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The External Filter Assembly (EFA)  S/N 01 is a mesh screen filter with a pore size of 

approximately 300 µm that was installed in the International Space Station (ISS) Water 

Processor Assembly (WPA) between the Waste Tank and the Mostly Liquid Separator 

(MLS) on February 11, 2010 to protect clearances in the MLS solenoid valve SV_1121_3.  A 

removal & replacement of the EFA Filter was performed on March 22, 2011 in response to 

increasing pressure across the Waste Tank solenoid valve SV_1121_1 and the EFA Filter.  

The EFA Filter was returned on ULF6 and received in the Boeing Huntsville Laboratory on 

June 13, 2011.  The filter was aseptically removed from the housing, and the residual water 

was collected for enumeration and identification of bacteria and fungi.  Swab samples of the 

filter surface were also collected for microbiological enumeration and identification.  Sample 

analyses were performed by Boeing Huntsville Laboratory and NASA Johnson Space Center 

Microbiology for comparison. Photographic documentation of the EFA filter was performed 

using a stereo microscope and environmental scanning electron microscope. This paper 

characterizes the amount and types of microorganisms on the filter surface and in the 

residual water from the filter housing following 1 year of utilization in the ISS WPA. 

Nomenclature 

EFA = External Filter Assembly 

ISS = International Space Station 

WPA = Water Processor Assembly 
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MLS = Mostly Liquid Separator 

MF = Multifiltration 

ORU = Orbital Replacement Unit 

NASA = National Aeronautics and Space Administration 

JSC = Johnson Space Center 

kPa = Kilopascal 

cm = Centimeter 

mL = Milliliter 

C = Celsius 

MIS = Microbial Identification System 

S/N = Serial Number 

QD = Quick Disconnect 

ESEM = Environmental Scanning Electron Microscope 

FTIR = Fourier Transform Infrared 

T = Transmittance 

CFU = Colony Forming Units 

I. Introduction 

HE International Space Station (ISS) Water Processor Assembly (WPA) produces potable water from a 

combination of humidity condensate and urine distillate provided from the Urine Processor Assembly. The 

WPA consists of a waste water tank (bellows maintains approximately 5.2 – 15.5 kPa), the mostly liquid separator 

(MLS) for gas removal, separator filter for removal of odor-causing contaminants from entrained air, solenoid 

valves, pump, particulate filter, multifiltration (MF) beds for removal of inorganic and non-volatile organic 

contaminants from the water, sensor (to measure conductivity between the 2 MF Beds), a catalytic reactor for 

oxidation of polar organic contaminants, a regenerative heat exchanger to recover heat from the catalytic reactor, a 

gas separator to remove excess oxygen and gaseous oxidation by-products from process water, and a reactor health 

sensor to measure conductivity of the catalytic reactor effluent.
1 

An ion exchange bed removes dissolved oxidation 

products and adds iodine for residual microbiological control.
1
 The potable water is stored in the product water tank 

prior to delivery to the ISS potable water bus which has a small accumulator tank and a pump to deliver water on 

demand to users.
1 
 

 The WPA began exhibiting an increased pressure drop between the waste tank and the MLS in June 2009.
1
  The 

WPA was operated at a reduced flow rate to allow more time for the waste  tank to fill the MLS. The Pump/Sep 

Orbital Replacement Unit (ORU) which contains the MLS, solenoid valves, and the pump was replaced with a spare 

unit (S/N 02) in January 2010.
1
 Then on February 11, 2010, a 300 µm mesh screen filter in the External Filter 

Assembly (EFA) was installed between the waste tank and MLS to help prevent obstruction of tight clearances in 

the Pump/Sep ORU.
1
 Nominal operation of the WPA was resumed after the EFA installation, and the failed 

Pump/Sep ORU was returned to the ground for a failure investigation which was performed at Hamilton Sundstrand 

the week of February 22, 2010. The MLS inlet solenoid valve SV_1121_3 was found to be occluded with a mixture 

of fungal and bacterial biomass. The biomass had accumulated in the valve between the poppet and the valve seat 

and obstructed the valve clearance in this region.
1
 

After approximately one year of WPA operation with the EFA Filter installed, pressure increased across the 

Waste Tank solenoid valve SV_1121_1 and the EFA Filter. The EFA Filter was replaced with a spare on March 22, 

2011 and returned to ground on ULF6. The EFA Filter was received in the Boeing Huntsville Laboratory on June 

13, 2011 for characterization of the biomass and other contaminants on the filter.  

