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Abstract 

This paper describes a system engineering approach to 
examining the potential for combining elements of a deep-
space RF and optical communications payload, for the purpose 
of reducing the size, weight and power burden on the 
spacecraft and the mission. Figures of merit and analytical 
methodologies are discussed to conduct trade studies, and 
several potential technology integration strategies are 
presented. Finally, the NASA Integrated Radio and Optical 
Communications (iROC) project is described, which directly 
addresses the combined RF and optical approach. 

1.0 Introduction 
Space-based optical communications is an important 

technology for our nation in terms of international 
technological leadership. The U.S. Government is actively 
developing space-based optical communications payloads for 
both national security and high rate scientific data return 
missions to include near Earth and deep space applications. 
NASA has yet to fly a space-based optical communications 
payload, however several are currently in flight-development 
(Refs. 1 to 6), and the DoD has successfully flown GEO-Lite. 
Governments around the globe, including the U.S., are 
planning to implement space-based optical communications 
systems for many reasons, including: 1) access to unlimited 
and unregulated spectral bandwidth 2) physical layer 
immunity to detection and interference (intentional and 
otherwise) as well as intercept security 3) diverse and mobile 
ground stations sites for communications security and 
survivability, 4) high accuracy navigation capabilities such as 
ranging and 5) the potential for mass and power savings over 
RF technology. 

While the U.S. Government has made significant 
investments in space-based optical communications, and has 
enjoyed in-flight success, technological leadership will be 
limited due to the number of flight opportunities that will 
accept the penalties of including both RF and optical 

communications payloads, performance benefits that are on-
par with state of the art RF Ka-Band technology, and a 
required major investment in a new optical ground-based 
infrastructure. By addressing the current performance 
limitations and recognizing that RF and optical 
communications must coexist for the foreseeable future, a path 
to technological leadership is realizable.  

2.0 Current Optical Versus RF Space 
Based Communications System 
Design  

To better understand current space-based optical 
communications system architectures, a side-by-side 
comparison to RF must be undertaken. A Figure of Merit 
(FoM) must be established for a direct comparison to both 
technologies at the system level, independent of distance. The 
system-level metric must include the space-base terminal 
performance (be it RF or optical) and the ground receiver 
aperture and performance. 

 





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=

power*mass
*log*10)dB( Max

2 bpsDFoM   (1) 

Equation (1) represents a method for direct comparison of 
optical and RF communications systems anywhere in the solar 
system, where D represents the distance between the terminal 
apertures, bpsMax is the maximum transmitted information rate, 
mass (kg) and power (Watts). Equation (1) does not directly 
account for availability of the link due to interference from 
cloud cover. 

Figure 1 represents the FoM for flight missions both 
currently in production or recently proposed for lunar and 
Mars exploration (Refs. 7 to 9). As can be seen, optical 
communications systems for these missions were, at best, no 
better than a comparable Ka-Band system designs and, at half 
as efficient. The Ka-Band missions were not limited to the 
spectral bandwidth allocated by international agreement, but 
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Figure 1.—FoM for Ka-Band and Optical Communication Systems for Lunar and Mars Missions. 

 
 

were allowed to grow to the capability supported by the link 
budget. This was to support a direct technology comparison. 
The comparison also does not deduct for availability for the 
optical link, but does penalize the Ka-Band link for an 
availability of 90 percent. Both the optical and RF links have 
3dB available margin. The optical communications system, 
however, represents a stand-alone terminal design and must be 
supported by an additional Ka-band or X-band 
communications systems due to the need for all-weather 
communications.  

Figure 2 represents the FoM applied to a current Ka-band 
system architecture as compared to optical designs under 
consideration for Mars missions in 2018. This system 
represents an 11 to 16 dB advantage over a Ka-Band system 
that is not constrained by spectrum and with no consideration 
of optical availability. Again, this candidate architecture also 
must support an additional Ka-Band or X-Band 
communications system for all-weather communications. 
Mission designers are very concerned about the increased 
burden of size, weight and power (SWaP) that an optical 
communications system will require despite the perceived 
benefit. In fact, SWaP has had a significant impact on space 
based optical communications technology transition to fully 

support scientific missions for NASA in both a support and 
primary role. 

