
Chapter 5 – Metrology of Large Parts 
 

H. Philip Stahl, PhD 
 
1.0 Introduction 
 
As discussed in the first chapter of this book, there are many different methods to measure a part using optical 
technology.   Chapter 2 discussed the use of machine vision to measure macroscopic features such as length and 
position, which was extended to the use of interferometry as a linear measurement tool in chapter 3, and laser or 
other trackers to find the relation of key points on large parts in chapter 4.  This chapter looks at measuring large 
parts to optical tolerances in the sub-micron range using interferometry, ranging, and optical tools discussed in the 
previous chapters.  The purpose of this chapter is not to discuss specific metrology tools (such as interferometers or 
gauges), but to describe a systems engineering approach to testing large parts.  Issues such as material warpage and 
temperature drifts that may be insignificant when measuring a part to micron levels under a microscope, as will be 
discussed in later chapters, can prove to be very important when making the same measurement over a larger part.   
 
In this chapter, we will define a set of guiding principles for successfully overcoming these challenges and illustrate 
the application of these principles with real world examples.  While these examples are drawn from specific large 
optical testing applications, they inform the problems associated with testing any large part to optical tolerances.  
Manufacturing today relies on micrometer level part performance.  Fields such as energy and transportation are 
demanding higher tolerances to provide increased efficiencies and fuel savings.  By looking at how the optics 
industry approaches sub-micrometer metrology, one can gain a better understanding of the metrology challenges for 
any larger part specified to micrometer tolerances.   
 
Testing large parts, whether optical components or precision structures, to optical tolerances is just like testing small 
parts, only harder.  Identical with what one does for small parts, a metrologist tests large parts and optics in 
particular to quantify their mechanical properties (such as dimensions, mass, etc); their optical prescription or design 
(i.e. radius of curvature, conic constant, vertex location, size); and their full part shape.  And, just as with small 
parts, a metrologist accomplishes these tests using distance measuring instruments such as tape measures, inside 
micrometers, coordinate measuring machines, distance measuring interferometers; angle measuring instruments 
such as theodolites, autocollimators; and surface measuring instruments including interferometers, stylus profilers, 
interference microscopes, photogrammetric cameras, or other tools. However, while the methodology may be 
similar, it is more difficult to test a large object for the simple reason that most metrologists do not have the 
necessary intuition. The skills used to test small parts or optics in a laboratory do not extrapolate to testing large 
parts in an industrial setting any more than a backyard gardener might successfully operate a farm. 
 
But first, what is a large part?  A simple definition might be the part’s size or diameter.  For optics and diffuse 
surface parts alike, the driving constraint is ability to illuminate the part’s surface.  For reflective convex mirrors, 
large is typically anything greater than 1 meter.  But, for refractive optics, flats or convex mirrors, large is typically 
greater than 0.5 meter.  While a size definition is simple, it may be less than universal.  A more nuanced definition 
might be that a large part is any component which cannot be easily tested in a standard laboratory environment, on a 
standard vibration isolated table using standard laboratory infrastructure.  A micro-switch or a precision lens might 
be easily measured to nanometer levels under a microscope in a lab, but a power turbine spline or a larger telescope 
mirror will not fit under that microscope and may not even fit on the table.   
 
 
  



2.0 M
 
The challen
infrastructu
measureme
and by foll
metrology 
 

1. Fu
2. D
3. C
4. K
5.  ‘T
6. In
7. U

 
These rule
validation 
specificatio
 

 
 

Figure
 

 
 

