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Introduction 
A continuum model is developed for the analysis and prediction of the dynamic response of 

multiphase panels that are subjected to impulsive loading. The multiphase medium consists of any 
number of different elastic anisotropic constituents including the case of voids. The impulsive loading is 
applied on the external boundaries of panel in the form of time-dependent tractions and/or displacements. 
Acoustic loading can thus be modeled as a time-dependent pressure wave. The derived continuum theory 
results in a system of second-order equations in time. This system represents the governing elastodynamic 
equations for the discretized regions of the multiphase medium, the interfacial continuity conditions 
between these regions, and the externally applied boundary conditions. This system is solved by an 
explicit step-by-step procedure in time, and the resulting time-dependent displacement and stress response 
can be recorded at any point within the multiphase medium. In addition, parts of the discretized geometry 
may contain fluids. Thus, the air surrounding the multiphase medium can be simulated, with the acoustic 
loading applied to the air rather than directly on the multiphase panel. This is useful as it more 
realistically simulated the impact of a pressure wave on the surface of the panel, as wave reflection can be 
captured. Various cases of porous absorbers can be modeled by employing this theory. Examples include 
limp absorbers, where the solid ligaments are so thin and compliant that they can be assumed to have 
near-zero stiffness; rigid absorbers, where the ligaments are so stiff that they can be assumed to be 
motionless (with very high stiffness); and poroelastic absorbers, where both the ligaments and the air 
within the considered domain participate in the wave propagation. In the present investigation, the latter 
case is mainly considered.  

Theoretical model development is first presented. Then, results are given for the structural/acoustic 
performance of several foam core sandwich panels. Finally, heterogeneous panels, consisting of a stiff 
phase and a very compliant phase, are examined to determine the effect of the arrangement of the phases 
on the panel acoustic behavior. 

Full Three-Dimensional Theory 
In the present section a three-dimensional continuum theory is developed for the analysis of wave 

propagation in multiphase materials. To this end, consider a three-dimensional domain defined by 0 ≤ x1 ≤ 
D, 0 ≤ x2 ≤ H, and 0 ≤ x3 ≤ L. This region is divided into Nα, Nβ and Nγ subcells in the x1, x2 and x3 
directions, respectively. Each subcell (αβγ), whose dimensions are dα, hβ and lγ (α = 1,…, Nα, β = 1,…, 
Nβ, γ = 1,… Nγ), can be filled by a distinct anisotropic elastic material (solid or fluid) or is left empty thus 
forming a pore, see Figure 1. 



NASA/TM—2012-217728 2 

 
Figure 1.—Model geometry. 

 
The derivation of this theory starts from the elastodynamic equations of motion  
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where )(αβγσ ji , )(αβγ
iu , ρ(αβγ) and t denote the stresses, displacements, mass density of the material in subcell 

(αβγ) and time. The stresses )(αβγσij  are related to the strains )(αβγεij  by the anisotropic Hooke's law  
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where )(αβγ
ijklC  are the components of the 4th-order stiffness tensor of the material in the subcell. 

The displacement field in the subcell (αβγ) is approximated by a second-order expansion in the local 
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where the time-dependent )(
)000(

αβγ
iW , (i = 1,2,3), are the volume-average displacements in the subcell which 

together with the higher-order time-dependent terms )(
)(

αβγ
lmniW ; (l,m,n) = 1,2; must be determined. Thus, for 

example, )(
)020(
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iW  denotes the coefficient in the expansion of )(αβγ

iu  the quadratic term associated with the 

2x -direction. The resulting strain components in subcell (αβγ) are given by  
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By averaging Equation (1) over the volume of subcell (αβγ), the following three relations are 
obtained  
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where )(
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where the surface-average of the tractions are given by  
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Next, by consecutively multiplying Equation (1) by )(
1
αx , )(

2
βx  and )(

3
γx  and averaging the results over the 

volume of the subcell (αβγ) and integrating by parts, the following three set of three relations follow  
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In these equations, the quantities )(
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In addition, )(
)000(

αβγ
ijS  denote the volume-average of the stress )(αβγσij  over the subcell namely,  
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Let the vector )(
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αβγS  be defined by the following six components of )(
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αβγ
ijS :  
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In terms of the reduced matrix representation Cpq; p,q = 1,…,6; of the stiffness tensor Cijkl, it can be easily 
verified by employing the strain components expressions in Equation (6) that its components are given by  
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Next, by consecutively multiplying Equation (1) by )(2
1

