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Abstract 

 

Undercooling a melt often facilitates a metastable phase to nucleate preferentially. Although the 

classical nucleation theory shows that the most critical factor for forming a metastable phase is 

the interface free energy, the crystallographic stability is also indispensable for the phase to be 

frozen at ambient temperature. In compound materials such as oxides, authors have suggested 

that the decisive factors for forming a critical nucleus are not only the free energy difference but 

also the difference of the entropy of fusion between stable and metastable phases. In the present 

study, using REFeO3 (RE: rare-earth element) as a model material, we investigate the formation 

of a metastable phase from undercooled melts with respect to the competitive nucleation and 

crystallographical stabilities of both phases. 

 

Introduction 

 

A metastable phase is a phase that does not exist in thermal equilibrium state and, although 

thermodynamically unstable, can temporarily exist when some conditions are fulfilled. Research 

into the metastable phase began with Ostwald’s prediction that a phase formed first from 

supersaturated liquid is not always thermodynamically stable but is close to liquid in energy [1]. 

This prediction is called “step rule”. Later on, Stranski and Totomanov [2] suggested that the 

step rule is a consequence of preferential formation of a critical nucleus of the metastable phase. 

That is, the activation energy required to form a critical nucleus, Gn
*
, controls the nature of the 

process. Regarding this point, the classical nucleation theory [3] states that Gn
*
 can be 

understood in terms of the interfacial free energy  between the liquid and solid phases. Turnbull 

[4] and Spaepen [5], assuming that  of a simple material such as metal is related not to the 

enthalpy change but to the entropy change at the solid–liquid interface, formulated  as 
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where Sf, T, NA and Vm are the heat of fusion, the temperature of material, Avogadro number 

and the molar volume, respectively. Furthermore, Spaepen and Meyer [6] derived  
dimensionless solid-liquid interfacial energy, as 0.86 for fcc or hcp crystals and 0.71 for bcc 

structures, respectively. The factors, which strongly depend on the structure of both solid and 

liquid phase, are to be a critical parameter to determine Gn
*
. In fact, it has been reported that the 

phase selection of the stable -phase or the metastable -phase in Fe–Ni–Cr alloys is controlled 

by  [7-9]. However, almost the metastable phases formed at the first recalescence, which 
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change into the stable phases at the second recalescence, are not frozen into ambient temperature. 

In order that the metastable phase may be frozen into ambient environment, the nucleation 

criterion of metastable phase as well as the crystallographical stability must be fulfilled. Then, in 

the present investigation, using REFeO3 as the model material, where RE means rare-earth 

elements, the phase selections not only in the nucleation stage but also the growth stage are 

discussed.  

Entropy-undercooling regime criterion of phase selection 

Before taking up the main subject of this paper, we mention again the hypothesis that, in ionic 

crystals, Sf is to be a dominant factor in the determination of   
Spaepen [10] and Granasy [11], almost at the same time, developed rather similar models that 

 at equilibrium state is given by 

 
  



  H r  TS r  
V
 dr ,        (2) 

where H(r) and S(r) are cross-interfacial enthalpy and entropy. Figure 1 shows a schematical 

illustration of Eq. 2, where (a) shows the change of the atomic order and of the order parameter 

in solid and liquid, and (b) schematic representation of the change in the enthalpy H(r) and the 

product TES(r) of melting temperature and entropy at the solid-liquid interface. The colored area 

corresponds to the approximate value of the interfacial energy, showing that  is not a 

dimensionless interfacial energy but a dimensionless interface thickness. This model can 

qualitatively infer the temperature dependence of the solid-liquid interfacial free energy. 

However, we need analytical or numerical forms of H(r) and S(r) in order to evaluate the 

interface thickness that is the key parameter of the model.  

On the other hand, in a material having faceted interface, the order parameter representing the 

regularity of the atomic arrangement rapidly changes as the interface is crossed as shown in Fig. 

