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ABSTRACT

NASA and the international community are investing in the development of a commercial transportation infrastructure that
includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft
have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways.
As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations.
However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In
this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial
intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground
noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for
low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the
ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

INTRODUCTION

The ability to predict rotorcraft ground noise is important in
determining and assessing environmental noise impact. The
noise generated by rotorcraft can limit their usage and restrict
operations, particularly near cities and populated regions. The
two primary approaches commonly used to reduce rotorcraft
noise are to make vehicle design modifications and to make
changes in operational flight procedures. The latter have the
advantage that they can often be implemented to achieve sig-
nificant noise reductions at a lower cost than new design ef-
forts.

The problem motivating this work is the design of low-
noise approach trajectories for rotorcraft in order to reduce
surrounding community noise. This is an important compo-
nent in developing a transportation infrastructure that is based
on an increased use of rotorcraft, specifically helicopters and
aircraft such as a 40-passenger civil tilt rotor. Rotorcraft have
a number of advantages over fixed wing aircraft, primarily
in not requiring direct access to the primary fixed wing run-
ways. As such they can operate at an airport without directly
interfering with major air carrier and commuter aircraft oper-
ations. There is significant concern over the impact of noise
on the communities surrounding the transportation facilities.
One way to address the rotorcraft noise problem is to auto-
matically design flight profiles which can be evaluated with
respect to noise in simulation or through field tests.

Computer modeling capabilities for developing low noise
procedures have received much attention over the last 15
years. These models, when paired with an automated opti-
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mization approach, can facilitate the design of new approach
trajectories for improving the environmental impact.

The objective of this paper is to address the Trajec-
tory Noise Optimization Problem (TNOP), as introduced in
(Ref. 8), for designing noise minimal rotorcraft approach tra-
jectories. The model includes a graphical representation of the
computational search space based on the state of the aircraft
and the control decisions made by the pilot; a representation
of constraints that identify trajectories that are ’flyable’ based
on pilot-elicited rules of comfort and safety of the aircraft; a
noise simulator tool (Rotorcraft Noise Model, RNM) for cal-
culating the effects of sound propagation over varying ground
terrain, enabling the quantitative assessment of the overall
ground noise produced by a given trajectory; cost functions
that aggregate and quantify the cumulative noise level to al-
low for trajectories to be compared and ordered based on the
noise they produce; and an optimizing search approach using
local search. The local search uses a neighborhood function
based on a simple exchange of control decisions. The search
is initialized using a seed solution manually crafted by a pilot
based on standard approach procedures.

BACKGROUND

Noise and how it is Measured

Noise is unwanted sound. Sound is variation in air pressure
detectable by the human ear in the form of vibration of the
ear drum. The decibel is a ratio that compares the sound pres-
sure of the sound source of interest (e.g., the rotorcraft over-
flight) to a reference pressure (the quietest sound we can hear).
Humans can detect sound pressure over a wide range, 10−9

to 10−3 pounds per square inch (psi). Because the range of
sound pressures is very large, we use logarithms to simplify
the expression to a smaller range, and express the resulting
value in decibels (dB).



Sound can be broken down into frequencies (low, medium,
high). The ear is more sensitive to mid- and high frequency
sounds, so we find noise in these ranges more annoying. The
process of A-weighting approximates the sensitivity of the hu-
man ear and helps to assess the relative loudness of various
sounds.

Sound levels vary with time, which is important if we are
interested in the noise associated with a certain event of in-
terest (e.g. an approaching rotorcraft). To take exposure du-
ration into account, the most common measure is the Sound
Exposure Level (SEL). SEL ’summarizes’ the variable energy
level of an event with arbitrary duration by mapping it to an
event of one second duration with the same overall energy and
a constant energy level. SEL provides a comprehensive way
to describe noise events for use in modeling and comparing
noise environments. Computer noise models base their com-
putations on SEL values.