αx , )(2
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βx  and )(2
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γx  and averaging the result 

over the volume of the subcell (αβγ) and integrating by parts, the following three set of three relations 
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In these equations, )(
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lmnijS  are the volume-average first moments of the stresses which are given by  
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It can be easily shown that the relevant components of the vector )(
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where p = 1,…,6. 
By substituting Equations (7) in (23), (24) and (25) one obtains, respectively, that  
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Just like the surface-average of tractions: 
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In the following, these surface-average displacements will be related to the microvariables )(
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αβγ
lmniW ; 

(lmn) = 0,1,2; in the displacements expansions. To this end, by substituting the displacements expansion 
(3) to (5) in (35) to (37), the following relations are obtained  
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 )(
)020(

2
)(
)010(

)(
)000(

)2(

42
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+±=
αβγ

iiii W
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Wu   (39) 

 )(
)002(

2
)(
)001(

)(
)000(

)3(

42
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αβγγαβγγαβγ

±

+±=
αβγ

iiii W
l

W
l

Wu   (40) 

Subtraction of the pair of two equations in (38), (39) and (40) yields, respectively, that  

 











−=

αβγαβγ −+

α

αβγ
)()( )1()1(

)(
)100(

1
iii uu

d
W   (41) 

 











−=

αβγαβγ −+

β

αβγ
)()( )2()2(

)(
)010(

1
iii uu

h
W   (42) 

 











−=

αβγαβγ −+

γ

αβγ
)()( )3()3(

)(
)001(

1
iii uu

l
W   (43) 

Similarly, adding the pair of two equations in (38), (39) and (40) yields, respectively, that  

 )(
)000(2

)1()1(

2
)(
)200(

42 )()(
αβγ

α

−+

α

αβγ −











+=

αβγαβγ

iiii W
d

uu
d

W   (44) 

 )(
)000(2

)2()2(

2
)(
)020(

42 )()(
αβγ

β

−+

β

αβγ −











+=

αβγαβγ

iiii W
h

uu
h

W   (45) 

 )(
)000(2

)3()3(

2
)(
)002(

42 )()(
αβγ

γ

−+

γ

αβγ −











+=

αβγαβγ

iiii W
l

uu
l

W   (46) 

Substitution of Equations (44) to (46) in (34) provides the following expression for the second time 
derivative )(

)000(
αβγ

iW  in terms of the stress moments and the second time derivatives of the surface-average 
displacements:  
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  (47) 

Similarly, the expressions for )(
)200(

αβγ
iW , )(

)020(
αβγ

iW  and )(
)002(

αβγ
iW  can be obtained by substituting Equation (47) 

in (44) to (46) yielding respectively  
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With the established values of )(
)(

αβγ
lmniW  given above in terms of the second-order time derivatives of the 

surface-average displacements and volume-average stress, moments one can proceed and express the 
values of )(

)(1
αβγ

lmniI , )(
)(2

αβγ
lmniJ  and )(

)(3
αβγ

lmniK  in these terms as follows. Equations (31) and (14), (32) and (15) 
and (33) and (16) provide, respectively, that  
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  (51) 

 )(
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)1()1(
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
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dt
ddI   (52) 
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 (54) 

and  
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From Equations (8) to (10) and (17) to (19), the surface-average tractions can be obtained as  
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 )(
)001(3

)(
)000(3

)3(

2

)(
αβγαβγγ

±

+±=
αβγ

iii KK
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t   (59) 

Hence, it is possible to express these surface-average tractions in terms of the second-order time 
derivatives of the surface-average displacements and volume-average stresses and stress moments by 
substituting in Equations (57) to (59) the expression of )(

)(1
αβγ

lmniI , )(
)(2

αβγ
lmniJ  and )(

)(3
αβγ

lmniK  which are given by 
Equations (51) to (56) yielding  
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Equations (60) to (62) can be written in the compact form  
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where α = 1,…, Nα; β = 1,…, Nβ; γ = 1,… Nγ and K(αβγ) is a 18×18 matrix whose elements depend on the 
dimensions of the subcell (αβγ) and the properties of the material filling this subcell, whereas L(αβγ) is a 
matrix of the same dimensions whose elements depend on the dimensions of the subcell. 

