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NASA Modeling Global Influenza Risks

CDC Modeling Climatic Effects on Seasonal Influenza 
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GEO HE-09-02e International Influenza Transmission

GEO HE01-C1 Airborne Infectious Diseases
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H1N1 (Russian type)

1918 1957 1968 1977 1997

Spanish Flu Asian Flu Hong Kong Flu

28% world infected
with 20-50M deaths
> 0.5M deaths in US

70K deaths in US 34K deaths in US

pH1N1 15K deaths 
worldwide
16% US 
infected

SARS (coronavirus)
2003 37 countries

Highly pathogenic avian influenza H5N1, H5N2, H5N3, H7N1, H7N3, H7N7 …..

1996: H5N1 in Hong Kong
1998: H9N2 in Guangdong
2003: H7N7 in Holland
2004: H7N3 in Canada
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Human

2004

H5N1 Outbreaks

HUMAN

AVIAN

2009

Human & Avian Influenza Epidemics & Pandemics

Category CFR
1 < 0.1 %

2 0.1  0.5 %

3 0.5  1.0 %

4 1.0  2.0 %

5 > 2.0 %

Pandemic Deaths in 
US

1918 Spanish Flu ~ 500 K

1957 Asian Flu 70 K

1968 Hong Kong 
Flu

34 K

Source: USG Prepandemic Plannig Guidance

Projected Death in US
For Pandemics with Severity 1-5
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National Strategy for Pandemic Influenza 

THREE PILLARS

 Preparedness &      

Communication

 Surveillance & Detection

 Response & Containment

BACKGROUND

 Worldwide annual epidemic

Infects 5-20% of population with  
500,000 deaths

 Economic burden in the US

~US$87.1billion 

 Spatio-temporal pattern of epidemics  
vary with latitude

Role of environmental and climatic
factors

 Temperate regions: distinct annual 
oscillation with winter peak

 Tropics: less distinct seasonality and 
often peak more than once a year

Source: Viboud et al., 2006

Factors Implicated in Influenza Transmission

Process Factors Relationship

Virus Survivorship
Temperature Inverse
Humidity Inverse
Solar irradiance Inverse

Transmission 
Efficiency

Temperature Inverse
Humidity Inverse
Vapor pressure Inverse
Rainfall Proportional
ENSO Proportional
Air travels and holidays Proportional

Host susceptibility Sunlight Inverse
Nutrition Varies

OBJECTIVES
 Systematically investigate the effect of meteorological  and climatic  

factors on seasonal influenza transmission

 Understanding influenza seasonality provides a basis on how 
pandemic influenza viruses may behave

 Develop framework for influenza early warning and pandemic    
influenza early detection

 Assess and determine the dominating meteorological  and  
environmental factors on influenza incidences at the major 
population centers

 Using the identified dominant factors, develop climatic-based model  
to forecast influenza 

 Estimate short and mid-term influenza cases at those population  
centers based on their climatological profiles or climate forecast

 Examine differential sensitivity of the meteorological variables to 
influenza virus strain types

Examples

THIS IS ARIEL 24 BOLD

Hong Kong, China Maricopa County, AZ New York City, NY

Center Lat. 22 N 33 N 40 N

Climate Tropical & Sub-Tropical Sub-Tropical Temperate

General 
Condition

Hot & humid during 
summer. Mild winter, 
average low of 6C

Dry condition. Mean 
winter low is 5C, and 
summer high is 41C

Cold winter, average low 
of -2C. Mean summer 
high is 29C

General Framework

Weekly environmental 
data time series

Weekly influenza 
epidemiological 
data

Mathematical Model
Neural Network, ARIMA, 

Regression, etc

Output: Environmental dependency, 
climate-based influenza forecast

NASA MODIS LST

NASA TRMM 3B42

Ground Station Data: 
NNDC, Local gov’t data, 
etc…

Humidity, 
dew point, 

cloud, etc…
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DATA

 Weekly lab-confirmed influenza 
positive

 Daily environmental data were 
aggregated into weekly

 Satellite-derived data
Precipita tion – TRMM 3B42
Land Surface Temperature (LST) – MODIS 

 Ground station data                                     

METHODS

Several techniques are employed, including:

ARIMA (Auto-Regressive Integrated   
Moving Average)

 Classical time series regression 
Accounts for autocorrelation and 
seasonality properties

 Climatic variables as covariates

 Previous week(s) count of influenza is 
included in the inputs

 Results published in PLoS ONE 5(3): 
9450, 2010

Neural Network

 Artificial intelligence technique

 Widely applied for approximating 
functions, classifications, and pattern 
recognition

 Radial Basis Function NN with 3 
nodes in the hidden layer

 Only climatic variables and their lags 
as input/predictors

Role of Environments

 NN models show that ~60% of influenza 
variability in the US regions can be 
accounted by meteorological factors

 ARIMA model performs better for Hong 
Kong and Maricopa

Previous cases are needed

Suggests the role of contact transmission

 Temperature is a common determinant for 
influenza in all regions

 Reasonably accurate prediction

HONG KONG

MARICOPA COUNTY

NEW YORK 
CITY

Role of Vapor Pressure or Absolute Humidity

 Poisson regression model

 Vapor pressure  included as input

 Improve model performance in the temperate region                     

Vapor Pressure 
Excluded

Vapor Pressure 
Included

RMSE R2 RMSE R2

Hong Kong 65.0037 0.593 74.188 0.478

Maricopa County 48.836 0.808 52.946 0.781

New York City 0.0248 0.66 0.0237 0.69

Environmental Sensitivity of Types

 Flu A does not depend on the 
number of previous cases

Environments counts for ~50% of 
Flu A variability

 Flu B has dependency to previous  
cases
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Flu A Flu B

Inputs Mean Dew 
Pt., T min 
(2), Rainfall 
(3)

T max (1), 
Wind Speed, 
Flu B (2)

RMSE 6.432 1.825

R2 0.497 0.594

Hilbert-Huang Transform
 A NASA developed mathematical technique (Huang et al. 1996)  to 

decompose signal into a finite set of linear and stationary signals – Intrinsic 
Mode Functions (IMF) 

 Complex time series can be decomposed into a finite and often small number 
of components

 Applicable to nonstationary and nonlinear processes

 Broad applications in Earth sciences, engineering, image processing, 
biomedical sciences, etc.                             

Example: 

Decomposition of 
TRMM time series
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Hong Kong Time Series Modeled with HHT

Input Variables

EVAP (1)
RHMIN (3,5)
TRMM (4)
SUN (4)
CLOUD (6)

THANK YOUTHANK YOU