II. Materials and Methods 

The EFA Filter was received in the Boeing Huntsville Laboratory on June 13, 2011. The EFA Filter contained in 

the outer shipping bags was placed under a Class II Laminar Flow Biosafety Cabinet for aseptic disassembly. The 

EFA Filter was removed from the shipping bag and weighed. The mesh filter was removed from the housing and the 

fluid was collected in a sterile container and the volume was determined.  Surface samples of two 1 cm
2
 areas of the 

mesh screen filter  were collected with sterile swabs wetted with neutralizing buffer. A surface sample of the inside 

of the filter housing was also collected by swabbing the circumference of the inner housing with a sterile swab 

wetted with neutralizing buffer. The swabs were placed into tubes containing 5 mL of sterile neutralizing buffer. 

And a dry sterile cotton swab was used to collect material on the mesh screen for Fourier Transform Infrared 

microscopy and placed into a sterile tube. Photographs were taken of all phases of the engineering evaluation of the 
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EFA Filter. Stereomicroscopic and environmental scanning electron micrographs were also taken of the mesh screen 

filter. The mesh screen filter was aseptically cut from the end caps and a longitudinal cut was made to open the 

circular mesh screen filter in order to view the outlet (inside) of the filter.  

The Boeing Huntsville Laboratory performed heterotrophic bacteria and fungi enumerations and identifications 

on a portion of the fluid sample and wet swab samples collected from the mesh screen and inside of the EFA filter 

housing.  Microorganisms on the swabs were dispersed into the neutralizing buffer by three repetitions of vortexing 

for 30 seconds followed by sonication for one minute.  Enumerations on the fluid sample and neutralizing buffer 

from the swabs were performed by membrane filtration.
2
 Membrane filters for bacteria were placed on R2A agar, 

and then incubated for 7 days at 28C. The membrane filters for fungi were placed on modified Emmon’s Agar, 

which contains chloramphenicol and rose bengal to inhibit bacterial growth, and then incubated for 5 days at 25C.  

Counts of bacteria and fungi were reported as colony forming units (CFU)/mL for fluid or CFU/cm
2
 for the swabs.  

Bacteria identifications were performed using the Sherlock® Microbial Identification System (MIS) which is based 

on cellular fatty acid analysis by gas chromatography.  Bacteria identifications were also performed using the Biolog 

MicroLog Identification System that is based on carbon source utilization patterns within a 96 well microplate using 

oxidation-reduction chemistry.  Fungal identifications were done by classical morphological and microscopic 

examination. 

The remaining fluid from the EFA housing and a set swab sample of the mesh screen were sent to the NASA 

JSC Microbiology for comparative analyses for bacteria and fungi.  For bacterial analysis, samples were plated onto 

R2A and incubated at 35C for 48 hours. Bacterial identifications were performed using standard biochemical and 

genetic analyses. Samples for fungal analysis were plated onto Sabouraud dextrose with chloramphenicol, potato 

dextrose agar, and malt extract and then incubated at 30C for 5 days. Fungal identifications were done by classical 

morphological and microscopic examination.   

III. Results 

The EFA SV1018042-1 was received in good condition. There was no leaked fluid in the outer or inner shipping 

bags.   

A. Photographs of EFA Filter 

Figure 1 indicates the EFA with quick disconnects (QDs) attached as received in the laboratory prior to 

disassembly. After removal of the outlet QD, 3 mL of fluid from the filter and housing was collected into a sterile 

container. Figure 2 shows the mesh screen filter after removal from the housing. 