A rigorous systems engineering methodology, concurrent 
with technology innovations, such as an integrated dual-band 
RF and optical terminal (currently at TRL-2), will lead to 
scalable designs, will minimize SWaP and account for the 
constraints of current and future missions; namely that optical 
and RF communications systems will both be flown together 
for the foreseeable future. This approach offers a bridge 
between the RF based network integration underway at 
NASA, and the emerging optical capabilities. In order for 
space-based optical communications to become competitive 
and warrant the new ground based infrastructure investment 
will require performance and scalability well beyond the FoM 
of 43.6 dB currently planned, with FoMs exceeding 55 dB for 
Mars-class missions. Optical and RF must coexist, but with 
limited spacecraft burden.  

3.0 Systems Engineering Path Forward  
System development methods and practices have yet to be 

fully integrated into a rigorous methodology for 
communications system analysis, trades, design and risk  
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Figure 2.—FoM for Ka-band and Optical Performance for future Mars Communications Systems. 

 
 
 

reduction. APL has defined a dual-band terminal trade 
methodology that encompasses link performance, (SWaP), 
materials and design, and path phenomenology and 
impairments. A mock up and schematic view of an integrated 
aperture example is shown in Figure 3 (Ref. 10). 

Current interest from NASA poses a potential requirement 
to determine the mission utility of a dual-band (optical/RF) 
lightweight scalable communications payload in terms of 
challenging performance criteria for data rate (1 Gbps) and 
pointing (300 to 1200 nrad), and reduced SWaP using new 
materials and designs, which will also require specific 
component TRL risk-reduction efforts.  

These studies so far have uncovered some top-level results, 
which are: 

 
• Individual component technologies (dual-band 

apertures, lightweight materials, reusable rad-hard by 
design (RHBD) digital core processors, 1 Gbps 
modulators) are within reach of timely risk reduction by 
2014 to achieve significant (50 to 75 percent) mass 
reduction over current reference designs 

• Integration risk is challenging because deep space 
pointing requirements can be tight (as low as 300 nrad 
RMS at Mars) for larger apertures with lightweight 
materials, although there may exist some synergies 
between the RF and optical acquisition systems 

• Specific component properties require empirical 
validation, including skin depth, RMS surface 
roughness, and dichroic component efficiencies for 
frequency selective surfaces (FSS) 

• Increasing laser transmitter power and wall-plug 
efficiencies will enable a more scalable dual-band design 

• A more rigorous methodology is needed to provide a 
more traceable cost-benefit trade for innovations in 
materials and design  

• A more complex dual-band link loss management 
scheme should be simulated and implemented to 
optimally allocate data rates between bands 

• The impact of lightweight materials on antenna/ 
telescope and structural alignment and line of sight 
(LoS) jitter, particularly from solar loading and vibration 
transmissibility, remain to be determined  
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Figure 3.—Integrated RF and optical aperture. Schematic view is on the top and mock-up is on the bottom.  

 
4.0 Systems Engineering Trades 

Methodology 
The systems engineering trade methodology optimizes 

spacecraft aperture versus pointing error and space loss and 
minimizes SWaP for a given level of performance, by 
introducing dual-band materials innovation to reduce SWaP. 
Parametric analysis jointly employs mission and technology-
driven parameters such as transmitter power, received power, 
antenna/telescope aperture, and pointing jitter, and a detailed 
phenomenology model for path loss, component noise, and 
receiver site availability statistics. Using the link equation for 

setting optical link requirements, the signal-to-noise ratio 
(SNR) varies with range differently within certain link 
regimes depending on the relative contributions of transmitter, 
receiver, and background noise. It also depends on a trade 
between pointing jitter and space loss that sets the antenna 
aperture optimally.  

Once the required transmitter power is known, the required 
bus power can be derived, given the achievable laser wall-plug 
efficiency and optical terminal power supply mass. 
Optimization requires the sum of these to be minimized 
subject to a fixed transmitter power proportional to their 
product. From this antenna areal density can be determined 
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and hence material selection minimizing the pointing jitter to 
be ~ ⅓ the Rayleigh limit ensures that it will not dominate 
implementation losses. This approach yields an RMS jitter 
requirement of ~ 1.2 µrad for a 0.53 m aperture, and 300 nrad 
for a 1.32 m aperture at Mars. Previous developments have 
pushed more risk onto the ground segment while minimizing 
mass and aperture of the optical terminal separately from the 
RF channel. Our proposal is to make a larger dual-band 
aperture using lightweight materials to reduce mass by 
bringing the two bands to a common boresighted aperture. 