The continuity of the interfacial tractions between neighboring subcells implies that  

 γβα

−+

=γ=β−=α==
γβ+ααβγ

NNNitt ii ,...,1,,...1,1,...,1,3,2,1,
),,1()( )1()1(

 
 (64) 

 1,...,1,,...,1,,...,1,3,2,1,
)1,,()( )3()3(

−=γ=β=α== γβα

−+ +γβααβγ

NNNitt ii  
 (65) 

 1,...,1,,...,1,,...,1,3,2,1,
)1,,()( )3()3(

−=γ=β=α== γβα

−+ +γβααβγ

NNNitt ii  
 (66) 

In addition, the continuity of the displacements at the interfaces of the subcells yields  

 γβα

−+

=γ=β−=α==
γβ+ααβγ

NNNiuu ii ,...,1,,...1,1,...,1,3,2,1,
),,1()( )1()1(

 
 (67) 

 γβα

−+

=γ−=β=α==
γ+βααβγ

NNNiuu ii ,...,1,1,...,1,,...,1,3,2,1,
),1,()( )2()2(

 
 (68) 

 1,...,1,,...,1,,...,1,3,2,1,
)1,,()( )3()3(

−=γ=β=α== γβα

−+ +γβααβγ

NNNiuu ii  
 (69) 

For imperfect bonding between the interfaces, Equations (67) to (69) take the form  

 
γβα

+
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γβα
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αβγ
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NNNi
ttRuu iiii
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  (71) 

 
1,...,1,,...1,,...,1,3,2,1

,0)(
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3

)3()3(

−=γ=β=α=

=−−

γβα

+
αβγ

−+ αβγ+γβααβγ

NNNi
ttRuu iiii   (72) 

where )()(
1 tR i
αβγ , )()(

2 tR i
αβγ  and )()(

3 tR i
αβγ  denote the time depending debonding functions that describe 

the behavior of the interfacial debonding of the subcell in the three directions. Wave propagation with 
imperfect bonding between the phases has been previously investigated by Aboudi (1988a). Not that, in 
the presence of perfect bonding, these functions are identically zero. 

Next, the following time-dependent boundary conditions must be imposed depending on whether the 
tractions or displacements are prescribed at the surfaces of the subcells at x1 = 0, x1= D; x2 = 0, x2 = H and 
x3 = 0, x3 = L.  



NASA/TM—2012-217728 12 

 ( ) ( )
γβ

γβ
−

γβ
−

=γ=β=

==
βγβγ

NNi
txxfutxxft iiii

,...,1,,...1,3,2,1
,,,or,,, )(

3
)(

2
)1(

)1(
)(

3
)(

2
)1(

)1( )1()1(

  (73) 
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Finally,  
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and  
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In these equations, )(k
if  and )(k

ig , i,k = 1,2,3, are time-dependent functions that describe the temporal 
form of the various applied loadings at the specific locations of boundaries of the region. 

There are 18NαNβNγ unknowns 
)(

2

2
)1( αβγ±

idt
d u , 

)(

2

2
)2( αβγ±

idt
d u , 

)(

2

2
)3( αβγ±

idt
d u , i = 1,2,3. On the other hand, the 

interfacial traction and displacement provide 6(NαNβNγ – NβNγ), 6(NαNβNγ – NαNγ) and 6(NαNβNγ – NαNβ) 
which are respectively given by Equations (64) and (67) (or (70)), (65) and (68) (or (71)), and (66) and 
(69) (or (72)). In addition, the boundary conditions (73) and (74), (75) and (76) and (77) and (78) form 
another 6NβNγ, 6NαNγ and 6NαNβ relations, respectively. Thus the total number of equations is 18NαNβNγ. 

The resulting system of the 18NαNβNγ equations can be formally represented by  

 )()( tt BXA =   (79) 

where A is a matrix of dimension 18NαNβNγ ×18NαNβNγ whose elements are the material parameters and 
geometric dimensions, and B(t) consists of time-dependent elements that involve the stresses and the 
imposed boundary conditions at time t. This equation represents the entire multiphase medium that result 
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from filling the subcells with various types of elastic materials (including pores and fluids). It also 
represents the elastodynamic equations that govern the motion of the material within the subcells, the 
various interfacial conditions between the subcells, and the applied time-dependent boundary conditions. 

A central finite difference of a second order accuracy in the time increment ∆t reduces this ordinary 
differential equation to the following explicit form  

 )()()()(2)( 12 ttttttt BAXXX −∆+∆−−=∆+   (80) 

from which the variables can be computed at time t + ∆t from their known values at times t and t – ∆t. 
This procedure is continued to the next time increment. Stability of this finite difference procedure is 
ensured by a proper choice of the value of the time increment ∆t. It should be noted that in the analysis of 
porous materials, the tractions at the walls of the empty subcell are equal to zero, so that the number of 
equations can be reduced by excluding this type of subcell from the system of equations. 