B. Stereomicroscope Photographs of Filter Inlet 

Swab samples were collected from the mesh screen filter and the filter was photographed using a 

stereomicroscope at approximately 35 – 50x magnification.  The stereomicroscopic images of the mesh filter in 

Figure 3 and Figure 4 indicate  an almost total occlusion of the pores in the filter by a gelatinous biofilm.   

 
Figure 1. EFA SV1018042-1 prior to disassembly.  

 

 
Figure 2. Mesh filter after removal from the housing.  
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C. Environmental Scanning Electron Microscope Images of Filter Inlet 

The filter was placed into an environmental scanning electron microscope (ESEM) to get detailed images of the 

biofiolm structure prior to destructive analysis of the filter.  Figure 5 is an ESEM photograph at 50x magnification.  

At this point, the biofiom had begun to dry after removal from the housing.  Figure 6 shows a higher magnification 

(726x) ESEM photograph.  

D. EFA Filter After Sectioning 

The mesh filter was destructively removed from the end caps, and a longitudinal cut of the filter was made to 

evaluate the filter outlet (inside of the mesh screen).  The cut filter is shown in Figure 7.  Figure 8 is a 

stereomicroscope photograph of the filter outlet.  Biofilm can be see extruding through the pores of the mesh filter. 

 

 

 

 

 

 

 

 

 

 
Figure 5. ESEM of filter at 50x magnification.  

 

 
Figure 6. ESEM of filter at 726x magnification.  

 

    

Figure 3. Filter inlet at 35x Magnification. 
 .  

 

 

Figure 4. Filter inlet at 50x Magnification. 
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E. Fouier Transform Infrared Spectroscopy 

Dry sterile swabs were used to collect biofilm from the filter inlet at three different locations for FTIR 

spectroscopy.  The results are shown in Figure 9. The spectral characteristics are very similar for each spectrum. The 

amide deformation bands at 1650 cm
-1

 and 1550 cm
-1

 are characteristic of proteins. A more significant characteristic 

is the carbonyl bands around 1740-1720 cm
-1

, which have been associated with fungal biofilm. 

 
Figure 9. FTIR spectra of biofilm removed from filter inlet at 3 locations. 
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Figure 7. Filter screen cut longitudinally. 

 .  

 

    
Figure 8. Stereomicroscope image of filter outlet. 
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F.  Boeing Huntsville Laboratory Microbiological Enumerations and Identifications 

The enumeration and identification of heterotrophic bacteria and fungi in fluid and suface swabs that were 

performed by Boeing Huntsville Laboratory are shown in Table 1. The relative species counts based on the totals for 

of each specific colony morphology on countable plates are provided following the species identification. 

 

Sample  

Description 

Bacteria 

Count 

Bacteria  

Identifications 

Fungi 

Count 

Fungi  

Identifications 

Fluid from filter 

housing 

4.5E+03 

CFU/mL 

Microbacterium laevaniformans – 

1.3E+03 CFU/mL 

2.1E+03 

CFU/mL 

Lecythophora mutabilis – 

1.8E+03 CFU/mL 

  Cupriavidus metallidurans – 

 1.2E+03 CFU/mL 
 Lecythophora hoffmannii – 

3.0E+02 CFU/mL 

  Ralstonia pickettii –  

1.0E+03 CFU/mL 
  

  Ralstonia paucula – 

1.0E+03CFU/mL 
  

Swab from mesh 

filter inlet 

1.25E+04 

CFU/cm
2
 

Ralstonia pickettii –  

6.0E+03 CFU/cm
2 

1.9E+04 

CFU/cm
2 

Lecythophora mutabilis – 

1.7E+04 CFU/cm
2 

  Ralstonia paucula –  

2.5E+03 CFU/cm
2 

 Lecythophora hoffmannii – 

2.0E+03 CFU/cm
2
 

  Cupriavidus metallidurans –  

2.5E+03 CFU/cm
2 

  

  Microbacterium laevaniformans – 

1.5E+03 CFU/cm
2 

  