2. In this case, H(r) can be approxiomated by the near-step function as shown in Fig. 2(b). 

Consequently, the interfacial energy is approximated with a triangle if we assume S(r) as a linear 

function of r at the cross-interface region. This result also means that  is a dimensionless 

interface thickness rather than a dimensionless interfacial energy. The recent numerical 

calculation of  based on the molecular dynamics and the density functional analysis suggests 

 

Figure 1. Schematic representation of the nonfaceted interface between solid and liquid. (a) 

change of the atomic order and of the order parameter in solid and liquid. (b) schematic 

representation of the change in the enthalpy H(r) and the product TES(r) of melting 

temperature and entropy at the solid-liquid interface. The colored area corresponds to the 

approximate value of the interfacial energy, showing that  is not a dimensionless interfacial 

energy but a dimensionless interface thickness. 
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the interface thickness is approximately half of the atomic layer spacing [12], which implies that 

the model shown in Fig. 2 is qualitatively valid even in the nonfaceted interface.  

 

Figure 3 schematically shows the thermodynamic relation when considering the step rule [13]. 

The figure depicts temperature and free energy of both liquid and solid phases (stable and 

metastable phases). The reason why liquid phase changes to solid phase is that the free energy of 

the liquid phase becomes larger than that of solid phase. The energy-balance point of both phases 

is the melting point. Comparing the metastable phase to the stable solid phase in terms of free 

energy, the free energy of the metastable phase, Gms, is larger than that of stable phase, Gs, (the 

subscripts s and ms mean stable phase and metastable phase, respectively). Therefore, the melting 

point of the metastable phase, TE,ms, becomes lower than that of stable phase, TE,s. Meanwhile, 

 

Figure 2. Schematic representation of the faceted interface between solid and liquid. (a) 

change of the atomic order and of the order parameter in solid and liquid. (b) schematic 

representation of the change in H(r) and TES(r). The colored area corresponds to the 

approximate value of the interfacial energy, suggesting the interface thickness is 

approximately half of the atomic layer spacing. 

 

Figure 3. Schematical image of temperature dependency of free energy in liquid and solid 

phases (stable and metastable phases). The entropies of three phase are related SL>Sms>Ss. 

Therefore, as for entropy of fusion Sf caused by solidification, the relation Sf,s>Sf,ms 

becomes valid.  
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the absolute value of the gradient of each curve (temperature coefficient of Gibbs free energy) in 

Fig. 2 corresponds to the entropy when pressure is constant. From the figure, we can see the 

relation SL>Sms>Ss between entropies of liquid phase SL, stable phase Ss and metastable phase Sms. 

Therefore, for the change of entropy, ΔSf, caused by melting, we can find a relation ΔSf,s >ΔSf,ms 

(i.e., the change of the entropy is smaller when the liquid phase changes to metastable phase). 

From the relative relations of the three phases above, we can see that the metastable phase is to 

be a higher entropy phase than the stable phase [14]. 

Factors determining the entropy of material are first, density of material and secondly, 

symmetry of arrangement of atoms and/or molecules making up the material. Therefore, high 

entropy phase is liquid rather than solid, and gas rather than liquid. Among solid phases, it is 

guessed that the low-density phase becomes higher-entropy phase. In conclusion, we can say that 

the metastable phase is lower density, higher symmetric material than the stable state.   

 

Experimental procedure and results 

Spherical samples of REFeO3 were prepared from high purity (99.99%) RE2O3 and Fe2O3 

powders. Levitation and melting of samples were carried out by an aerodynamic levitator, ADL, 

which was designed in order to solidify undercooled melts under the precisely controlled Po2. 

Details of the sample preparation and experimental facility are shown elsewhere [15, 16].  

Goldschmidt [17] discussed the stability of the perovskite (ABO3) structure using the 

tolerance factor, TF: 
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In the present investigation, ionic radii of RA, RB and RO correspond to those of rare-earth 

element, iron and oxygen, respectively. From the systematic investigation, he summarized that 

the perovskite structure is stable at TF > 0.8 and contrary unstable at TF < 0.8. Using Shannon 

ionic radii from La (0.1216 nm) to Lu (0.1032 nm), TF’s for the REFeO3 system were calculated 

to be 0.905 for LaFeO3 to 0.841 for LuFeO3. Therefore, the perovskite structure is expected to be 

stable in the REFeO3 system.  