Metrology of 

nges of testing
ure; gravity sag
ent precision an
lowing a struct
task is; the fol

ully Understan
Develop an Erro

ontinuous Met
Know where yo

Test like you f
ndependent Cro

Understand All 

s have been de
of these rules, 
on compliance

e 1:  James We

Large Parts 

g large parts are
g; stability (me
nd spatial samp
tured systems e
llowing simple

nd the Task 
or Budget 
trology Covera
u are 

fly’  
oss-Checks 
Anomalies 

erived from ove
they have been
 testing of the 

ebb Space Tele

 

e multiple, and
echanical/therm
pling.  But, the
engineering app
guiding princi

age 

er 30 years of l
n applied with 
James Webb S

escope 6.5 met

d they typically
mal) and vibrat
ese challenges
proach.  No ma
iples will insur

lessons learned
great success t

Space Telescop

er primary mir

y involve one o
tion; atmospher
can be overcom
atter how smal
re success: 

d from both fai
to the in-proce

pe (JWST) OTE

rror consists of

or more of the f
ric turbulence 
me by good en
ll or how large

ilures and succ
ess optical testi
E mirrors (Figu

 

f eighteen 1.5 m

following:  
or stratification

ngineering prac
e your testing o

cesses.  As a 
ing and final 
ure 1). [Ref 1,2

meter segments

n; 
ctice 
or 

2] 

s. 



2.1  F
 
The first st
parameters
tools and in
 
Before acc
system app
This metro
to execute 
next sectio
with your c
will quanti
based upon
JWST prim
 

 

Figure 2:  P
verify that 

 
Developing
while one c
special tran
be safely li
the technic
requires sp
lifting and 
cleanliness
machines. 
meter mirr
The distan
the Stewar
[Reference
requiremen
 

ully Understa

tep to insure su
s do you need t
nfrastructure to

cepting any test
plication.   The
ology plan shou
the test and a p

on.  Summarize
customer and y
ify satisfies the
n the data you w
mary mirror seg

Primary Mirro
each requirem

g a metrology 
can easily tran
nsport, lifting a
ifted by two pe
cians doing the
pecial lifting an

handling fixtu
s controls; com
 Figure 3 show

ror segments.  T
ce from the mi

rd Observatory 
e 4]  Finally, gr
nts such as spa

and the Task 

uccess is to mak
to quantify and
o perform the t

ting task, study
en develop a pr
uld identify the
preliminary est
e all requiremen
your manufactu
eir requirement
will be providi
gment assembl

r Segment Ass
ment is met and 

plan for large p
sport an 8 cm m
and handling fi
ersons also requ
 lifting and to t

nd handling equ
ures.  It include
mputer coordina
ws an illustratio
The mirror seg
irror under test
Mirror Lab (S

rinding and pol
atial sampling, t

ke sure that yo
d to what level 
task?  And, wh

y your custome
reliminary metr
e test method to
timate of the te
nts and how th
uring methods 
ts and the manu
ing.  Figure 2 s
ly (PMSA). 

sembly (PMSA
the validation 

parts is compli
mirror, an 8 m
ixtures, as well
uires special fi
the part being 
uipment regard

es industrial sca
ate measuring m
on of the Itek A
gments radius o
t to the fold flat
SOML) test tow
lishing equipm
test wavelengt

ou fully underst
of uncertainty 

ho is your manu

er’s requiremen
rology plan for
o quantify each
est uncertainty.
hey will be qua

engineer.  Mak
ufacturing met
shows the final

A) final cryogen
cross-check te

icated by the sc
eter class mirro
l as metrology 
ixtures and sho
lifted.  And, so
dless of its size
ale work space
machines and t

Autocollimation
of curvature wa
t was approxim

wer which stand
ment is importan
th and measure

tand your task.
must must kno

ufacturing inte

nts and underst
r how you will
h parameter, th
.  We will expl

antified into a s
ke sure that yo
thods engineer 
l cryogenic tem

nic optical perf
est for each req

cale of the requ
or with a 16,00
mounts.  But, 

ould be conside
ometimes the v
e.  Furthermore
es with appropr
test towers; an
n Test Facility
as 24 meters fo
mately 12 mete
ds 24 meters ta

ant because thei
ement precision

.  Who is your 
ow their value?

erface?   