In the special case of multi-layered composites, the accuracy of the model was verified by 
comparison with the ray theory prediction (Aboudi, 1988b). Furthermore, in this latter special situation of 
multi-layered composites, extensive applications and verifications of the accuracy of the model were 
recently presented by Clements et al. (1996, 1997a, 1997b, 1998) including comparisons with measured 
data. In addition, these authors introduced more developments and made more refinements to the model. 
Also, the analysis of harmonic wave propagation in laminated composites was presented by Aboudi and 
Hevroni (1991). 

Specialization to Two-Dimensional Theory for Thermoelastic Panels 
Consider the case of two-dimensional wave propagation such that there is no dependence of any field 

variable on the direction x1. This situation corresponds to the case in which the direction of the 
propagating waves is perpendicular to the x1-direction. For example, wave propagation in fiber reinforced 
materials in which the waves propagate in the perpendicular direction to the continuous fibers can be 
analyzed by present two-dimensional theory. Wave propagation in a panel in the through-thickness 
direction can be analyzed by the present two-dimensional theory for wave traveling in the x2-direction. 

In this two-dimensional theory all variables depend only on the x2- and x3-directions, in addition to 
the time, t. The plane x2–x3 is divided this time into Nβ × Nγ subcells with β = 1,…, Nβ, γ = 1,… Nγ. In 
addition, )(

2
βx  and )(

3
βx  are local coordinates whose origin is located at the center of the subcell (βγ), see 

Figure 2. Hence the displacement expansions, Equations (3) to (5), reduce in this special case to  
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The resulting strain components in subcell (βγ) are given by  
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The governing equations that correspond to Equations (7), (15) and (16) are given by  
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SK iii
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Figure 2.—Geometry of the model specialized to two dimensions. 
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Here )(
)(2

βγ
mniJ  and )(

)(3
βγ

mniK  are related to the surface-average tractions in the following manner  
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where the surface-average tractions are given by  

 )(
3

)(
2

)(
2

2

2

)2(

2
1)(

γβββγ

−γ

±









±=σ= ∫

γ

γ

βγ

xd
h

x
l

t i
l

li   (12) 

 )(
2

)(
3

)(
3

2

2

)3(

2
1)(

βγγβγ

−β

±









±=σ= ∫

β

β

βγ

xd
l

x
h

t i
h

hi   (13) 

Furthermore, the volume-average stresses and stress moments are given by  
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Let  

 [ ] )(
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In conjunction with strain components Equations (4), (14) yields  
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where p = 1,…,6 and )(βγΓp  are the components of the thermal stresses and θ is the temperature deviation 
from a reference temperature, TR. 

The two equations that correspond to Equations (24) and (25) are presently given by  
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Hence by substituting Equation (5) in these two equations, the following relations (that correspond to 
Equations (32) and (33)) can be presently established  
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Hence, substituting Equations (21) and (22) in (5) yields  
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The surface-average displacements 
)()2( βγ±

iu  and 
)()3( βγ±

iu  are defined by  
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Substitution of the displacement expansions (1) to (3) in Equations (24) and (25) reveals that these 
surface-average displacements are related to the microvariables )(

)(
βγ
mniW  as follows  
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Manipulation of every pair in these equations results in the following  
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Substitution of Equations (30) and (31) in (23) yields  
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Consequently, Equations (28) to (31) establish the following expressions  
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With the established values of )(
)(

βγ
mniW , one obtains from Equations (21) and (6) that  
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Similarly, Equations (22) and (7) result in  
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From Equations (8) to (11), the surface-average tractions can be obtained as  
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Consequently, Equations (35) to (38) yield that  
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  (42) 

These two sets of 12 equations provide the desired relations between the surface-average tractions and the 
second-order time derivatives of the surface-average displacements and the volume-average stresses and 
stress moments. 