The priority given to an optical or RF channel may be 
approximately determined a priori for an overall mission or it 
can be estimated more dynamically in real-time. It depends on 
a number of factors, including: ephemeris (range and angle); 
relative noise levels; atmospheric turbulence; cloud-free-light-
of-sight availability; mission data-demand schedules; site 
diversity; diurnal stability; round trip delays; and other 
physical effects. If the optical band is given priority, the RF is 
used as a backup when availability is compromised. If RF is 
given priority, the optical augments for higher demand if the 
above parameter values allow. A path loss management 
scheme would jointly apply to the RF and optical bands. One 
of the principal reasons for dual-band is to compensate for the 
loss of optical ground receiver availability. Even with site 
diversity, availability asymptotically approaches only about 98 
percent worldwide. Thus, RF provides a complementary high-
gain alternative to the optical channel for adverse or overcast 
weather. 

The pointing, acquisition, tracking and stabilization (PATS) 
subsystem initiates and maintains the optical downlink. We 
have assumed that the spacecraft attitude control system 
(ACS) supports coarse pointing and tracking control in 1 to  
10 mrad range with a 1 Hz bandwidth, allowing body 
mounting of a dominant antenna with respect to the spacecraft 
bus. Fine steering mirrors (FSMs) must achieve ≤ 1 µrad, 
assuming reaction wheels are the primary source of platform 
vibration. The spacecraft needs to be optimally designed with 
these requirements in mind because they are demanding and 
costly. Thus, FSM requirements are approximately ≥ 33 dB 
from 0.5 to ~ 200 Hz bandwidth, depending on the disturbance 
spectrum and optical bench transmissibility. Minimizing 
optical terminal mass using lightweight materials, however, 
has two challenges: 1) Achieving the desired passive 
transmissibility and thermal properties without raising 
resonant frequencies and possibly reducing thermal response 
times, which would make active compensation even more 
challenging; and 2) Selecting the lowest mass materials in 
thinner and more sparse designs with mature and repeatable 
fabrication processes. 

Analysis of a large (1-m) aperture spacecraft mass 
allocation budget suggests that a mass reduction of over 
75 percent can be achieved in the antenna and support 
structure over a silicon carbide design. The use of carbon fiber 

composites (CFCs) with nominal areal densities < 10 kg/m2 
can be achieved at low risk up to a 1.4 m aperture. Several 
options for the antenna/telescope design have been considered, 
including a longeron cruciform approach, a Meinel 
endostructure, and even a rigidized inflatable optical tube 
assembly. In all cases all-dielectric parts (except for the 
microwave feed-horn) would be used and require active self-
metering to correct and maintain coarse pointing. Some of 
these designs are also amenable to deployment from an EELV 
secondary payload adapter (ESPA ring) which has an inside 
diameter > 1.5 m. 

All three design concepts are based on an axially symmetric 
Cassegrain co-boresighted system with a direct-fed prime-
focus microwave horn that can operate down to Ku-band. The 
key dual-band features include a dichroic vertex plate (such as 
indium tin oxide (ITO)) to allow optical transmission and RF 
reflection and a FSS dichroic secondary to transmit RF and 
reflect optical wavelengths. Key challenges are implementing 
a dual-band antenna at RF frequencies less than Ku-band, and 
high precision optical surface quality (< λ/10 RMS). Other 
design methodologies have been considered, including an 
optical Cassegrain with an embedded RF patch array antenna 
and a dual-curvature primary for offset RF and optical 
antennas. To exploit these concepts, several thin-film and 
composite materials may be considered, including 
consideration of their skin depth and surface roughness.  

5.0 Critical Path to Implementation 
The desired dual-band antenna/telescope features are: a 

scalable fully-shared common aperture dual-band 
antenna/telescope with high mechanical rigidity, thermal 
stability, low vibration transmissibility, < λ/10 RMS surface 
roughness, minimal scatter for near sun pointing, and an ultra-
lightweight optical shroud. 

Key questions to answer in order to achieve the best 
operational performance are: 

 
1. What is the optimal aperture and SWaP given the 

downlink laser transmitter power? 
2. What is the lowest risk, lowest areal density antenna 

material?  
3. Can 300 nrad RMS jitter be achieved from Mars and 

what is its cost burden?  
4. What is the link margin crossover point in range 

between Ka and optical bands? 
5. What is the optimal channel utilization plan for Ka and 

optical bands, given site diversity, latency, fades, cloud-
free line-of-sight (CFLOS), schedule, and data volume 
requirements? 