The US Federal Aviation Administration (FAA) consid-
ers a 1.5 dB the minimum significant change where cumu-
lative exposure is above 65 DNL. Any abatement strategy that
promises over 5 dB change in noise level is considered defi-
nitely beneficial. As we show later, we will use this value in
assessing and comparing noise cost functions for trajectories.

Helicopter noise sources include the main rotor, the tail ro-
tor, the engine(s), and the drive systems. The most noticeable
acoustical property of helicopters is the modulation of sound
by the relatively slow-turning main rotor. The resulting sound
can become impulsive in character and is referred to as BVI
(Blade Vortex Interaction Noise). Impulsive noise occurs dur-
ing high-speed forward flight as a result of blade thickness
and compressible flow on the advancing blade. This causes
the blades airloads to fluctuate rapidly. These fluctuations re-
sult in impulsive noise with shock waves that can propagate
forward. At lower airspeeds, and typically during a descent,
rotor impulsive noise can occur when a blade intersects its
own vortex system or that of another blade. This type of noise
is BVI noise. When this happens, the blade experiences lo-
cally high velocities and rapid angle-of-attack changes. This
tends to produce a sound that is loud and very annoying in
character (Ref. 1), (Ref. 6).

Rotorcraft Noise Model Simulation Tool

The Rotorcraft Noise Model (RNM) (Ref. 4) is a simula-
tion program that predicts how the sound of a rotorcraft will
propagate through the atmosphere and accumulate on the
ground. RNM is capable of calculating cumulative noise ex-
posures such as A-weighted SEL. Given a flight trajectory
and other parameters describing the rotorcraft and the envi-
ronment, RNM simulation produces predictive noise data in
various formats. Of interest here is the generation of ground
noise contour plots: a set of values representing ground noise
exposure using A-weighted SEL over a designated grid of x-y
points around the evaluated trajectory. Figure 2 shows an ex-
ample of such a plot, where each color corresponds to a dB
level (redder and lighter colors noisier). These plots provide

the data used to compute the aggregate cost functions used
during search. The number of data points computed to gen-
erate such a contour is a tunable parameter in RNM: we call
this parameter data resolution. Specifically, data resolution
sets the distance between two arbitrary data points; a higher
distance means fewer data points, more ’gaps’ to fill in with
the same value. The result is a coarser measure of noise, but
because of the fewer values the simulator runs faster. By con-
trast, more data points means a higher resolution prediction
of noise, but RNM runs at an (exponentially) slower rate as
resolution increases. This isn important consideration in this
work, since higher resolution means in general less time for
the optimizer to search for a high-quality solution, thus di-
minishing its performance.

The input to RNM consists of

• a set of computational parameters, including identity of
rotorcraft, and the dimensions and resolution of a grid
that will display output noise (discussed further below);

• a specification of points of interest; and

• a specification of the flight trajectory, including position,
velocity and orientation.

RNM combines a model of sound propagation through the
atmosphere with a database of noise data either experimen-
tally or analytically generated. The database is comprised of
a set of sound spheres. Points on the sphere are described in
terms of a radius from the source and two spherical angles.
A sphere is associated with one noise source and one flight
condition (flight path angle, nacelle angle (for tilt-rotors) and
airspeed). There may be more than one sphere for the same
flight condition; for example, spheres for different locations
on the rotorcraft. Figure 1 shows an example sound hemi-
sphere.
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Fig. 1. A sound hemisphere of an MD-900 helicopter.

There are three main computational components of the
RNM simulation:

• Input Module: Linear interpolation over the input trajec-
tory as a pre-processing step. Input data are interpolated
(if required) to a default of 2 second spacing. The user
may specify other time increments if desired.



• Source Database Lookup and Selection: Selecting and
interpolating over the sound spheres to determine the
best representative of the noise generating for a given lo-
cation and flight condition in the input trajectory; and

• Source to receiver propagation: Accumulating and stor-
ing the sound for a given receiver.

The second and third components are executed for each tra-
jectory point, sound source, flight operation and receiver lo-
cation.

Fig. 2. A Noise Contour Plot.

