Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and self-reacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.
Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

National Space and Missile Materials Symposium
June 2012
Preston McGill
Jonathan Burkholder

Materials and Processes Laboratory
NASA Marshall Space Flight Center
Acknowledgements

NASA Marshall Space Flight Center

C. Russell – Metal Joining and Processes Branch
S. Brooke – Metal Joining and Processes Branch
J. Littell – Metal Joining and Processes Branch (Jacobs Engineering)
R. Jones – Metal Joining and Processes Branch (Jacobs Engineering)
S. Cato – NASA/MSFC Failure Analysis and Metallurgy Branch
T. Malone – NASA/MSFC Materials Test Branch
R. Horton – NASA/MSFC Materials Test Branch
J. Hodo – NASA/MSFC Materials Test Branch
S. Russell – NASA/MSFC Damage Tolerance Assessment Branch
D. Ezell – NASA/MSFC Damage Tolerance Assessment Branch (Teledyne Brown Engineering)

Lockheed Martin Manned Space Systems
Michoud Assembly Facility
D. Kinchen – Material Science
M. Worden – Production Operations
N. Elfer – Material Science
NASA Human Space Flight Requirements

- NASA safety requirements call for fault tolerance or a minimum risk approach for human rated flight hardware
- Damage tolerance is one element of a minimum risk approach
- Basic philosophy behind damage tolerance is mitigating risk associated with a part failing from a crack or crack-like defect

Damage Tolerance is a Multi-Disciplined Endeavor

- Design, analysis, NDE, process control, quality control, acceptance testing (proof testing) and material behavior
- Particular interest in behavior of material with cracks or crack-like defects

Damage Tolerance Approach

- Process Control
- Residual Strength Behavior
- Nondestructive Evaluation
- Proof Test
Applications

Space Shuttle External Tank

• Pressurized Structure
• Conventional Friction Stir Welds
 ▪ ET 132, ET133 through ET 138
 ▪ 2195/2195 Longitudinal Hydrogen Tank Barrel Welds
 ▪ ET134 through ET 138
 ▪ 2195/2195 Longitudinal Oxygen Tank Barrel Welds
 ▪ 2219/2195 Longitudinal Longeron to Hydrogen Tank Barrel Welds

Reference: Kinchen, 2008
Applications

Constellation Ares I Propellant Tanks

- Pressurized Structure
- Conventional FSW
- Self-Reacting FSW
- Self-Reacting FSW with Termination Hole

Manufacturing Demonstration Article
17.5 foot diameter
Applications

Space Launch System Multi-Purpose Crew Vehicle Stage Adaptor

- Dry Structure – stability critical
- 2195/2195 Barrel Panel to Barrel Panel Longitudinal Conventional Friction Stir Welds
- 2219/2195 Forward and Aft Ring to Barrel Panel Self-Reacting Circumferential Friction Stir Welds
- 16 foot diameter aft end
- 18.5 foot diameter forward end
- Pathfinder in Work
- Structural Test Article in Work
- Engineering Flight Test Article in Work

Delta IV-Heavy Upper Stage

Orion (was MPCV)

MSA
Applications

Space Launch System Propellant Tanks

- Pressurized Structure
- Liquid Hydrogen Tank
- Liquid Oxygen Tank
- 100% Friction Stir Welded
- Weld Process in Work
- Design in Work
Conventional Friction Stir Weld

Processes

Friction Stir Weld in Progress
Reference: Kinchen, 2008

Nominal Transverse Cross Section

Ref: Nunes, 2011
2195/2195 Conventional Friction Stir Weld with Lack of Penetration Defect, t = 0.320"

Test sample with fracture across LOP
Ref: Kinchen, 2000
Self-Reacting Friction Stir Weld

- **Process Diagram**: Shows the direction of rotation, direction of motion, weld direction, and the interaction between the tool and material.

- **Tool Components**:
 - Pin
 - Top Shoulder
 - Bottom Shoulder
 - Pinch Force

- **Material**:
 - Welded Material
 - Base Metal

- **Reference**: Schneider, 2010

- **Nominal Transverse Cross Section**: Image showing the cross-section of a friction stir weld.

- **Self-Reacting Weld Tool**: Image of a tool used in the welding process.
Processes

2195/2195 Self Reacting Friction Stir Weld with Wormhole Defect, $t = 0.327''$

Defect Size
$0.025'' \times 0.013''$

2219/2014 Self Reacting Friction Stir Weld with Wormhole Defect, $t = 0.208''$

Defect Sizes: $0.013'' \times 0.010''$; $0.007'' \times 0.010''$; $0.010'' \times 0.005''$
Processes

Friction Pull Plug Weld
Processes

Self-reacting Friction Stir Weld Termination Hole

Hole Enlarged to Accommodate Pull Plug

Pull Plug at “zero” Displacement

Pull Plug at “full” Displacement

Pull Plug after Final Machining
Processes

Plan View of Region Shown in Macro

Cross Section A-A
Plug - Base Metal

Cross Section B-B
Plug - Friction Stir Weld

Friction Pull Plug Weld
Base Metal

Plug – Base Metal Interface

Base Metal

Initial SR-FSW

Damage Tolerance Assessment Team
Marshall Space Flight Center
Processes

Defects in Friction Pull Plug Welding

Liquid Penetrant indications

Ref: Kinchen, 2009
Testing

Surface Crack Tension Test Sample

Failure path in surface crack tension plug panel.

Ductile tearing during simulated proof cycle

Fracture Surface
Fatigue Precrack
EDM Notch
Fracture surface in conventional friction stir weld
Friction Stir Weld Pull Plug Residual Strength vs Flaw Size
2014-T6 to 2219-T87

Circled data failed adjacent to flaw.

0.45 < a/2c < 0.60
Friction Stir Weld Pull Plug Residual Strength vs Flaw Size
2195-T8 to 2195-T8

0.45 < a/2c < 0.60

70 F
-320 F
Normalized Strength vs Surface Crack Length
2195-T8 Self-Reacting and Conventional Friction Stir Weld Various Flaw Locations, 0.250" and 0.320" Thick
70 F, -320 F and -423 F
0.25 < a/2c < 0.75

Testing

RED = 70° F
BLUE = -320° F
VIOLET = -423° F
Diamond = Self Reacting
Square = Conventional (Ref: Kinchen, 2000)
2195/2195 Conventional FSW LOP
Nominally Zero Peaking and Mismatch
ET and ARES I Upper Stage Test Data

Residual Strength/Average Room Temperature Strength

0.320" < t < 0.380"
0.250" < t < 0.500"
Conclusions

• Expanding fracture database for friction stir welds and friction plug welds.

• In general residual cryogenic strength of friction stir welds and friction plug welds is higher than residual ambient strengths

• Critical surface flaws can be reliably detected with liquid penetrant nondestructive evaluation.

• Critical volumetric flaws can be reliably detected with Phased Array Ultrasonic nondestructive evaluation.

• Damage Tolerance Approach
 • Nondestructive Evaluation
 • PAUT
 • Etched Visual

 • Cryogenic toughness greater than room temperature toughness so room temperature proof testing is a viable option for screening mission critical defects.

• Process Control
References