Figure 4 shows SEM micrographs of samples of REFeO3 solidified in containerless conditions. 

As shown in the photographs, their surface profiles vary according to the type of rare-earth 

elements. The surface of LaFeO3 is nonfacetted and spherical while that of LuFeO3 is facetted and 

polyhedral [18]. Note that the different surface features result from differences in crystal structure, 

not differences in rare-earth element. Specifically, the lattice structure of the LaFeO3 sample is 

orthorhombic, the space group of which is Pbnm (o-REFeO3), while the LuFeO3 sample is a 

hexagonal-symmetric of P63cm (h-REFeO3). As the h-REFeO3 phase has a 10%~20% smaller 

 

 

Figure 4. Surface profiles of REFeO3 (RE=La, Lu) formed by containerless process. LaFeO3 

with large ionic radius has a smooth and spherical surface while LuFeO3 with small radius 

has a rugged and polyhedral surface. 
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density than that of perovskite [19], it is estimated that the hexagonal crystal is a higher entropy 

phase than perovskite. In other words, the hexagonal crystal should have intrinsically become 

stable perovskite. However, having been largely undercooled to below TE,ms indicated in Fig. 2 by 

the containerless process, hexagonal crystals of high-entropy phase grew as metastable phase 

(Fig. 5). In fact, when we forced it to solidify at a temperature of around TE,s even by the same 

containerless process, stable-phase perovskite appears. 

Figure 5 shows typical images taken sequentially during recalescence in samples of LaFeO3, 

GdFeO3 and YFeO3, each of which is processed at oxygen environment. The elapsed time 

indicated in each image was set to 0 s for one frame before the nucleation. At oxygen 

environment, although single recalescence that can be ascribed to the phase transition from 

undercooled melt to equilibrium perovskite phase was observed in LaFeO3 samples, double 

recalescences were observed in GdFeO3 and YFeO3 samples, where a primary phase was 

solidified from the undercooled melt and then the secondary phase with higher brightness was 

initiated at the interface between melt and the primary phase. The high brightness implies that 

the melting temperature of the secondary phase was much higher than that of the primary phase. 

This result indicates that decrease of TF facilitates the undercooled melt to solidify into the 

metastable h-REFeO3 phase rather than the stable o-REFeO3 phase. According to this result, 

reduction of the oxygen partial pressure Po2 is expected to extend the range of TF for metastable 

h-REFeO3 phase to be formed, because decreasing Po2 increases the amount of Fe
2+

 (0.078 nm 

for CN=6) with larger ionic radius than that of Fe
3+

 (0.0645 nm for CN=6).  

In addition, YbFeO3 was used to study the effect of ionic radii of RE elements on the 

formation of metastable phases, because the ionic radius of Yb
3+

 (0.1042 nm) was slightly larger 

than that of Lu
3+

 (0.1032 nm). Figure 6 shows the XRD patterns of YbFeO3 samples processed at 

controlled Po2. At 10
5
 Pa of Po2, the stable orthorhombic phase (o-YbFeO3) was formed at the 

second recalescence as in the cases of GdFeO3 and YFeO3.   At 10
4
 Pa of Po2, however, the 

 
 
Figure 5. Sequence photographs of HSV images taken during recalescences in the REFeO3 (R = La, 

Gd and Y) samples processed at oxygen environment. Although in LaFeO3 single recalescence was 

observed, in GdFeO3 and YFeO3 double recalescences indicating the formation of metastable phases 

were observed. 
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metastable hexagonal phase (h-REFeO3) remained, forming the dual phase with o-YbFeO3, and 

at 910
3
 Pa, the o-YbFeO3 phase did not appear [20].  

These results suggest that the decrease of Po2 facilitates the undercooled melt to solidify to 

metastable h-REFeO3 phase rather than the stable o-REFeO3 phase, particularly in samples with 

RE
3+

 of relatively small ionic radius. 