Trajectory Optimization

The field of trajectory optimization has a long history, with
many applications in aerospace and robotics. Informally, a
trajectory optimization problem consists of a set of states, a
vector of control decisions, a start and goal state, a cost func-
tion, and a set of constraints. A state represents locations (i.e.
points in a 3D space), velocity and heading. A control deci-
sion is a vector representing change in velocity, altitude, head-
ing, and in turn radius.

In addition to noise, trajectories have been optimized with
respect to time, fuel, path length and obstacle avoidance.
Methods of solving trajectory optimization problems range
from numerical methods (Ref. 3) to non-linear programming
problems (Ref. 5) or dynamic programming (Ref. 7). In addi-
tion, path planning methods from robot motion planning has
been used (Ref. 9). Randomized optimization methods such
as simulated annealing and genetic algorithms have also been
applied in the work by Xue and Atkins (Ref. 11). The latter
bears the most similarity to the work described here, but has
a number of important differences. There, the search space in
modeled with a k-ary tree approach where each branch rep-
resents a change in the value of a parameter (e.g. path an-
gle and acceleration) and the branching factor is restricted
to at most k. We, instead, consider box-shaped trajectories,
inspired by standard flying practices, which have a more re-
stricted shape but yet cannot be modeled in the framework

used in (Ref. 11). Moreover, the noise produced by a trajec-
tory is evaluated in (Ref. 11) using a verified noise database,
whereas we use RNM as an evaluation tool. Finally, the local
search techniques employed are different, as we use a stan-
dard hill-climbing procedure whereas in (Ref. 11) simulated
annealing was used.

The optimization problem of interest here, which we call
the Trajectory Noise Optimization Problem (TNOP), is stated
informally as follows: given a set of states and control ac-
tions, find a path (trajectory) that minimizes expected ground
noise subject to a set of dynamic constraints, and constraints
on start- or end-states.

THE TRAJECTORY NOISE OPTIMIZATION
PROBLEM

We focus on approach trajectories because that is virtually
where all the community noise problems arise and the prob-
lem for take-off trajectories is very similar. We will focus on
A-weighted SEL as our noise exposure metric. RNM sim-
ulation provides a black box scoring function for candidate
trajectories. Specifically, RNM produces an output file that
assigns predicted noise for a set of ground points arranged in
a two-dimensional grid on the X-Y plane. The grid size is
defined in terms of the values of the corner nodes and the dis-
tance between nodes.

Upon this grid our model superimposes an organization of
nodes associated with the state of the aircraft and the control
decisions being made by the pilot. We introduce state vari-
ables X ,Y,Z,V,H and associated domains for, respectively,
location (X ,Y ), altitude (Z), airspeed (V ), and heading (H).
We use normal conventions for heading, whereby 0 is north,
90 is east, 180, south, and 270 west. Given a state variable
Q we write q, to refer to domain elements of the variable. A
state of the system is a 5-tuple s = 〈x,y,z,v,h〉.

Similarly, we introduce decision variables ∆V,∆Z,∆H,∆R
for change in velocity, change in altitude, change in head-
ing, and change in turn radius, also with associated domains,
and we write ∆v to denote a value in the domain of ∆V , etc.
Change in heading involves addition modulo 360, one action
to initiate the change (e.g. ∆H = 180 to start a 180 degree
turn) and a complementary action to come out of the turn (e.g.
∆H = −180 to restore straight flight). A decision vector (or
simply decision) is a tuple d of values for each decision vari-
able.

A node is a pair 〈s,d〉 of a state and decision, representing
the state of the rotorcraft when the pilot or automated system
begins to apply decision d. Given node Ni = 〈si,di〉, we will
denote with 〈xi,yi,zi,vi,hi〉 and 〈∆vi,∆zi,∆hi,∆ri〉 its compo-
nents.

A path (trajectory) is a sequence of k nodes. Between two
adjacent nodes N j,N j+1 there is an edge labeled with the dis-
tance flown dist j (in feet), between the locations correspond-
ing to the nodes. For a turn, it measures the portion of the
circumference of the circle flown. A consistent path is one in



which, for all j = 1 . . .k−1, node N j+1 is the result of apply-
ing d j at s j for the entire length dist j. We express this as a
transition function T : N→ N, where N is the set of nodes.

