The GISMO-2 Bolometer Camera

Johannes G. Staguhn*a,b, Dominic J. Benfordb, Dale J. Fixsen, Gene Hiltond, Kent D. Irwind, Christine A. Jhabvala, Attila Kovacs, Samuel Leclercq, Stephen F. Maher, Timothy M. Millerb, Samuel H. Moseley, Elmer H. Sharp, and Edward J. Wollack

*aThe Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

bObservational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

cCRESST, University of Maryland – College Park, College Park, MD 20742, USA

dNIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305, USA

*eUniversity of Minnesota, 116 Church St SE, Minneapolis, MN 55414, USA

fInstitut de RadioAstronomie Millimetrique, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France

gScience Systems and Applications, Inc., 10210 Greenbelt Rd, Suite 600, Lanham, MD 20706, USA

hGlobal Science & Technology, Inc., 7855 Walker Drive, Suite 200, Greenbelt, MD 20770, USA

Abstract

We present the concept for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 mm and 2 mm atmospheric windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.