Figure 7 shows the relation between the recalescence results and Po2 as a function of the ionic 

radii of RE
3+

, in which Shannon ionic radii for CN=9 were used. Decrease of Po2 extends the 

 

 

Figure 6. XRD patterns of the YbFeO3 samples processed at Po2=10
5
 Pa, Po2=10

4
 Pa and 

Po2=910
3
 Pa, respectively. At 10

5
 Pa of Po2, the stable orthorhombic phase (o-YbFeO3) was 

formed at the second recalescence as in the cases of GdFeO3 and YFeO3.  At 10
4
 Pa of Po2, 

however, the metastable hexagonal phase (h-REFeO3) remaind, forming the dual phase with o-

YbFeO3, and at 910
3
 Pa, the o-YbFeO3 phase did not appear. 

 

Figure 7. Relation between the recalescence results and Po2 as a function of the ionic radii 

of RE
3+

, in which Shannon ionic radii for CN=9 were used. 
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range of TF for metastable h-REFeO3 phase to be formed. 

Discussion 

Bertaut et al. [21] and Yakel et al. [22] have first reported the two hexagonal modifications in 

the ABO3 systems, the space groups of which are P63/mmc and P63cm, respectively. In the h-

REMnO3 system, the P63cm type modification was formed as a low temperature phase for RE
3+

 

with small ionic radius (Ho-Lu, Y and Sc), whereas the P63/mmc type modification was reported 

as a high temperature phase. In our experiment, although the space group of the metastable h-

REFeO3 phase belonged to P63cm, the high temperature phase can be deduced to belong to the 

P63/mmc space group because the ionic radius of Fe
3+

 is as same as that of Mn
3+ 

(0.0645 nm for 

6 coordination) [23]. Hence, in this investigation, the geometrical analysis of the atomic 

configuration in h-REFeO3 is developed on the assumption that the space group of the primary 

phase is P63/mmc.  

The atomic configuration of the P63cm modification in ABO3 system can be described as a 

dense oxygen-ion packing (ABCACB) with B
3+

 ions having coordination number CN=5 (five-

fold distorted trigonal bipyramidal coordination), and A
3+

 with CN=7 (seven-fold monocapped 

octahedral coordination), forming a noncentrosymmetric structure. On the other hand, 

centrosymmetric P63/mmc is assumed to be described simply with B
3+

 ions of undistorted CN=5 

and A
3+

 of CN=6 (octahedral coordination). 

Figure 8 shows the geometrical configuration among RE
3+

(CN=6), Fe
3+

(CN=5), and O
2-

 in a 

space group of P63/mmc, in which the constituent ions are packed without any spacing between 

neighboring ions. As shown in this figure, the relation among the ionic radii of constituent ions 

of h-REFeO3 is expressed as 

 
    



R
RE
 R

O


6

2
R

Fe
 R

O .       (4) 

Therefore, the h-REFeO3 phase will be ideal when the next equation is fulfilled,  

 
    



TF 
3

2
 0.87         (5) 

The experimental results showed that the h-GdFeO3 phase is formed because TF of which is 

0.867. Whereas, the h-EuFeO3 is not formed because of slightly high TF of 0.871. This suggests 

 

Figure 8. Geometrical configuration among RE
3+

 (CN=6), Fe
3+

 (CN=5), and O
2-

 in a space 

group of P63/mmc, in which the constituent ions are packed with no space between 

neighboring ions. The h-REFeO3 phase will be the ideal at TF = 0.87. 
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that the aforementioned condition expressed by Eq. 5 is to be the criterion for the metastable h-

REFeO3 phase to be formed.   

Conclusion 

Using REFeO3 (RE: rare-earth element) as a model material, containerless solidification for 

forming a metastable phase from undercooled melts was carried out as a function of Po2 (oxygen 

partial pressure). Based on the geometrical consideration on the ionic radii of constituent ion, 

RE
3+

, Fe
3+

 and O
2-

, tit was derived that the criterion for metastable hexagonal phase is also 

expressed by tolerance factor, TF:  

  TF < 0.87. 

Experimental result well agreed with this criterion under reduced Po2 as well as for ambient 

conditions. 
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