Experimental Measurement of Transonic Fan Wake Response to Uniform and Simulated Boundary Layer Ingesting Inlet Flows

Dr. Walter F. O’Brien
J. Bernard Jones Professor of Mechanical Engineering
Mr. Anthony M. Ferrar
Graduate Research Assistant
Virginia Tech
Blacksburg, VA

Mr. David Arend
Aerospace Engineer
NASA Glenn Research Center
Cleveland, OH

Research in partnership with NASA and the United Aircraft Research Laboratories
Introduction

- BWB Aircraft with embedded engines and BLI inlets offer attractive advantages in terms of reduced noise from engines and increased range and fuel economy.
- The BLI inlet produces inlet distortion patterns that can reduce fan performance and stall margin, and can produce undesirable forced responses.
Introduction

• Knowledge of the dynamic response of fan flow when subjected to flow distortions of the type produced by BLI inlets is important for the design of distortion tolerant fans

• This project is investigating fan response to flow distortion by measuring the response of the fan of a JT15D engine to a flow pattern following the results of the NASA “Inlet A” BLI wind tunnel tests

Ref. -Berrier et. al. “High Reynolds Number Investigation of a Flush-Mounted S-Duct Inlet with Large Amounts of Boundary Layer Ingression” NASA/TP-2005-213766
Research Plan

• Construct an inlet system and flow measurement apparatus for the Virginia Tech JT15D
 – Impose the desired flow distortion on the fan
 – Measure the dynamic effects of distortion on the fan flow
 • Blade wake structure
 • Flow turbulence level
• Perform research program to construct the required rig and make measurements

Research Plan Details
1. Measure clean inlet fan response
2. Develop P_0 distortion screen
3. Measure distorted inlet fan response
4. Data processing
 • Fan blade wake structure
 • Flow turbulence level
Initial clean inlet experiments have shown uniform flow entering the engine and measured unsteady fan blade wake details.
Flow Probe and AIP Rake

- Traversing Kulite Probe
- Fan OGVs
- AIP Measurement Rake
- P&W JT5D Fan
Distorted Inlet Experiment

- Tunnel Inlet
- Screen Rotator
- Distortion Screen
- AIP Measurement Rake
- Traversing Kulite Probe
- P&W JT15D Engine
Typical Serpentine Inlet Distortion Patterns

CAD model of UTRC BLI S-Duct

CAD model of NASA BLI S-Duct

Measured S-Duct distortions

Ref. - Ferrar et. al. “Active Control of Flow in Serpentine Inlets for Blended Wing-Body Aircraft” AIAA-2009-4901
Screen Construction and Calibration Method

• Single-layer screen consisting of varying density sections with supporting grid
 • Performance of multi-layer screens is difficult to predict
 • Each screen section is welded to adjacent sections

Ref. —Overall, B. W., ‘A Procedure for the design of complex distortion screen patterns for producing specified steady-state total pressure profiles at the inlet of turbine engines,” AEDC-TR-72-10, 1972
Screen Design Methodology

- Uses a pattern of varying density screens to generate desired P_0 profile
- Iterative development process:
 - Compute ideal screen design
 - Measure profile created by screen and compare to desired profile
 - Iterate on screen design until desired profile is achieved

Design Method Details:
1. Contour plot of desired profile determines outline of each screen section
2. Porosity of each screen section is determined using mass flow and desired P_0 to compute required area blockage
3. Construct screen as a single-layer, supported by a backing grid
AIP Steady P_0 Measurement System

Experiment
- 60 probe AIP rake
- Various static taps

(80x) Omega PX139
- 5psi transducers

NI-SCB68 Pin Block

NI-PXI 6225 DAQ
- 40 Differential Channels
- 16-bit, 250 kS/s

NI LabView VI
AIP Rake in JT15D Engine

• 60 Probe pressure rake currently installed on VT P&W JT15D

• Installed in Nov. 2010 and has successfully completed 7 engine runs up to full speed
High-Response Kulite P_0 Measurement System

- **Experiment**
 - JT15D Fan

- **Kulite Total Pressure Probe**
 - (1x) Kulite LE-062
 - (3x) Kulite LQ-062

- **NI-SCB68 Pin Block**

- **NI-PXI 6254 DAQ**
 - 1 MS/s, 16-bit
 - 16 differential ch.

