“I-V Characteristics of a Static Random Access Memory Cell Utilizing Ferroelectric Transistors”

Crystal Laws, Cody Mitchell, Mitchell Hunt, Todd C. MacLeod, and Fat D. Ho

Presenting Author: Todd C. MacLeod
International Symposium on Integrated Functionalities 2012 Conference
June 21, 2012
Introduction

- SRAM utilizing Ferroelectric FETs may make high speed memory possible with significant retention times without power (Retention times of 24 hours have been measured)
- Ferroelectric Field-Effect Transistor features polarization due to the ferroelectric layer between the substrate and the gate.
- After removal of the applied input voltage, the polarization still exists, thus the FeFET features unique I-V characteristics
- Current-Voltage (I-V) Characteristics Presented
 - FeFET
 - Resistive Load Static Random Access Memory (SRAM) Cell
- I-V FeFET Model Developed
- Comparison
 - Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) and FeFET
FeFET Properties

- Ferroelectrics feature properties including
 - Polarization
 - Positive and Negative
 - Hysteresis
 - History dependence
 - Nonlinearity
- The ferroelectric layer gives FeFET unique I-V characteristics
 - Unlike the MOSFET, the I-V characteristics feature a hysteresis trend
FeFET I-V Characterization

- Ferroelectric Transistor was 10 μm wide and 10 μm long, provided by Radiant Technologies Inc.
- FeFET featured a PZT ferroelectric layer
- FeFET active current was measured with test circuit, shown left
- PZT ferroelectric layer was properly polarized
- The drain-to-source voltage (V_{DS}) was varied for a range of gate-to-source voltages (V_{GS}) and the drain current was measured
ND1 Active Current for Various V_{DS}

![Graph showing ND1 Active Current for various V_{DS} values]
SRAM Cell Operation

- A traditional resistive load SRAM cell was constructed as shown on the left.
- The input voltage, V_{in}, is applied at drain of T_1 and the output voltage, V_{out}, is read at drain of T_2.
- A couple different configurations were investigated:
 - FeFETs for T_1 and T_2
 - Various resistance values with FeFETs for T_1 and T_2
ND1 SRAM I-V Characteristics at a Load Resistance of 51 kΩ
ND1 SRAM I-V Characteristics at a Load Resistance of 105 kΩ
ND1 SRAM I-V Characteristics at a Load Resistance of 275 kΩ
Conclusion

- I-V characteristics for FeFET different than that of MOSFET
 - Ferroelectric layer features hysteresis trend whereas MOSFET behaves same for both increasing and decreasing V_{GS}
 - FeFET I-V characteristics doesn’t show dependence on V_{DS}

- A Transistor with different channel length and width as well as various resistance and input voltages give different results
 - As resistance values increased, the magnitude of the drain current decreased
References

5. J. Evans, Modeling Radiant Thin Ferroelectric Film Transistors, Radiant Technologies Inc, 2011.

Acknowledgements

• University of Alabama in Huntsville for their support as well as providing the facilities to conduct the research

• Joe Evans and Radiant Technologies for supplying the transistors for the research

• NASA for providing some of the test equipment and lab facilities used for the research