tand how they 
l quantify each 
he tools and inf
lore test uncert
simple table wh
our customer ag

agrees that the
mperature requi

formance requ
quirement.  

uired infrastruc
00 to 20,000 kg
in practice, an

ered a large.  S
value of a part i
e, infrastructure
riate temperatu

nd grinding and
y used for the K
or a total air pa
ers.  [Reference
all and has a m
ir capabilities d
n. 

customer?  W
?  Do you have

relate to the fi
required param

frastructure req
tainty further in
hich can be sha
grees that what
ey can make th
irements for ea

 

irements; the t

cture.  For exam
g mass require

ny part which c
afety applies b
is such that it 
e is more than 

ure, humidity a
d polishing 
Keck Telescope
ath of 48 meter
e 3]  Figure 4 s

mass of 400 ton
drive metrolog

What 
e the 

inal 
meter.  
quired 
n the 
ared 
t you 

he part 
ach 

test to 

mple, 
s 
annot 

both to 

just 
and 

e 1.8 
s.  
shows 
ns.  
gy 



 
Figure 3:  I
courtesy of
 

 
Figure 4:  S
40 air-fille
 
 
 

Itek Autocollim
f Itek Optical S

Steward Obser
d isolators.  Dr

mation Test Fa
Systems) [Refe

rvatory Mirror 
rawing by E. A

 

acility.  Each K
erence 3] 

Lab test tower
Anderson.  [Ref

Keck segment w

r.  Entire 400-to
ference 4] 

was tested in ov

on concrete an

 

ver a 48 meter 

 

nd steel structur

air path.  (Figu

re is supported

ure 

d by 



2.2 Develop an Error Budget 
 
The second and most important step is to develop an error budget for every specification and its tolerance.  An error 
budget has multiple functions.  It is necessary to convince your customer that you can actually measure the required 
parameters to the required tolerances.  It defines which test conditions have the greatest impact on test uncertainty.  
And, it provides a tool for monitoring the test process.  An error budget predicts test accuracy and reproducibility 
(not repeatability) of the metrology tools.  If the variability in the test data of any element of the error budget 
exceeds its prediction, then you must stop and understand why.  Finally, all elements of the error budget must be 
certified by absolute calibration and verified by independent test.  Figure 5 shows the JWST PMSA high-level error 
budget for each of its major requirements.  
 
 

 
 
Figure 5:  Each JWST PMSA specification had a separate error budget, i.e. surface figure, radius of curvature, conic 
constant, decenter and clocking of the prescription on the substrate.  For every item in this figure, there was a highly 
detailed error budget. 
 
Mathematically, one constructs an error budget by performing a propagation of error analysis.  First write down the 
equation which calculates the specification value.  Then take the partial derivative of that equation as a function of 
each variable.  Square each result and multiple times the knowledge uncertainty (i.e. variance in data) for the 
measurement of each variable.  Then take the square root of the sum.  For example, assume that a requirement R is a 
function of variables (a,b,c), i.e. R = f(a, b, c).  The uncertainty of the knowledge of the requirement R is give by: 
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If the defining equation is a linear sum, then the result is a simple root mean square of the individual standard 
deviations.  But, if the equation is not linear, then there will be cross terms and scaling factors.   
 

Revision: 12-17-2007 13:49:25 Tinsley Fabrication Specification
surface 20.000 nm
R 0.100 mm
K 500.000 ppm
OAD 0.350 mm
Clocking 0.350 mrad

Specification Reserve (RSS) Part Knowledge Part Fabrication
surface 7.147 nm surface 12.025 nm surface 14.294 nm
R 0.039 mm R 0.049 mm R 0.078 mm
K 197.700 ppm K 233.609 ppm K 395.400 ppm
OAD 0.095 mm OAD 0.279 mm OAD 0.190 mm
Clocking 0.146 mrad Clocking 0.128 mrad Clocking 0.291 mrad