These equations can summarized in the compact form  
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 (43) 

where β = 1,…, Nβ, γ = 1,… Nγ and [K1](βγ) is a 12×12 matrix whose elements depend on the dimensions 
of the subcell (βγ) and the properties of the material filling this subcell, whereas [L1](βγ) is a matrix of the 
same dimensions whose elements depend on the dimensions of the subcell. In the present two-

dimensional case there are 12NβNγ unknown surface-average displacements 
)()2( βγ±

iu  and 
)()3( βγ±

iu . 
The interfacial traction and displacements (assuming perfect bonding) between the subcells are  
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Finally, the boundary conditions at x2 = 0 and x2 = H are  
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and  
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At x3 = 0 and x3 = L the boundary conditions are  
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and  
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In summary, just like the three-dimensional continuum theory, the interfacial tractions, Equations (44) 
and (45), and displacements, Equations (46) and (47), continuity conditions as well as the boundary 
conditions, Equations (48) to (51), provide the requested system of equations, given by Equation (79), of 
12NβNγ equations to be solved at any time yielding the surface-average displacements at that time. 

Extension to Inelastic Constituent Materials 
It is possible to analyze and model wave propagation in inelastic composites. Here it is assumed that 

the applied impact is sufficiently strong enough to cause the inelastic material to exhibit inelastic flow. To 
this end, the constitutive equation of the material filling subcell (αβγ) is given instead of Equation (2) by  

 [ ] 3,2,1,,,,)()()()( =ε−ε=σ αβγαβγαβγαβγ lkjiC I
klklijklij  

 (1) 

where )(αβγεI
ij  are the inelastic strain components. It is assumed that the inelasticity is governed by an 

isotropic flow rule. Thus for plasticity, the evolution equation of )(αβγεI
ij  is given by  

 )()()( αβγαβγαβγ σΛ=ε ij
I
ij



   (2) 

where )(αβγΛ  is the proportionality function. For viscoplastic constituents, the flow rule is given by  

 )()()( αβγαβγαβγ σΛ=ε ij
I
ij   (3) 

Since the inelastic flow rule of the inelastic phase is isotropic, it must be that the stiffness tensor )(αβγ
ijklC  of 

the material is isotropic as well, namely  

 ( )jkiljlikklijijklC δδ+δδµ+δδλ= αβγαβγαβγ )()()(   (4) 

where λ(αβγ) and µ(αβγ) are the Lame' constants of the material. 
With the isotropic assumption of the inelastic flow rule, Equation (1) implies that  
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 )()()()()( 2 αβγαβγαβγαβγαβγ εµ−ε=σ I
ijklijklij C   (5) 

In the perfectly elastic case, the quadratic displacement expansions, Equations (3) to (5), produce 
linear variation in strains and stresses at each point within a given subcell. In the presence of inelastic 
effects, however, a linear strain field generated by these expansions does not imply the linearity of the 
stress field due to the path-dependent deformation. Thus the displacement field microvariables must 
depend implicitly on the inelastic strain distributions, giving rise to a higher-order stress field than the 
linear strain field generated from the assumed displacement field representation. In the presence of 
inelastic effects, this higher order stress field is represented by a higher order Legendre polynomial 
expansion in the local coordinates. Therefore, the strain field generated from the assumed displacement 
field, and the resulting mechanical stress field, must be expressed in terms of Legendre polynomials as  
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where )12)(12)(12( +++=Γ nmllmn , and the nondimensionalized variables ζi’s defined in the interval  

–1 ≤ ζi ≤ 1, are given in terms of the local subcell coordinates as ( )2)()(
1 α

αα =ζ dx , ( )2)()(
2 β

ββ =ζ hx , 

( )2)()(
3 γ

γγ =ζ lx . 
For the given displacement field representation the upper limits on the summation in the strains 

expansion (6) becomes 1. The upper limits on the summations in the stresses expansion (7) on the other 
hand are chosen so that an accurate representation of the stress fields is obtained within each subcell, 
which depends on the amount of inelastic flow. The coefficients )(

)(
αβγ

lmnije  and )(
)(

αβγτ lmnij  in the above 
expansions are determined as follows. 

The strain coefficients )(
)(

αβγ
lmnije  are explicitly determined in terms of the displacement field 

microvariables using orthogonal properties of Legendre polynomials. For example )(
)100(1

)(
)000(

αβγαβγ =Weij  and 

23 )(
)200(1

)(
)100(

αβγ
α

αβγ = Wdeij . 