Swab from inside 

housing 

1.77E+03 

CFU/cm
2
 

Ralstonia paucula –  

1.02E+03 CFU/cm
2
 

3.36E+03 

CFU/cm
2 

Lecythophora hoffmannii – 

2.83E+03 CFU/cm
2
 

  Ralstonia pickettii –  

2.8E+02 CFU/cm
2
 

 Lecythophora mutabilis – 

5.3E+02 CFU/cm
2
 

  Comamonas testosteroni –  

2.8E+02 CFU/cm
2
 

  

  Cupriavidus metallidurans –  

1.9E+02 CFU/cm
2
 

  

Table 1. Boeing Huntsville Laboratory enumeration and identification of bacteria and fungi. 

G.  Fungal Cellular and Colony Morphology 

Figure 10 is a photograph of the colony morphology of a Lecythophora mutabilis isolate growing on potato 

dextrose agar. Initially, the colony has an orange pigment at the outer smooth edge with a fluffy grey center.  As the 

culture matures, the center begins to darken to a yellowish-brown color. The cellular morphology of the 

Lecythophora mutabilis isolate is shown in Figure 11 using a lactophenol cotton blue stain.  Phialides (bottle shaped 

basipetal cells) that produce conidia are present as well as pigmented, rounded, thick-walled cells known as 

chlamydospores. 
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Figure 12 is a photograph of the colony morphology of a Lecythophora hoffmannii isolate growing on potato 

dextrose agar.  The colony initially has a light pink color and a slimy texture  with a downy center.  The cellular 

morphology of the Lecythophora hoffmannii isolate is shown in Figure 13 using a lactophenol cotton blue stain.  

Adelophialides (not septate at the base) are interclalated in the hyphae and chlamydospores are not present. 

H.  NASA JSC Microbiological Enumerations and Identifications 

The enumeration and identification of heterotrophic bacteria and fungi in fluid and surface swabs that was 

performed by the NASA JSC Microbiology Laboratory is provided in Table 2. 

 

Sample  

Description 

Bacteria Bacteria  

Identifications 

Fungi Fungi 

Identifications 

Fluid from filter 

housing 

1.4E+06 

CFU/mL 

Cellulomonas fimi  2.0E+03 

CFU/mL 

Aureobasidium pullulans 

Swab from mesh filter 

inlet 

1.5E+02 

CFU/cm
2 

Cupriavidus basilensis 
 

6.5E+02 

CFU/cm
2 

Aureobasidium pullulans
 

  Microbacterium laevaniformans
 

  

  Cupriavidus metallidurans
 

  

  Burkholderia multivorans
 

  

Table 2. NASA JSC Microbiology Laboratory enumeration and identification of bacteria and fungi. 

    
Figure 12. Lecythophora hoffmannii colony 

morphology on potato dextrose agar. 
 

 

    
Figure 11. Lecythophora mutabilis cellular morphology 

stained with lactophenol cotton blue. 
 

    
Figure 10. Lecythophora mutabilis colony 

morphology on potato dextrose agar. 
 .  

 

 
Figure 12. Lecythophora hoffmannii cellular 

morphology stained with Lactophenol cotton blue. 
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IV. Discussion 

The EFA filter was preventing large mycelial fragments consisting of fungal hyphae, conidia, and 

chlamydospores greater than 300 μm that could slough off the bellows in the WPA waste tank from impacting WPA 

ORUs. Smaller mycelial fragments, hyphae, conidia, chlamydospores, and bacteria could still pass through the EFA 

filter and attach as biofilm in tubing, manifolds, solenoid valves, and other hardware because there are plenty of 

nutrients in the wastewater to support bacterial and fungal growth. Over the approximately one  year of WPA 

operation with the EFA filter installed, the filter became almost totally occluded with biofilm due to continued 

collection of bacteria and fungi on the filter and in situ growth of fungi on the filter. A major consequence of filter 

biofouling is penetration of filter material by the microorganisms and “grow through”.
3
 The penetration can occur 

during dynamic and quiescent flow conditions. At the time of the EFA removal, the filter was contributing more 

bacterial and fungal contamination downstream than it was preventing. 