Part Stability Metrology
surface 5.859 nm surface 10.501 nm
R 0.042 mm R 0.026 mm
K 0.000 ppm K 233.609 ppm
OAD 0.002 mm OAD 0.279 mm
Clocking 0.000 mrad Clocking 0.128 mrad

Metrology Reserve (RSS) Metrology (Estimated)
surface 4.696 nm surface 9.392 nm
R 0.012 mm R 0.024 mm
K 104.473 ppm K 208.946 ppm
OAD 0.236 mm OAD 0.147 mm
Clocking 0.092 mrad Clocking 0.089 mrad

CGH Fabrication Interferometer Environment Fold Flat
surface 6.349 nm surface 1.293 nm surface 1.904 nm surface 6.519 nm
R 0.010 mm R 0.017 mm R 0.000 mm R 0.005 mm
K 35.956 ppm K 31.000 ppm K 0.000 ppm K 1.728 ppm
OAD 0.009 mm OAD 0.116 mm OAD 0.000 mm OAD 0.000 mm
Clocking 0.005 mrad Clocking 0.046 mrad Clocking 0.000 mrad Clocking 0.000 mrad

Optical Design Residual Data Processing Repeatability Test Alignment
surface 0.000 nm surface 0.000 nm surface 0.129 nm surface 0.319 nm
R 0.000 mm R 0.000 mm R 0.001 mm R 0.012 mm
K 0.000 ppm K 0.000 ppm K 2.531 ppm K 203.458 ppm
OAD 0.000 mm OAD 0.000 mm OAD 0.001 mm OAD 0.090 mm
Clocking 0.000 mrad Clocking 0.000 mrad Clocking 0.000 mrad Clocking 0.075 mrad



When building an error budget use the standard deviation of measurement reproducibility not of repeatability.  
Repeatability will give an ‘optimistic’ result.  Reproducibility gives a realistic result.  Repeatability is the ability to 
get the same answer twice if nothing in the test setup is changed.  Reproducibility is the ability to obtain the same 
answer between two completely independent measurements. [Reference 5, 6]  If one is measuring the reproducibility 
of the ability to align a part in a test setup, then to obtain two independent measurements one must physically 
remove the part from the test setup and reinstall it between measurements.  If one is measuring the reproducibility of 
atmospheric turbulence, then all that is required is to make sure sufficient time has passed since the last 
measurement to insure that the two measurements are not correlated.   
 
From a real-world perspective, reproducibility is much more important than repeatability.  The reason is that a part 
is never tested just once.  They components are tested multiple times during fabrication.  This is commonly called 
‘in-process’ testing.  Therefore, the error budget must quantify the knowledge uncertainty of how well the test 
results can be reproduced from test to test from day to day and even month to month.  For example, on JWST 
PMSAs were not only moved back and forth between manufacturing and test at Tinsley, but also from Tinsley to 
Ball Aerospace Technology Corporation (BATC) and the Marshall Space Flight Center (MSFC) X-Ray & 
Cryogenic Test Facility (XRCF).  On JWST, a complete understanding of each metrology tool’s test uncertainty was 
critical.  Data from Tinsley, BATC and the MSFC XRCF was required to reproduce each other within the test 
uncertainty.  Certified cryo-data must be traceable from the XRCF where they were tested on their flight mount at 
30K to BATC where they were changed from the flight mount to the fabrication mount at 300K to Tinsley where 
they were polished on their fabrication mount at 300K.  Accuracy is the ability to get the true answer.  The only way 
to get an accurate measurement is to perform an absolute calibration to quantify any systematic errors which must be 
subtracted from the data. 
 
