport mechanisms.

∂ρ

s

∂t
+ ∇ · (ρ

s

u) = 0

∂ρu
∂t

+ ∇ · (ρuu) = −∇P + ∇ · τ

∂ρE
∂t

+ ∇ · (ρHu) = −∇ · q̇ + ∇ · (τu)

+ ∇ ·
(
ρ

ns∑
s=1

hsDs∇cs

)

• Problem class may also require a multitemperature thermal
nonequilibrium option.

∂ρeV

∂t
+ ∇ · (ρeVu) = −∇ · q̇V + ∇ ·

(
ρ

ns∑
s=1

eVsDs∇cs

)
+ ω̇V
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Physical Modeling Turbulence Modeling

Turbulence Modeling
• We model the effects of turbulence using the Spalart-Allmaras

one-equation turbulence model:

∂

∂t
(ρ̄νsa) +

∂

∂xj
(ρ̄ũjνsa) =cb1Ssaρ̄νsa − cw1fwρ̄

(νsa

d

)2

+
1
σ

∂

∂xk

[
(µ+ ρ̄νsa)

∂νsa

∂xk

]
+

cb2

σ
ρ̄
∂νsa

∂xk

∂νsa

∂xk

with closure terms
µt = ρ̄νsafv1, fv1 =

χ3

χ3 + c3
v1
, fv2 = 1−

χ

1 + χfv1
, χ =

νsa

ν
,

fw = g

 
1 + c6

w3

g6 + c6
w3

!1/6

, g = r + cw2

“
r6 − r

”
, r =

νsa

Ssaκ2d2
.
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and source term
Ssa = Ω + Sm, Sm0 =

νsa

κ2d2
fv2

where

Sm =

8><>:
Sm0, Sm0 ≥ −cv2Ω

Ω(c2
v2Ω + cv3Sm0)

((cv3 − 2cv2)Ω− Sm0)
, otherwise.
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Physical Modeling Thermochemistry

Thermodynamics & Transport Properties
• Thermochemistry models must be extended for a mixture of

vibrationally and electronically excited thermally perfect gases.

eint =etrans + erot + evib + eelec + h0

=
ns∑

s=1

csetrans
s (T) +

∑
s=mol

cserot
s (T) +

∑
s=mol

csevib
s (TV) +

ns∑
s=1

cseelec
s (TV) +

ns∑
s=1

csh0
s

Here we have assumed that T trans = T rot = T and Tvib = Telec = TV

• Additional transport property models are required. In this work we use
I species viscosity given by Blottner curve fits,
I species conductivities determined from an Eucken relation,
I mixture transport properties computed via Wilke’s mixing rule, and
I mass diffusion currently treated by assuming constant Lewis number.
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Physical Modeling Thermochemistry

Chemical Kinetics & Energy Exchange
Kinetics:
• we consider r general reactions of the form

N2 +M
 2N +M
. . .

N2 + O 
 NO + N

. . .

• When combined with forward and backward rates, these reactions
produce the species source terms ω̇s

• Presently, we use either CANTERA or an in-house library to provide
these source terms.

Energy Exchange:
• Equilibration between the energy modes is modeled with a typical

Landau-Teller vibrational energy exchange model with Millikan-White
species relaxation times.

• Provides the vibrational energy source term ω̇V
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Physical Modeling Thermochemistry

Chemical Kinetics
• We consider r general reactions of the form

N2 +M
 2N +M
. . .

N2 + O 
 NO + N

. . .

• The reactions are of the form

Rr = kbr

nsY
s=1

„
ρs

Ms

«βsr

− kfr

nsY
s=1

„
ρs

Ms

«αsr

where αsr and βsr are the stoichiometric coefficients for reactants and products
• The source terms are then

ω̇s = Ms

nrX
r=1

(αsr − βsr) (Rbr −Rfr)
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Physical Modeling Thermochemistry