We assume we are given two nodes designated as start and
finish, with fixed state and control vectors and that a solution
is any consistent flyable trajectory between them. To control
the size of this space we initially start by limiting the paths
to those that would be considered ’standard’ by pilots. One
example of a standard approach is a box pattern, as the one
shown in Figure 3. This trajectory is represented by 6 nodes,
N0 . . .N5, where two 90o turns start, respectively, at N2 and N3.
The goal is to find an assignment (s0, . . . ,s5,d0, . . . ,d5) to the
state and control vectors of the nodes not fixed by initial and
final conditions, such that the noise simulated by RNM on the
corresponding trajectory is minimal.
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Fig. 3. A “box”-like approach pattern.

Flyability Constraints

Conditions that make a trajectory suitable to fly are usually
expressed in terms of constraints over the glide slope angle
and deceleration. In particular, any part of a trajectory should
be characterized by an angle of descent γ ∈ [0o,12o] and a
deceleration a ∈ [0g,0.1g] (or a ∈ [40 f t/sec2,201 f t/sec2]).
Such restrictions induce constraints on the change of velocity
and altitude as follows. Given a pair of nodes Ni,N j and a path
between them of distance disti j we have:

• the deceleration constraint (dec): ∆vi ∈ {δv‖∃a∈ [0,0.1],
δv =

√
v2

i +2a×disti j− vi}, where a is expressed in gs.

• the angle-of-descent constraint (aod): ∆zi ∈ {δz‖∃γ ∈
[0o,12o], tan(γ) = δz

disti j
}.

In addition, there are a minimal velocity and altitude
(vmini,zmini) that a rotorcraft must have when starting the final
part of the approach (that is at the, so called, landing deci-
sion point). Such values are a function of the distance of the
landing decision point from the landing site. A trajectory is
said to be flyable if it satisfies all the deceleration and angle-
of-descent constraints along its path, and does not violate the
bounds defined by vmini and zmini.

A Trajectory Noise Optimization Problem (TNOP) is a tu-
ple 〈S,D,s0,s f ,aod,dec,vmini,zmini〉, where S is a set of states,

D s set of decisions, s0,s f are initial and final states, aod,dec
are deceleration and descent angle constraints, and vmini and
zmini are as just defined. A feasible solution to a TNOP is a
path P = N0,N1, . . . ,Nk where N0 = 〈s0,d0〉, Nk = 〈s f ,0d〉,
where 0d represents the decision of leaving everything un-
changed, and for all j = 2 . . .k, N j = T (N j−1), and where P
satisfies the flyability constraints.

Cost Functions

We introduce two natural ways of ’aggregating’ RNM con-
tour noise data into scalar valued functions. One cost function
identifies ranges of values that correspond to various levels
’high’, ’medium’ and ’low’ noise, and creates ’bins’ that store
the number of grid noise data points in that range. Each bin is
assigned a weight indicating its importance in determining so-
lution quality, and the trajectory is evaluated as the weighted
sum of the bin values.

Formally, we define a Binning Heuristic function (Bin)
as follows. Given in input a solution t, RNM computes
the A-weighted SEL value for each of the grid points. Let
us denote with SEL(t,x,y) such a value for the grid point
(x,y) given trajectory t. We define a sequence of decreas-
ing ranges, 〈r1,r2, . . . ,rn〉 partitioning the SEL values of the
grid points. Given a trajectory t let us denote by Si(t) =
{(x,y)|SEL(t,x,y) ∈ ri}. We define the following vector
b(t) = 〈b1(t),b2(t), . . . ,bn(t)〉 where bi(t) = |Si(t)|. The bin-
score of solution t is Bin(t) = Σi=1...nwibi(t) where wi is the
weight associated to the i-th bin, wi > wi+1 and Σi=1,...,nwi =
1. Thus a solution that assigns lower levels of noise to larger
regions of the grid is to be preferred. Weights are used to pe-
nalize the presence of, even small, extremely noisy regions.
The goal will be that of minimizing the Bin value.