Finally, the most important element of an error budget is contingency reserve.  All error budgets must have 
contingence reserve.  No matter how much one thinks about every potential risk one cannot think of everything.  No 
matter how carefully one executes the test plan, something will go wrong.  Based on many years of experience, a 
33% reserve is recommended.  Also, don’t wait too long to validate the error budget.  On the ITTT program (which 
became Spitzer) this author was responsible for the secondary mirror.  A complete error budget was developed, but 
some elements were allocations.  The secondary mirror was manufactured to a Hindle sphere test (Figure 7) and the 
optician achieved an excellent result.  Unfortunately, the Hindle sphere was not absolutely calibrated until it was 
time to perform the final certification and, to much horror, it had a trefoil gravity sag mount distortion.  And, 
because the secondary mirror had a three point mount, every time it was inserted into the test it was aligned to the 
Hindle sphere’s trefoil error.  As a result, the optician polished in three bumps which exactly matched the holes in 
the Hindle sphere.  Fortunately, there was sufficient reserve in the error budget such that the mirror still met its 
figure specification; it just was no long spectacular.  The moral of the story is to not only validate the error budget 
early.  But also, as much as possible, randomize the alignment from test to test.  Sometimes bad things happen from 
been too meticulous.  (This could almost be an 8th rule.) 
 
In constructing an error budget for large parts, the three biggest potential error sources are gravity sag, mechanical 
stability and atmospheric effects.  Of these, gravity sag may be the most important because it can be significant and 
a metrology engineer’s intuition often fails to fully account for its effect.  The intuition challenge arises from the fact 
that gravity sag is non-linear.  To first order: 
 

	 					 ∝ 				 				∝ 					 	
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where: m = Mass 
 g = Gravitational Acceleration 
 K = Stiffness 
 E = Young’s Elastic Modulas 
 D = Diameter 
 T = Thickness 
 
Therefore, for constant a thickness, a 2 meter part is 4 times less stiff than a 1 meter part.  If they both have the same 
mass, then the 2 meter part will have about 4 times more gravity sag; and if they both have the same area density, 
then the 2 meter part will have about 16 times the gravity sag.  Thus, for most small parts, their intrinsic stiffness is 
such that any bending or shape change caused by gravity is negligible relative to the surface figure specification and 



thus can be ignored.  But, for large parts, gravity sag can be orders of magnitude greater than the surface figure error 
being measured.  For example, an 8 meter diameter, 300 mm thick, solid glass mirror (which must be fabricated to a 
surface figure requirement of less than 10 nm rms) has an edge supported gravity sag of approximately 2 mm.  Now, 
one would never make or test such a mirror using edge support, but if they did, this amount of sag would not be a 
problem if the mirror will be used in the same gravity orientation as it is made and tested, but if during operation it is 
to be tilted with respect to gravity or if it is going to be used in space, then the sag must be quantified and if 
necessary removed from the data.   
 
The key to testing large parts is that the metrology mound must simulate the part’s ‘as-use’ gravity orientation or 
operational support system.  The problem is that metrology mounts are not perfectly repeatable.  And, the less stiff 
the part under test, the more its gravity sag might vary from test to test.  When testing large parts, it is desirable to 
design a metrology mount with sufficient stiffness to hold the part under test such that the uncertainty in its gravity 
sag knowledge is 10X smaller than the surface figure specification.  For example, if the mirror surface figure 
requirement is 10 nm rms, then the metrology mount should support the mirror in a known orientation with respect 
to gravity with an uncertainty of less than 1 nm rms.  To accomplish this task requires a support structure which is 
both mechanically (and thermally) stable and introduces known predictable stress/strain and force loads into the part 
under test.  As the part size increases metrology mounts and handling fixtures become more complicated.   
 
Mechanical stability and vibration errors must be included in any error budget.  Small parts are typically tested on a 
small vibration isolated table with sufficient stiffness to maintain micrometer level test alignment for arbitrary 
periods of time.  But, large test setups require large structures.  And, for structures sometimes 10s of meters in size, 
it can be difficult to achieve micrometer (and/or micro-radian) alignment stability between components.  
Furthermore, at such sizes, the structural material’s coefficient of thermal expansion can cause the test setup to 
‘breath’ as a function of room temperature.  When operating at large scale, test uncertainty is impacted by static and 
dynamic stability.   
 