Energy Exchange

ω̇V = Q̇v + Q̇transfer

We adopt the Landau-Teller vibrational energy exchange model

Q̇tr-vib
s = ρs

êvib
s − evib

s

τ vib
s

where êvib
s is the species equilibrium vibrational energy and the vibrational

relaxation time τ vib
s is given by Millikan and White

τ vib
s =

∑ns
r=1 χr∑ns

r=1 χr/τ vib
sr
, χr = cr

M
Mr
, M =

(
ns∑

s=1

cs

Ms

)−1

and

τ vib
sr =

1
P

exp
[
Asr

(
T−1/3 − 0.015µ1/4

sr

)
− 18.42

]
Asr = 1.16× 10−3µ

1/2
sr θ

4/3
vs , µsr =

MsMr

Ms + Mr
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Physical Modeling Thermochemistry

Vibrational Energy Production and Energy Exchange

ω̇V = Q̇v + Q̇transfer

When molecular species are created in the gas at rate ω̇s, they contribute
vibrational/electronic energy at the rate

Q̇vs = ω̇s
(
evib

s + eelec
s
)

so the net vibrational energy production rate is

Q̇v =
ns∑

s=1

ω̇s
(
evib

s + eelec
s
)

Combining terms yields the desired net vibrational energy source term

ω̇V =
ns∑

s=1

Q̇tr-vib
s +

ns∑
s=1

ω̇s
(
evib

s + eelec
s
)
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Physical Modeling Quasi-Steady Ablation

Ablation Processes

Schematic of ablation processes

• Ablation is a multi-scale, multi-physics phenomenon
• Sometimes amenable to simplification for predictive simulations
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Physical Modeling Quasi-Steady Ablation

Quasi-steady State Ablation Hypothesis

1 Steady state in reference frame fixed to the receding surface

2 Time variations solely due to motion of the material domain

3 Time scale for surface motion (ṡ ≈ 0.1− 1 mm/sec) much larger than
characteristic time scale of unsteady processes

4 1-D, semi-infinite medium
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Physical Modeling Quasi-Steady Ablation

Quasi-steady Ablation
Energy
Mass

csv

csv csv
Pyrolysis
Zone

Virgin
Material

Char

gasy
Tk
!
!

solidy
Tk
!
!

CC hm //!

i

N

i
gig hCm

S

"
#1

,
//!

radq$
4
wT%&

"
#

SN

i
iiw Chv

1
'

i

N

i
i hJ

S

"
#1

Chemically
frozen

o
vfcsv hv ,'

csvv'

csvcsv csv

csvv'
cschv'

( ) cschvg vm '' *#//!
"
#

sN

i
iw Cv

1
'

"
#

sN

i
iJ

1 "
#

sN

i
gig Cm

1
,

//!

//
Cm!

• Assumes ablation timescale� trajectory timescale
• Assumes negligible substructure conduction
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Physical Modeling Quasi-Steady Ablation

Ablation Interface Conditions
Recession:

ρvw = ṁ
′′
c + ṁ

′′
g

Mass:
Ji|gas + ρvwCi = Ñi(Ci,T) + ṁ

′′
g Ci,g; (i : 1..Ns)

Energy:

− k
∂T
∂y

∣∣∣∣
gas
−

Ns∑
i=1

hi(Tw) Ji|gas + ṁ
′′
c hc(T)− ρvwhw(T)

+αq̇
′′
r − σεTw

4 +
Ns∑

i=1

ṁ
′′
g Ci,ghi(Tw) + ks

∂T
∂y
|solid,w = 0

• Nonlinear Robin Boundary Conditions
• Enables quasi-steady solves, restarts
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Finite Element Formulation

Stabilized Finite Element Scheme

∂U
∂t

+
∂Fi

∂xi
=
∂Gi

∂xi
+ Ṡ

Find U satisfying the essential boundary and initial conditions such that∫
Ω

[
W ·

(
∂U
∂t
− Ṡ

)
+
∂W
∂xi
·
(

Kij
∂U
∂xj
− AiU

)]
dΩ

+
nel∑

e=1

∫
Ωe

τ SUPG
∂W
∂xk
· Ak

[
∂U
∂t

+ Ai
∂U
∂xi
− ∂Gi

∂xi
− Ṡ

]
dΩ

+
nel∑

e=1

∫
Ωe

νDCO

(
∂W
∂xi
· gij∂U

∂xj

)
dΩ−

∮
Γ

W · (g− f) dΓ = 0

for all W in an appropriate function space.
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)
+
∂W
∂xi
·
(

Kij
∂U
∂xj
− AiU

)]
dΩ

+
nel∑

e=1

∫
Ωe

τ SUPG
∂W
∂xk
· Ak

[
∂U
∂t

+ Ai
∂U
∂xi
− ∂Gi

∂xi
− Ṡ

]
dΩ

+
nel∑

e=1

∫
Ωe

νDCO

(
∂W
∂xi
· gij∂U

∂xj

)
dΩ−

∮
Γ

W · (g− f) dΓ = 0

for all W in an appropriate function space.