The other cost function is based on ordering two candidate
solutions based on a notion of ’significant difference’ in their
predicted noise values. One noise data point is significantly
different from another if the human ear can detect a change in
the noise. Counting the number of significantly different pair
of noise values for the same point between two solutions, we
can generate a partial ordering of the candidates.

Formally, we define a Significant Improvement Heuristic
function (Di f f ) as follows. Let s denote a reference solu-
tion and t another solution. Then the significant improvement
score of t w.r.t. s is

Di f f (s, t) =

|{(x,y)‖SEL(t,x,y)−SEL(s,x,y)≥ 1.5dB}|
− |{(x,y)‖SEL(s,x,y)−SEL(t,x,y)≥ 1.5dB}|.

In other words, this heuristic function considers a reference
solution (that, in our case will be seed solution of the local
search), and then scores all other solutions counting the num-
ber of grid points where they produce a noise that is at least
1.5dB lower than the one produced by s at the same point.
A 1.5dB threshold has been identified to be the smallest im-
provement that can be perceived by a human. The intuition



behind this heuristic function is that of promoting solutions
that improve significantly in the largest number of grid points.
Given this heuristic function the goal is to minimize its value.

LOCAL SEARCH FOR TNOP

The technique we propose here to solve the optimization prob-
lem described in the previous section is a hill-climbing local
search approach. The reasons for preferring local search in-
clude:

1. Anytime performance: On average, local search behaves
well in practice, yielding low-order polynomial running
times (Ref. 2). Since the trajectory space is large, it is
difficult a priori to characterize globally preferred solu-
tions. Consequently, we are interested in a system that
can examine large parts of the search space quickly.

2. Flexibility and ease of implementation: deployment-
related deadlines suggest the use of techniques which are
easy to implement.

3. Simulator Compatibility: running RNM is heavy from a
computational point of view. This means that the repet-
itive evaluation of partial trajectories, required by com-
plete incremental solving paradigms (e.g. Branch and
Bound), may be unacceptably time consuming. Local
search, on the other hand, only requires the evaluation of
complete solutions.

Figure 4 describes the pseudocode of our algorithm, which
we call Box-TNOP-HC. The inputs to the algorithm are

• a randomly generated seed solution σseed ;

• a scoring function score that can be either Bin or SI;

• a positive integer threshold, representing the number of
search steps after which the execution must terminate.

The technique we propose here to solve the optimization prob-
lem described in the previous section is a hill-climbing local
search approach. Figure 4 describes the pseudocode of our
algorithm, which we call Box-TNOP-HC.

The inputs to the algorithm are a seed solution σseed ; a
scoring function score; and a positive integer threshold, rep-
resenting the number of search steps after which the execution
must terminate. The output of Box-TNOP-HC is a solution
denoted by σbest . During the execution we keep track of the
current solution, the neighborhood of which we are exploring,
denoted by σcur, and the best flyable solution found so far, de-
noted with σbest . Both such solutions are initially assigned the
seed solution. Then, the algorithm starts exploring the neigh-
borhood of σcur. As soon as it finds a solution that is better
than the current one, it checks if it is flyable and if so it saves
as the best incumbent. Box-TNOP-HC then updates σcur and
starts scanning its neighborhood. Whenever no better solution
is found, a random move in the neighborhood is taken.

Box-TNOP-HC(Trajectory σseed , function score, integer threshold)
σcur = σseed // current trajectory
σbest = σseed // best incumbent trajectory
step = 1
do

σ0 = Neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur)\{σ0}
while neighborhood(σcur) 6= /0 and score(σ0)≤ score(σcur)

σ0 = Neighbor(σcur)
neighborhood(σcur) = neighborhood(σcur)\{σ0}

σcur = σ0
if f lyable(σcur) and score(σcur)> score(σbest)

σbest = σcur
step++

while step≤ threshold
return σbest

Neighbor(Trajectory σ )
1 n = random(σ) // randomly pick a node
2 p = partner(n) // randomly choose partner for transfer
3 select c ∈ {∆v,∆z} // randomly choose control variable
4 vc = val(c, p,n) // find an allowable value to transfer
5 σn = trans f er(n, p,vc,σ) // add to n and subtract from p
6 (n, p,c,vc) = used // mark quadruple as used
return σn // return the neighbor

Fig. 4. Algorithm Box-TNOP-HC.