Static stability is the ability of the structure to maintain the alignment of the test elements relative to each other for 
long periods of time.  Insufficient static stability manifests itself in systematic or even unpredictable drifting of the 
test alignment during the measurement period.  Static stability is also the ability to repeatedly position the test 
elements in the aligned state from test to test.  Static instability primarily occurs when strain, which is introduced via 
mechanical pre-load or misalignment or thermal gradients, is released via stick/slip motion.  As a rule of thumb, a 
test setup should be designed such that the ability to repeatedly position the part under test is sufficiently precise that 
the uncertainty is 10X smaller than the parameter to be measured.  Similarly, any error introduced by drift in the test 
setup should be 10X smaller than the parameter to be measured. 
 
Dynamic stability is vibration and it can be driven by either seismic or acoustic sources.  Small test structures tend to 
be very stiff and have first mode frequencies which are much higher than the measurement period.  If the vibration is 
at least 10X higher than the data acquisition rate, then their effect will average to zero – with a small reduction in 
data ‘contrast’ due to blurring.  [Reference 7]  But, large structures can have first mode frequencies which are on the 
order of 10s to 0.10s of Hertz.  For example, the SOML test tower moves as a rigid body with a resonance of about 
1.2 HZ and an internal first mode of 9.5 Hz.  [Reference 4]  Motions in these frequency bands can introduce 
significant measurement errors.  To minimize these errors, it is necessary to minimize the amplitudes of their 
motions.  This is done by vibration isolating the test structure from the ambient environment.  One way (as shown in 
Figure 3) is to bury in a sand pit a very thick concrete slab on which the test structure is setup.  The sand dampens 
vibrations from being propagated from the building into the test structure.  As shown in Figure 4, the sand can be 
replaced via pneumatic supports.  A third approach is to build large support legs which are physically attached to the 
building with pneumatic supports at the top from which the test structure hangs.   
 
Regardless of the approach used, it is virtually impossible to eliminate all vibrations.  Therefore, additional means 
are needed to minimize their impact.  The Hubble Space Telescope program mitigated vibration errors by acquiring 
and averaging many short exposure measurements.  [Reference 8]  Short exposure measurements ‘freezes’ the 
vibration error.  And averaging reduces the error contribution to zero because vibration is Gaussian normal (i.e. has 
a mean value of zero), but it only works if enough measurements are acquired over a long enough time (i.e. over 
several periods of the vibration) to yield a statistically significant zero mean average.  Another approach is to 
optically or structurally connect the test components such that the vibrations are synchronized.  If every test element 
sees the same vibration such that there is no relative motion, then there are no measurement errors.  The Keck 
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Figure 11:  Ball Optical Test Station (BOTS) for ambient environment testing of JWST Primary Mirror Segment 
Assemblies.  [Reference 12]   
 
An important fact to understand about testing in ambient atmosphere is that turbulence is not statistically random.  It 
does not average to zero.  Rather, atmospheric turbulence is chaotic with a diffusion length.  Thermal pockets are 
‘correlated’ with each other axially and laterally.  Therefore, one cannot eliminate atmospheric turbulence errors 
simply by taking lots of short exposure measurements and averaging (as one does for vibration).  And, according to 
the ergodic principle, the temporal variation along an optical path has the same statistical properties as the spatial 
turbulence.  Thus, two measurements separated in time by less than the diffusion time are correlated and, therefore, 
averaging them will not yield a ‘zero’ error.  Rather, averaging correlated measurements yields a low order error.  
The only way to eliminate atmospheric turbulence effects is to average measurements which are acquired at time 
intervals longer than the diffusion or correlation time.  And, the only way to obtain short diffusion times is a highly 
mixed, highly turbulent atmosphere.   
 