- **NI LabView VI**

- **Eddy Current Sensor and optical key-phasor**
High Response Total Pressure Probe Behind Fan

- JT15-D Fan
- Kulite Probe
- Fan Bypass OGV
- Fan Core OGV
- Kulite Probe Detail
Preliminary High Response Flow Measurements

<table>
<thead>
<tr>
<th>Test Cases</th>
<th>Tunnel Inlet</th>
<th>JT15-D Engine</th>
<th>60 Probe AIP Rake</th>
<th>Probe Traverse System</th>
</tr>
</thead>
<tbody>
<tr>
<td>34%</td>
<td>2495</td>
<td>50000</td>
<td>20.0401</td>
<td></td>
</tr>
<tr>
<td>43%</td>
<td>3216</td>
<td>50000</td>
<td>15.5473</td>
<td></td>
</tr>
<tr>
<td>55%</td>
<td>4133</td>
<td>50000</td>
<td>12.0977</td>
<td></td>
</tr>
<tr>
<td>72%</td>
<td>5435</td>
<td>50000</td>
<td>9.1996</td>
<td></td>
</tr>
<tr>
<td>92%</td>
<td>6863</td>
<td>50000</td>
<td>7.2854</td>
<td></td>
</tr>
<tr>
<td>92%</td>
<td>6846</td>
<td>100000</td>
<td>14.6071</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan Speed (% of maximum)</th>
<th>Blade Passing Frequency (Hz)</th>
<th>Sample Frequency (Hz)</th>
<th>Samples Per Blade Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>34%</td>
<td>2495</td>
<td>50000</td>
<td>20.0401</td>
</tr>
<tr>
<td>43%</td>
<td>3216</td>
<td>50000</td>
<td>15.5473</td>
</tr>
<tr>
<td>55%</td>
<td>4133</td>
<td>50000</td>
<td>12.0977</td>
</tr>
<tr>
<td>72%</td>
<td>5435</td>
<td>50000</td>
<td>9.1996</td>
</tr>
<tr>
<td>92%</td>
<td>6863</td>
<td>50000</td>
<td>7.2854</td>
</tr>
<tr>
<td>92%</td>
<td>6846</td>
<td>100000</td>
<td>14.6071</td>
</tr>
</tbody>
</table>
Average Total Pressure Measurements

Average Total Pressure vs Blade Passing Frequency (Engine Speed)
Dynamic Pressure Measurements

Raw Data Total Pressure

- 4133 blades/second
- 6846 blades/second
Dynamic Pressure Measurements

Total Pressure Averaged and Resampled

- Blue line: 4133 blades/second
- Gray line: 6863 blades/second

Axes:
- Y-axis: Total Pressure, Psia
- X-axis: Time, seconds

Data points for each line are shown on the graph.
Dynamic Pressure Measurements

Raw and Blade-Averaged Total Pressure, 55%

4133 Blades per second

10^{-3} x 10^{-3}
Dynamic Pressure Measurements

Raw and Blade-Averaged Total Pressure, 92%

6863 Blades per second
Progress and Future Plans

• Clean Inlet Test
 → Inlet
 → AIP rake
 → JT15D engine
 → Traversing high-response total pressure probe
 → Kulite Transducers

• Screen Development
 → Extended wind tunnel
 → Design/Construct screen
 – Measure screen performance
 – Modify screen

• Distorted Inlet Test
 – Screen close to fan
 – AIP rake
 – JT15D engine
 – Traversing high-response total pressure probe

• Data processing
Summary

• Research Program is on track to provide new insights into fan response to distorted inflows as produced by BLI inlets
• Supports UTRC and NASA efforts in distortion-tolerant fan design and tests.