We note that the box trajectory is implicitly represented in
σseed . Moreover, since in our case there is no way to test if an
optimal solution as been found, the algorithm will always run
for threshold number of steps.

The output of Box-TNOP-HC is a solution denoted by
σbest . During the execution we keep track of the current solu-
tion, the neighborhood of which we are exploring, denoted by
σcur, and the best flyable solution found so far, denoted with
σbest . Both such solutions are initially assigned the seed solu-
tion. Then, the algorithm starts exploring the neighborhood of
σcur. As soon as it finds a solution that is better than the cur-
rent one, it checks if it is flyable and if so it saves as the best
incumbent. Box-TNOP-HC then updates σcur and starts scan-
ning its neighborhood. Whenever no better solution is found,
a random move in the neighborhood is taken.

Neighborhood Function

The neighbor of a trajectory s is the result of applying one of
two operators that alter the change of speed or altitude (∆V ,
∆Z) at two adjacent nodes of s. Figure 5 illustrates the general
case where a node has two adjacent nodes with which to swap
values.

More specifically, a node Ni is chosen at random to be the
recipient of the transferred value. An node adjacent to Ni (i.e.,
Ni−1 or Ni+1, called the partner) and a control variable, ∆V or
∆Z, are also chosen randomly. An amount 0 < δxc ≤ ∆xi′ is
then computed and transferred to Ni; that is, δxc is added to
the appropriate control variable in Ni and subtracted from the
value of the partner. Note that given a trajectory with L nodes,
N1, . . .NL, no transference is possible for the final node, NL.



N i-1 N i N i+1 disti-1 disti 

D i = (Δvi, Δzi)
S i = (xi,yi,vi,zi)

D i-1 = (Δvi-1, Δzi-1 )
S i-1 = (xi-1,yi-1,v,zi-1)

D I+1 = (ΔvI+1, ΔzI+1)
S I+1 = (xI+1,yI+1,vI+1,zI+1)

δxc, 

N i-1 N i N i+1 disti-1 disti 

D i = (Δvi, Δzi)
S i = (xi,yi,vi,zi)

D i-1 = (Δvi-1, Δzi-1 )
S i-1 = (xi-1,yi-1,v,zi-1)

D I+1 = (ΔvI+1, ΔzI+1)
S I+1 = (xI+1,yI+1,vI+1,zI+1)

δxc 

a.

b.

Fig. 5. Transferring values between adjacent nodes.
The first and L− 1st nodes have only one partner; the rest
have two.

The transfer value vc to transfer must be chosen in a way to
preserve the feasibility of the new trajectory. Intuitively, there
are two considerations: first, if too much value is transferred
to a node, the trajectory will force the pilot to ether descend
or decelerate too quickly during the segment beginning at Ni,
violating the limit constraints on these values. Second, if too
much control is passed backward from Ni+1 to Ni, then more
deceleration is applied sooner, and if too much is transferred
earlier the helicopter might end up flying too low or too slow
at Ni+1. This test involves the lower bound values vmini and
zmini defined earlier for the state at the partner node.

Moreover, since there is an infinite number of choices of
values for vc and changes in the sound levels occur only for
large enough transfers, we have decided to consider only a
fixed set of such values corresponding to relevant percentages
(i.e. 25%, 50%, 75%, and 100%) .

Finally, the effects of the transference of control is propa-
gated to the states of the relevant nodes. Specifically, if control
is transferred forward to Ni, then the state of Ni is changed; if
control is transferred backward to Ni, then the state of Ni+1
changes.