The stress coefficients )(
)(

αβγτ lmnij  are expressed in terms of strain coefficients and the unknown inelastic 

strain distributions by first substituting the Legendre polynomial representations for )(αβγεij  and )(αβγσij  into 
the constitutive equations and then utilizing the orthogonality of Legendre polynomials as  
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The )(
)(

αβγ
lmnijR  terms represent inelastic stress distributions and are calculated in the following manner:  
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With the above expression, the volume-average stresses and stress moments )(
)(

αβγ
lmnijS  in the present case of 

inelastic constituents can be readily evaluated by employing Equation (26) in conjunction with (7) to (9). 
This yields the following expressions which respectively replace Equations (22) and (28) to (30):  

 
( )

( ) ( ) )(
)000(

)(
)100(2

)(
)010(1

)(
6

)(
)100(3

)(
)001(1

)(
5

)(
)010(3

)(
)001(2

)(
4

)(
)001(3

)(
3

)(
)010(2

)(
2

)(
)100(1

)(
1

)(
)000(

αβγαβγαβγαβγαβγαβγαβγ

αβγαβγαβγαβγαβγαβγαβγαβγαβγαβγ

−++++

++++=

ppp

ppppp

RWWCWWC

WWCWCWCWCS
  (10) 

 [ ] )(
)100(

)(
)200(3

)(
5

)(
)200(2

)(
6

)(
)200(1

)(
1

2
)(
)100( 324

αβγααβγαβγαβγαβγαβγαβγααβγ −++= ppppp RdWCWCWCdS   (11) 

 [ ] )(
)010(

)(
)020(3

)(
4

)(
)020(2

)(
2

)(
)020(1

)(
6

2
)(
)010( 324

αβγβαβγαβγαβγαβγαβγαβγβαβγ −++= ppppp R
h

WCWCWC
h

S   (12) 

 [ ] )(
)001(

)(
)002(3

)(
3

)(
)002(2

)(
4

)(
)002(1

)(
5

2
)(
)001( 324

αβγγαβγαβγαβγαβγαβγαβγγαβγ −++= ppppp R
l

WCWCWC
l

S   (13) 

where p = 1,…,6. The components )(
)(

αβγ
lmnpR  of the vector )(

)(
αβγ
lmnR  are given by  

 [ ] )(
)(12)(13)(23)(33)(22)(11

)(
)( ,,,,, αβγαβγ = lmnlmnlmnlmnlmnlmnlmn RRRRRRR   (14) 

These inelastic stress contributions are obtained by integrating the relevant flow rule to yield the inelastic 
strain at time t. 

In conclusion, the integration of the inelastic flow rule at the current time t provides the inelastic 
strain )(αβγIε  from which the stress terms )(

)(
αβγ
lmnR  can be determined according to Equation (9). Hence, 

one can compute the volume-average stress and stress moments )(
)(

αβγ
lmnS  from Equations (10) to (13). The 

latter can be used in Equation (63) to obtain the various surface tractions 
)()1( αβγ±

t , 
)()2( αβγ±

t  and 
)()3( αβγ±

t . 
These can be employed in conjunction with the interfacial and boundary conditions to construct the 
current system of ordinary differential Equation (79) from which X at time t + ∆t can be obtained. 

Structural/Acoustic Evaluation of Foam Sandwich Panels 

The above two-dimensional wave propagation theory has been applied to model the acoustic 
attenuation properties of structural panels of the type used in rotary aircraft cabins. These simulations 
were performed using a “virtual acoustic test chamber”, which defines the geometry in which the acoustic 
properties of the panels are evaluated. The main issue with a simulated test chamber is eliminating the 
effects of spurious reflections on the “measured” signal. For instance, in Figure 3, the applied cyclic 
loading, which simulates an acoustic signal, is applied on the lower boundary of the analysis space. The 
wave travels through the air and then impacts the bottom of the panel. The wave travels through the panel 
and into the air, where the wave is recorded at a “virtual sensor” location 0.5 cm above the panel surface. 
The wave then continues through the air to the boundary of the analysis space and is reflected back, 
eventually making its way back to the top of the panel. Since we are primarily interested in the effects of 
the panel on the propagating waves without reflected waves from the rear surfaces, we wish to exclude 
the effects of these latter waves. In order to avoid recording pressures that include the effects of these 
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reflected waves, the dimension of the virtual test chamber behind the panel must be sufficiently long. It 
was determined that a length of 21 cm was sufficiently long for an applied wave frequency of 10,000 Hz. 
Note that, as the frequency decreases, this length will increase as a longer time is needed for several 
waves to pass though the panel to be recorded, but this longer time requirement can allow reflected waves 
enough time to interfere. It should be noted that noise issues in many rotorcraft cabins tend to occur at 
frequencies in the range of 1000 to 3000 Hz. Examining these frequencies would require a longer virtual 
test chamber. Herein, air was assumed to be a fluid possessing no ability to transmit shear stresses whose 
bulk modulus is given by, 
 2

pcK ρ=   (15) 

where cp is the velocity of sound in the fluid. The properties employed for air are, ρ = 0.00129 g/cm3 and 
cp = 346 m/s. 