The bacteria found in the water and surface samples on the EFA filter and housing are a mixture of Gram 

negative and Gram positive species commonly found in wastewater and soil. Several species of rod-shaped, motile, 

Gram negative, aerobic, and non-fermentative bacteria were present including Ralstonia pickettii, Ralstonia 

paucula, Cupriavidus metallidurans, Cupriavidus basilensis, Comamonas testosteroni, and Burkholderia 

multivorans.  Ralstonia species are commonly found in biofilms in water systems and can cause nosocomial 

infections in immune compromised individuals.
4
  Cupriavidus metallidurans has the ability to survive in millimolar 

concentrations of heavy metals.
5
 Comamonas testosteroni can accumulate poly-hydroxybutyrate in the cell.

6  

Burkholderia multivorans has been known to colonize the lungs of cyctic fibrosis patients.
7 

Microbacterium laevaniformans is a motile Gram positive bacterium with irregular short rods ranging from 0.2 

- 0.3 by 0.6 - 2.0 µm.
8
  Cells were shorter in older cultures.  Microbacterium laevaniformans is chemoorganotrophic 

and has  primarily an aerobic respiratory metabolism with weakly fermentative with the production of acid from 

glucose and a few other carbohydrates.  Although this  same isolate was identified by cellular fatty acid analysis as 

Microbacterium chocolatum,  additional testing including genetic analyses and growth in 5% NaCl proved that the 

culture was actually Microbacterium laevaniformans.
8
 Cellulomonas fimi is a motile, Gram positive bacterium with 

slender, irregular rods from 0.5-0.6 by 2.0–5.0 µm.
9
  Cellulomonas is a facultative anaerobe with respiratory and 

fermentative metabolism.
9
  It is commonly found in soil and decaying matter. 

Species of the filamentous fungus Lecythophora were originally classified as members of the genus 

Phialophora due to the production of phialides.
10

  Lecythophora is commonly found in soil and decaying plant 

material.  Rarely it is a human pathogen and can cause keratitis, enophthalmitis, peritonitis, and endocarditis.
10

  

Aureobasidium pullulans is commonly found in humid indoor environments and is a contaminant of human skin, 

nails, and hair.
10

 Aureobasidium forms mucoid colonies that darken with age due to the appearance of brown hyphae 

that differentiate to chlamydospores at maturity.
11

  Hyaline blastoconidia are also produced.
11 

There were differences in bacteria and fungal counts and species reported by the Boeing Huntsville Laboratory 

and NASA JSC Microbiology Laboratory.  Those differences may be due to the  higher incubation temperatures 

(35C versus 28C for bacteria and 30C versus 28C for fungi) and shorter incubation times for bacteria (2 days 

versus 7 days). Different incubation temperatures could promote the growth of certain species and inhibit the growth 

of other species.  Also, some slower growing environmental bacteria may not show up until after 48 hours of 

incubation.  The highest bacteria count was reported by NASA JSC Microbiology in the fluid sample with 

Cellulomonas fimi at 1.4E+06 CFU/mL.  This bacterium could have overgrown other species during the time 

required to ship the samples to Houston, or it could also be a sampling contaminant. 

V. Conclusion 

The EFA filter prevented fungal mycelial mats greater than 300 µm that may slough off the bellows in the waste 

tank from impacting downstream ORUs such as the Pump/Sep ORU with low flow regions in solenoid valves 

during one year of installation in the ISS WPA.  Even before delta pressure began to increase across the EFA filter, 

the filter had become a source of more bacterial and fungal contamination downstream than it was preventing due to 

penetration and extrusion of biofilm through the filter. The data warrants a more frequent removal and replacement 

of the EFA filter. A more frequent recommended EFA filter replacement schedule of every 3 – 6 months is 

unrealistic due to limitations on logistics and available crew time. Therefore, changes in operation of the WPA, 

which include an iodinated water flush of the solenoid valve at the end of a process cycle, are being considered to 

reduce the risk of biofouling in downstream ORUs.    
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