6. What are the long term architecture and payload 
implications of combining the optical capability with the 
given X-band RF system for telemetry, tracking & 
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command (TT&C), thus entirely offloading the Ka-band 
capability? 

 
In addition to the above system engineering questions there 

are several risk reduction demonstration tasks that should be 
conducted in close coordination with the system engineering 
trades identified below. 

 
1. Optimize downlink terminal performance with respect to 

aperture and pointing error using analytical and 
statistical method 

2. Minimize SWaP, while maintaining downlink 
performance and aperture 

3. Simulate long and short-term joint downlink-loss 
statistics for single and multiple ground receiver sites to 
optimize total data volume transferred using dual-band 

4. Measure vertical or near-vertical path turbulence fades 
and CFLOS statistics for concurrent RF/ optical channel 
operations using extant spacecraft corner reflectors and 
validate simulations as required 

5. Simulate and validate the minimal RMS jitter achievable 
with beacon track given expected time-of-flight latencies 
and point-ahead biases 

6. Address technology risk reduction strategies for specific 
components and properties to support dual-band TRL 
mitigation, including: 
a. Measuring the skin depth of dual-band primary 

materials (witness samples) for Ka and optical bands 
to minimize losses in both 

b. Verify/validate < λ/10 RMS surface roughness for a 
CFC primary and secondary in thinner lightweight 
configurations and assess any print-through, thermal, 
and vibrational effects 

c. Measure and maximize optical and RF efficiencies 
of dichroic elements in dual-band design and the 
effects of thin-film properties and FSS patterning. 

6.0 The Plan Forward 
In FY12, NASA established an effort named the Integrated 

Radio and Optical Communications (iROC) payload to 
directly address this combined approach with a target towards 
deep space missions. In addition to aperture sharing, other 
component level integrations are being considered to minimize 
SWaP burden on the spacecraft such as with the digital core 
processor for encoding and modulation, sub-micron ASIC 
devices, PATS, avionics and thermal and structural element 
reuse. Each of the elements of the system need to be 
methodically traded through a systems engineering process in 

order to correctly identify the most substantial impacts on the 
overall SWaP savings and determine a set of optimal 
solutions. The realization of the iROC payload will enable a 
dual-band RF and optical trunk line link from a Mars orbiter 
back to Earth; high speed science data to support transmission 
from various deployed orbiting and roving assets. 

The iROC evolutionary approach of enhancing the RF 
architecture with optical capability will offer a bridge to 
migrate towards optical communications, while continuing to 
serve the existing infrastructure. Each component within the 
payload will be examined to determine where reuse between 
the RF and optical systems may take place, and a metric 
assigned to evaluate the overall SWaP impact. As a whole this 
analytical model will be compared against flying fully 
separable payloads to establish the complete savings of the 
integrated approach. An overall system diagram is shown in 
Figure 4. 

The iROC will address several key questions, including: 
 
1. Which integration should take place between the optical 

and S/X/Ka band RF frequencies? 
2. Separate or combined apertures for demonstration 

flight? 
3. Body mounted versus gimbaled aperture, or a 

combination of both? 
4. Potential software defined radio (SDR) growth to optical 

communications processing capability? 
5. What synergies exist between iROC and other optical 

project accomplishments that may be leveraged to 
accelerate development? 

6. In terms of disruption tolerant networking (DTN), what 
can be done to manage the RF and optical links to 
optimize service for the user? 

7. What are the functional needs of the complex integrated 
system?  

 
By accelerating the infusion of optical communications 

technology into the deep space architecture, Gbps services 
may be realized sooner, thus enabling capabilities such as 
multichannel or even 3-D high definition video feeds from the 
surface of Mars. Beyond those particular applications, the 
component level technology development accomplished 
through the iROC effort will benefit other future systems that 
demand lightweight low areal-density apertures, high speed 
RHBD processors, and nrad capable PATS systems. Such 
systems may include communications, or even scientific 
RADAR or LIDAR instrumentation payloads with potential 
commercial spinoff technologies. 
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Figure 4.—iROC system diagram. 

7.0 Summary  
Current space based optical communications designs are 

built to minimize risk and not to maximize performance. A 
more rigorous system engineering approach is required to 
move optical communications more into the mainstream and 
justify the additional ground based infrastructure investment 
with scalable designs and FoMs in excess of 55dB for Mars 
class missions. In the near term, integrated RF and optical 
designs with highly scalable architectures will allow optical 
communications systems to become more mainstream for U.S. 
spacecraft.  
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