Figure 4 is a plot versus time of an applied 10,000 Hz signal (i.e., pressure wave) and the response at 
the location of the virtual pressure sensor (0.5 cm above the panel top surface location in the middle of the 
chamber) in the case of an empty chamber (filled only with air) and in the case of a typical panel. It takes 
approximately 250 μs for the wave to reach the virtual sensor location. Clearly, a large decrease in the 
wave amplitude is caused by the presence of the panel. 

 
 
 

 
Figure 3.—Virtual acoustic test chamber used to simulate the acoustic behavior 

of structural panels using the wave propagation theory. (a) Dimensions. 
(b) Representative discretization and boundary conditions. 
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Figure 4.—Example pressure waves recorded at the virtual 

sensor location 0.5 cm above the panel top surface. 
 

A facesheet thickness study was performed on four different sandwich panels, with Al and IM7/8552 
facesheets and two Rohacell foam core densities, using the virtual test chamber (Figure 3). As shown in 
Figure 5, the total thickness of the panel was kept constant at 2 cm, while the facesheet (FS) thickness 
was varied between 0.8 and 1.6 mm. The relevant properties of the panel constituent materials are given 
in Table 1. Note that effective (homogenized) properties are used for the composite facesheet and foam 
materials, as opposed to modeling individual plies, fiber/matrix constituents, or pores within the foam. 
Figure 6 is a plot of sound pressure level (SPL) reduction caused by the presence of the panel in the 
virtual test chamber versus the panel areal mass for each of the four panel types with varying facesheet 
thickness. Note that, in this figure, the closer given panel design falls to the upper left, the better 
performance (as high SPL reduction with low mass is desirable). 
 

TABLE 1.—MATERIAL PROPERTIES USED FOR  
PANEL ACOUSTIC ATTENUATION STUDIES 

Property Aluminum Quasi-Isotropic 
IM7/8552 

Rohacell 31A 
Foam 

Rohacell 110A 
Foam 

E, GPa  72.4 57 0.036 0.16 
ν  0.33 0.32 0.38 0.38 
ρ, g/cm3  2.8 1.578 0.032 0.11 

 
The SPL is given by, 

 









=

ref

rms

p
p

10log20  SPL   (16) 

where pref = 20 μPa is the standard reference pressure for airborne sound, and the root mean square 
pressure is given by, 
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 ∫=
avt
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dttp

t
p

0

2
rms )]([1   (17) 

p(t) is the pressure signal as a function of time, and tav is the duration of the pressure signal. 
Figure 6 shows that the denser Rohacell 110 foam core and the aluminum facesheet provide the best 

overall SPL reduction, but the composite facesheet with the Rohacell 110 provides almost as much SPL 
reduction at a significantly lower mass. For the Rohacell 110 foam core, increasing the FS thickness does 
not have much of effect on the SPL reduction. In contrast, the FS thickness has a significant impact on the 
SPL reduction for the Rohacell 31 core as the contribution of this lower density foam to the panel 
damping is much lower than in the case of the Rohacell 110 foam core panel. It is noteworthy that the 
composite facesheet (FS) curves appear as almost an extension of the aluminum FS curves as if the 
aluminum facesheets continued to become thinner. 
 
 

 
Figure 5.—Foam core panels 

considered with three different 
facesheet thicknesses. 

 
 

 
Figure 6.—Areal mass versus SPL reduction for the four panel types simulated. 
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Figure 7.—(a) Panel bending/buckling performance index versus SPL reduction for the four panel types simulated. 

(b) Panel strength performance index versus SPL reduction for the four panel types simulated. 
 
 

From Figure 6, it appears that the Rohacell 110 core with thin composite facesheets provides the best 
overall performance of the panels considered. However, this figure considers only the raw unit mass of 
the panel and does not account for the panel’s structural performance. If instead we plot the SPL 
reduction versus structural performance indices (Ashby, 2005), as shown in Figure 7(a) and (b), it is clear 
that the less dense Rohacell 31 core panel with composite facesheets is also quite competitive. The 
performance indices are associated with the structural efficiency of the panel per unit mass for panel 
bending and buckling, Figure 7(a), and panel in-plane strength, Figure 7(b). The plots provide a good 
measure of the trade-off between acoustic performance and structural performance of the panels for 
lightweight applications. This is particularly important for rotorcraft cabin panels, where interior noise is 
an important design consideration as is structural mass. 