Kirk et al. (NASA/JSC) Fully Implicit Methods for Hypersonics September 26, 2012 20 / 52



Finite Element Formulation

Stabilized Finite Element Scheme

∂U
∂t

+ Ai
∂U
∂xi

=
∂

∂xi

(
Kij
∂U
∂xj

)
+ Ṡ
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Finite Element Formulation

Stabilization Parameters
Discontinuity capturing operator:

νDCO =


∥∥∥∂U
∂t + Ai

∂U
∂xi
− ∂

∂xi

(
Kij

∂U
∂xj

)∥∥∥2

A−1
0

(∆Uh)T A−1
0 ∆Uh + gij

(
∂Uh
∂xi

)T
A−1

0
∂Uh
∂xj


1/2

SUPG stabilization matrix:

τ−1
SUPG =

∑
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(∣∣∣∣∂φi

∂xj
Aj

∣∣∣∣+
∂φi

∂xj
Kjk

∂φi

∂xk

)
where ∣∣∣∣∂φi

∂xj
Aj

∣∣∣∣ = L |Λ|R
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Finite Element Formulation

Fully-Implicit Navier-Stokes (FIN-S)

Implementation Highlights
• C++ application code built on top of the libMesh library.

I libMesh provides all requisite finite element data, parallel domain
decomposition details.

I Inherits PETSc preconditioned Krylov iterative solvers.
I CANTERA used for kinetic rates, in-house thermodynamics, transport

properties.
I Only ≈ 30K SLOC

• Fully-coupled (monolithic solves), fully-implicit discretization.
• Rigorous verification using MASA-provided manufactured solutions.
• Testbed for intrusive VV/UQ schemes applied to hypersonics.
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Finite Element Formulation

Spalart-Allmaras Perfect-Gas Verification
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Finite Element Formulation

Spalart-Allmaras Perfect-Gas Verification
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https://red.ices.utexas.edu/projects/software/wiki/MASA
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Parallelism

Need for Parallelism

Large Problem Size
• Large numbers of unknowns.

I For a Lagrange nodal basis:

# DOFS = (NS + NDIM + NE + NT)× # NODES

I Specifically, for our 13 species ablation model in 2D with turbulence

# DOFS = (13 + 2 + 2 + 1)× # NODES

• For our implicit scheme, both storage and computational cost scale like
(# DOFS)2
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Parallelism

Need for Parallelism

Complex Physical Models
• Chemical Kinetics, transport properties for NS species inherently

expensive.
• Temperature is a nonlinear function of species concentration, internal

energy for a mixture of thermally perfect gases.
• Quasi-steady ablation boundary condition is also nontrivial.
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Parallelism

Opportunities for Parallelism

Multiple Types of Parallelism
1 Domain Decomposition: We use a standard non-overlapping domain

decomposition approach provided by libMesh. Local computations are perfectly

parallel, and the resulting implicit system is solved using preconditioned Krylov solvers

from PETSc.

2 Multithreaded Computation: The relatively large element matrices resulting for

reacting flows are well suited for threaded assembly. libMesh provides a convenient

interface to Intel’s Threading Building Blocks which can provide further parallelization

on multicore architectures.

3 Vectorization: Remember vectorization? While no longer the de facto paradigm for

high-performance computing, modern microprocessors offer vectorized instructions

worth exploiting. We are using Eigen for dense linear algebra and inherit its SSE

optimizations.
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Parallelism

Domain Decomposition
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Parallelism

Domain Decomposition
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Parallelism

Speedup – Domain Decomposition

Number of Processor Cores

S
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100 101 102 103
100
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103

Ideal
Scaled-Size (Weak) Scaling
Fixed-Size (Strong) Scaling
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Parallelism

Multithreading

• Modern Parallel systems often contain 12–16 (or more) on-node cores
connected via low-latency network.