EXPERIMENTS WITH LOCAL SEARCH

In previous work, (Ref. 8), we have summarized experiments
conducted with local search; the interested reader should con-
sult these references for details. These experiments consist in
a number of comparisons, including:

• Conducting local search with pilot-generated initial so-
lutions (seed) as well as randomly generated initial solu-
tions;

• The cost functions defined earlier (Bin and DI f f ) in
terms of their ability to discriminate among the different
contour plots to produce the best aggregate;

• The tradeoff between different data resolution settings
for RNM, exploring the trade between better resolution
and local search exploration;

• Different refinements of the basic local search algorithm;
for example, looking at a multi-phase search in which
different data resolution settings were used.

The results were generally promising. Although it is difficult
to summarize the overall improvement gained from optimiza-
tion, due to the factors, such as data resolution, that influ-
ence the amount of improvement, such experiments showed
roughly an average improvement of over 25% (using either
Bin or Di f f as the cost function) over a random walk ap-
proach (in which solutions are simply randomly generated and
evaluated). Furthermore, the best score found by local search
methods often improved the random walk best score by 50%.

The ultimate goal of these experiments is to generate and
verify feasible approach trajectories that are are expected to be
quieter than ’standard’ approach procedures for pilots. What
constitutes ’standard’ is, of course, to an extent subjective; we
have queried more than one pilot for examples of approach
trajectories they would consider quiet. One way to visual-
ize this goal is to compare Figure 6 with Figure 7. The for-
mer shows the profile (velocity and altitude) of a pilot-defined
quiet trajectory (here, the path is a straight line rather than
a box), a trajectory actually flown in a recent set of experi-
ments (Ref. 10). Also in the figure is the contour map gener-
ated by RNM for the trajectory. Figure 7 shows the result of
applying simple local search starting with the pilot’s preferred
trajectory as the initial solution. The optimal profile differs
significantly from the pilot’s, preferring a more gradual de-
crease in velocity, but an earlier descent. The contour plots
reveal the improvements over the pilot’s trajectory in the form
of a smaller reddish (most noisy) region, and larger green and
light blue (moderately noisy) regions. We plan in the future to
verify results such as these using real tests.

Fig. 6. ’Pilot Defined’ Quiet Trajectory

SUMMARY AND FUTURE WORK

This work has explored the use of local search paired with
a robust simulator to find approach trajectories that are low-
noise. Local search is a simple, fast algorithm that consis-
tently found trajectories that improved on standard approach



Fig. 7. Optimized Trajectory Using Local Search

trajectories. and allowed for a examination of procedural
strategies during approach for reducing noise.

The results of this work, however, are limited in the fol-
lowing ways:

• employing an artificial grid model of the environment
that ignores factors influencing good approach proce-
dures aside from noise and comfort;

• searching over fixed ’box’ structure trajectories;

• employing a simple dynamic control model that consid-
ered only the effects of reducing velocity or altitude and
ignored the effects. e.g., of changes in angular momen-
tum;

• using an incomplete search method, i.e., one that did not
conduct a full search over the space of solutions.

Current work seeks to overcome these limitations. First,
we are beginning to model real landing environments. Im-
porting GIS data from airports, and visualizing them in NASA
World Wind, we are constructing constraint maps based on
land usage codes, allowing for paths to be generated that avoid
sensitive areas such as hospitals. We’re also looking into
representing constraints involving air space, such as avoid-
ing approach corridors for active fixed-wing runways. This
will allow for the construction of a more sophisticated multi-
attribute cost function that trades noise with other criteria such
as land use and fuel consumption.

Second, we are looking at search over a wider area of fea-
sible paths than those limited to the ’box’ structure. Varying
the X and Y values in this way expands the dimensionality
of the search space and requires more sophisticated search.
One class of techniques we’re examining for exploring large
search spaces is based on sampling methods such as Proba-
bilistic Road Maps. At the same time, we are also considering
complete path-planning methods in 3D such as A* and D*.
Finally, we’re building a full 6 Degree of Freedom (X,Y,Z,roll,
pitch, yaw) dynamics model, which will result in a more ro-
bust causal model of the actions that influence noise.
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