Acoustic Evaluation of Heterogeneous Panels 

Here we consider two panels consisting of 75 percent aluminum and 25 percent Rohacell 31A foam, 
as shown in Figure 8. The first includes two layers of Rohacell foam, while the second has discrete 
Rohacell 31A inclusions. These panels were simulated in the virtual test chamber shown in Figure 3 at a 
variety of frequencies. The resulting SPL reductions are plotted versus frequency in Figure 9. Also plotted 
is the “mass law” for transmission loss through a panel (Fahy, 1985), 

 ( ) 47log20  TL 10 −= fms  
 (18) 

where ms is the panel areal mass in kg/m2, f is the frequency in Hz, and TL is the transmission loss (i.e., 
SPL reduction) in dB. Both panels considered have an identical areal mass of 42.2 kg/m2; all that is 
different is the arrangement of the foam and aluminum constituents. Equation (18) provides an 
engineering estimate of panel SPL reduction in frequencies governed by the mass law, where the material 
stiffness and microstructure do not play a roll. This is typically in the range of 100 to 1000 Hz, as shown 
in Figure 10.  

Figure 9 shows that the panel with discrete foam inclusions provides more SPL reduction than does 
the layered panel. This is expected as the discrete inclusions are more effective in converting waves from 
longitudinal to shear. Both panels considered provide SPL reductions that are lower than the mass law 
prediction (as expected, see Figure 10). However, at the lower frequencies considered, the predictions 
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associated with both panel types converge and begin to follow the mass law curve. This is because, at 
lower frequencies, the waves have longer wavelengths and thus interact with the microstructure to a lesser 
extent. It can also be shown that the results are independent of the stiffness of the panel at these lower 
frequencies, as predicted by the mass law.  
 

 
 
 

 
Figure 8.—Heterogeneous Rohacell 31A/aluminum panels considered in the 

acoustic study. 
 
 
 
 

 
Figure 9.—Heterogeneous Rohacell 31A/aluminum panel SPL reductions at a 

variety of frequencies. 
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Figure 10.—Typical frequency ranges for the acoustic attenuation properties of 

structural panels. 

Conclusion 
An integrated structural/acoustic model has been developed for the analysis of the dynamic response 

of multiphase panels that are subjected to impulsive loading, such as an acoustic pressure wave. Versions 
of the model applicable to three-dimensional bodies and two-dimensional bodies were presented. The 
geometry of the heterogeneous medium is discretized into an arbitrary number of subcells, each of which 
may contain a distinct solid material, fluid, or a void. By enforcing equilibrium and continuity conditions 
within and between these subcells, the dynamic response of the medium to time-dependent boundary 
conditions can be determined. An extension of the model to include inelastic material behavior was also 
discussed. 

The model was applied to analyze the structural/acoustic response of foam core sandwich panels, 
which are candidates for application in the cabins of rotorcraft. This was accomplished using a virtual test 
chamber, in which the acoustic wave can be applied to the air surrounding the panel rather than directly to 
the panel surface. This captures the interaction of the wave with the panel surface rather than assuming a 
known boundary condition at the panel surface, and is thus more physically representative of the 
interaction of the structure with the acoustic environment. However, as in real acoustic testing, care must 
be taken to ensure that reflected waves do not pollute the results so that the true panel acoustic 
performance is obtained. Various panel designs were compared in terms of their acoustic and structural 
performance, and it was demonstrated that a trade-off exists between the desire to design panels with high 
transmission loss (better acoustic performance) and the desire to design panels with the lowest mass 
(better structural performance).  

It is clear that the presented model is capable of evaluating the impact of material and geometric 
design parameter changes on the structural/acoustic performance of lightweight panels for application in 
rotorcraft. It’s ease of use and efficiency for performing full dynamic simulations, like those presented 
herein, make it an attractive alternative to the finite element method for this purpose. Enhancements that 
would make the model more useful would be an automated ability to alter the applied acoustic wave 
frequency, while simultaneously adjusting the size of the virtual test chamber to ensure that reflected 
waves do not influencing the results. 
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