• On-node multithreading allows an additional parallel mechanism that
can extend scalability in certain circumstances.

• libMesh provides a clean interface to Intel R©’s Threading Building
Blocks (TBB) which is we have access to.

• TBB is a C++ template library consisting of
I Algorithms
I Containers
I Mutexes
I Timing routines
I Memory allocators

designed to help avoid low-level use of platform-specific (e.g.
pthread) implementations.
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Parallelism

Intel R©’s Threading Building Blocks

• Requires more work than OpenMP but
I Has better type-safety
I Easier to reuse code
I More natural for use with C++

• Once a standard for loop is selected for parallelization its components
are abstracted as C++ Range and Body objects

• In FIN-S we parallelize matrix assembly, primitive variable computation,
and other operations in this way.

I Some operations perfectly asynchronous – e.g. computing primitive
variables.

I Other operations require locking shared objects – e.g. inserting local
contributions to a global matrix.

I Special care needed when interfacing with 3rd party libraries.
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Parallelism

Speedup – Multithreading
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Results Viscous Thermal Equilibrium Chemical Reacting Flow

2D Extended Cylinder
• Laminar flow in thermal equilibrium
• Chemical nonequilibrium, 5 species air (N2, O2, NO, N, O)
• 5 reaction model with Park 1990 rates

cN2,∞ = 0.78, cO2,∞ = 0.22

U∞ = 6, 731 m/sec

ρ∞ = 6.81× 10−4 kg/m3

T∞ = 265 K

• Blottner/Wilke/Eucken with constant Lewis number Le = 1.4 for
transport properties

• Mesh, iterative convergence
• FIN-S/DPLR comparison
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Results Viscous Thermal Equilibrium Chemical Reacting Flow
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Results Viscous Thermal Equilibrium Chemical Reacting Flow

Code-to-Code Comparison –
Stagnation Line
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Results Viscous Thermal Equilibrium Chemical Reacting Flow

Code-to-Code Comparison –
Flank Line
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Results Viscous Thermal Equilibrium Chemical Reacting Flow

Mesh Convergence
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Results Viscous Thermal Equilibrium Chemical Reacting Flow

Iterative Convergence
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Results Viscous Reacting Flow with Quasi-Steady Surface Ablation

Ablating Boundary Experiments
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• Turbulent flow in thermochemical nonequilibrium, 13 species air (N2,
O2, NO, N, O, C3, C2, C, CN, CO, H2, H, C2H), 18 reaction model with
Park 2001 rates

• 5 Meter-scale domain, millimeter-scale chemical boundary layer
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Results Viscous Reacting Flow with Quasi-Steady Surface Ablation

Ablating Boundary Experiments
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Results Modeling Arcjet Flows

Arcjet Flowfields

Motivation
• Arcjets are uniquely suited to perform high enthalpy, long duration

material response testing.
• Modern computational techniques are required to adequately

characterize the freestream properties.
• Analysis complicated by multitude of scales, physical phenomenon:

I Very low speed, high pressure plenum,
I very high speed, low pressure nozzle exit,
I highly nonequilibrium flow about test specimen.

• Adequately treating these phenomenon simultaneously is challenging for
numerical methods.
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Results Modeling Arcjet Flows

Arcjet Flowfields
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Arcjet Flowfields
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Results Modeling Arcjet Flows

Arcjet Flowfields
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Results Modeling Arcjet Flows

Arcjet Flowfields
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Ongoing Challenges

Full Disclosure

Opportunities for Further Enhancement
1 Linear Solver Strategy: Preconditioned GMRES is highly effective but

potentially overkill for early, highly nonlinear transients. Mixed implicit/explicit

schemes may provide a fast alternative.

2 Improved Shock Capturing: Robust shock capturing is still a challenge. Current

scheme is fragile on bad meshes, and often convergence stalls.
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Ongoing Challenges

Additional Focus Areas
1 Physics Modeling

I Weakly Ionized Flows
I Additional turbulence models
I Fully coupled radiative transport

2 Unsteady ablation coupling
3 Adjoints

I Sensitivity analysis
I Adaptivity
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Ongoing Challenges

Thank you!

Questions?
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