2.3  Continuous Metrology Coverage  
 
The old adage (and its corollary) is correct:  ‘you cannot make what you cannot test’ (or ‘if you can test it then you 
can make it’).  The key to implementing these rules is simple.  Every step of the manufacturing process must have 
metrology feedback and there must be overlap between the metrology tools for a verifiable transition.  Failure to 
implement this rule typically results in one of two outcomes, either very slow convergence or negative convergence.   
 
Overlapping metrology coverage requires tools which can precisely measure large dynamic ranges, for a range of 
surface textures during different fabrication processes, and over a range of different spatial frequencies.  Regarding 
measurement precision and range, it is much easier to measure a 1 meter radius of curvature to a precision of 10 
micrometers than it is to measure a 10 meter radius of curvature to a precision of 10 micrometers (or even to 100 
micrometers).  The metrology tools designed to make such precision measurements can have range limitations.  
Also, as distances become greater, all of the previously discussed problems such as mechanical stability and 
atmospheric turbulence affect precision.  Another, well know but subtle effect, is the Abbe sign error if the radius 
measurement is not being made directly on the optical axis of the component.  Fortunately, the dimensional 
tolerances for large optics are frequently more relaxed than for small optics. 
 
Large parts go through a variety of manufacturing processes, from machining to rough grinding to fine grinding to 
polishing and figuring.  Each process has a different surface texture and different precision and dynamic range 
requirements.  Typically, coarse metrology is done via a profilometer for machining and grinding operations and an 
interferometer for polishing and figuring.  The problem comes in making the transition from grinding to polishing.  
Coordinate Measuring Machines (CMMs) are great for machining and rough polishing.  They have large dynamic 
ranges and work well with ‘mechanical’ surfaces, i.e. surfaces which are not smooth enough to reflect light.  The 
primary issue for large optics is getting a CMM with a sufficiently large measurement volume.  A secondary issues 
is that the larger the measurement volume, the more difficult it is to obtain high precision.  And, high precision is 
what drives the overlap problem.  A CMM with a 0.100 mm rms measurement uncertainty cannot provide a good 
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reproducibility or difference tests or to register a calibration alignment.  But, they are not recommended for 
computer controlled process metrology.  In these cases, fiducials define your coordinate system and need to be 
applied with a mechanical precision of greater accuracy than the required prescription alignment to the substrate.  
Additionally, because the interferometer imaging system might invert the image or because fold mirrors in the test 
setup might introduce lateral flips, an asymmetric pattern is highly recommended.  A good pattern to use is one with 
fiducials at 0, 30 (or 120), 90, and 180 degrees.  The 0/180 degree fiducials produce a central axis for the data set.  
The 90 degree fiducial defines left/right and the 30 degree fiducial defines top/bottom.  Additionally, for test setups 
with null optics, pupil distortion can be a problem.  In these cases, distortion fiducials are required.  One option is to 
place multiple fiducial marks along a radius.  For null tests with anamorphic distortion, a grid of fiducial marks is 
recommended.  Finally, if one has a clear aperture requirement, make sure to place fiducial marks inside and outside 
of the required clear aperture distance, this way it can be certified whether or not the requirement is achieved. 
 
Another problem is software coordinate convention.  Most interferometer analysis software assumes that the optical 
(Z axis) positive direction points from the surface under test towards the interferometer, such that a feature which is 
higher than desired is positive.  But, many optical design programs define the positive optical axis to be into the 
surface.  The problem occurs because both programs will typically define the Y-axis as being up, so it is critical to 
understand which direction is +X-axis.  The problem is further complicated when interfacing with the optical shop.  
To avoid doubling the height or depth of a bump or hole because of a sign error, or adding a hole or bump to a 
surface because of a coordinate flip or inversion, a good metrologist must know the coordinate system of every 
computer controlled grinding and polishing machine in the optical shop. 
 
On JWST, the CoC null test simultaneously controls the PMSA conic, radius, figure and prescription alignment.  
The key is knowing where the prescription is on the substrate and knowing where the prescription is in the test 
setup.  Prescription alignment (off-axis distance and clocking) is controlled by aligning the PMSA into the test setup 
with an uncertainty which is smaller than the decenter and clocking tolerances.  PMSAs are manufactured in 
Observatory Coordinate Space as defined by ‘Master Datums’ on the back of each substrate.  The optical surface 
figure is registered to the mirror substrate and to the observatory coordinate system via data fiducials placed on the 
front surface of each mirror.  The CMM is primary in establishing compliance with prescription alignment.  Starting 
with the master datums, the CMM defines ‘transfer’ fiducials on the side of the mirror.  Then, the CMM establishes 
the data fiducials based on these secondary fiducials.  Figure 16 shows fiducialized mirrors being loaded into the 
MSFC XRCF for cryogenic testing.  Some of the mirrors have only the data fiducials.  Others of the mirrors have 
both data fiducials and distortion fiducials (2D grid of dots).  Distortion fiducials are necessary to compensate for 
anamorphic distortion introduced by the CGH. 
 

     
 

Figure 16:  PMSA mirrors with Data and Distortion Fiducials are ready for loading into the MSFC XRCF. 
 
2.5  Test like you Fly 
 
‘Test like you fly’ covers a wide range of situations, and of course, for ground applications this rule could be ‘Test 
like you use’.  Whenever possible, the part should be tested in its final mount, at its operational gravity orientation 
and at its operational temperature.  While gravity is typically not a problem for small stiff optics, it can be a 
significant problem for large optics.  Any optical component going into space needs to be tested in a ‘zero-g’ 
orientation.  This is typically accomplished by either averaging a cup-up/cup-down test to remove the 
concave/convex gravity sag contribution, or by averaging a horizontal multiple rotation test to remove mount 
induced bending.  [Reference 15]  Gravity sag can be every significant for very large ground based telescopes.  In 
this case, the best approach is to test them in their final structure (or a suitable surrogate) at an operational gravity 
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2.7  Understand All Anomalies 
 
Finally, of all the rules, this one maybe the most important and must be followed with rigor.  No matter how small 
the anomaly, one must resist the temptation of sweeping a discrepancy under the metaphorical error budget rug.  
Any time that the actual data uncertainty for a given measured value is larger than its error budget, the reason for 
this discrepancy must be determined and understood.  Do not eat into the contingency reserve because it will be 
needed at the end of the fabrication process or for the integration, alignment and test (IA&T) process when, if 
something goes wrong, it is very difficult to fix an error.  Similarly, if the actual data uncertainty for a measured 
value is less than its error budget, one can either adjust the total error budget to create margin for other more 
difficult parameters or increase the contingency reserve 
 
 
 
 
 
 
3.0 CONCLUSION  
 
The discussion above has walked through the challenge of measuring large optics.  In doing so, this chapter has 
defined seven guiding principles that can be applied to any metrology application. 
 

1. Fully Understand the Task 
2. Develop an Error Budget 
3. Continuous Metrology Coverage 
4. Know where you are 
5. “Test like you fly” 
6. Independent Cross-Checks 
7. Understand All Anomalies 

 
Although we have used specific examples from optical testing applications, clearly the issues of error budgets, 
environmental issues, datum points, cross-checks and understanding anomalies can apply to any part, but 
particularly to measuring larger parts and structures such as described in the previous two chapters.  Large sections 
on machine tools sag under gravity, girders holding up bridges will change with temperature, and many small errors 
in an engine will add up to a bad engine.   
 
Many of these issues become most noticeable on large parts being made to high precision.  A system like a turbine 
engine is made so precisely that a large engine able to move a jumbo jet can be easily turned by hand.  However, as 
tolerances keep increasing for all manufacturing, more often than not these considerations will hold true for smaller 
parts as well.   The seven guiding principles therefore can be a valuable tool for any metrology application.  
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