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Abstract. Metal electrodeposition may introduce various morphological variations 

depending on the electrolytic conditions including cell configurations.  For liquid 

electrolytes, a precise study of these deposits may be complicated by convective motion 

due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic 

flight gives a straightforward mean to avoid this effect: we present here 0-G 

electrodeposition experiments, which we compare to ground experiments (1-G).  Two 

electrochemical systems were studied by laser interferometry, allowing to measure the 

concentration variations in the electrolyte: copper deposition from copper sulfate 

aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For 

copper, concentration variations were in good agreement with theory. For lithium, an 

apparent induction time was observed for the concentration evolution at 1-G: due to this 

induction time and to the low diffusion coefficient in ionic liquid, the concentration 

variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds. 

 

1. Introduction 

Electrochemical interfacial phenomena in microgravity environments have not 

been paid much attention by electrochemical scientists and engineers.  It is simply 

because of the apparently successful operated energy as seen even in the case of Apollo 

the 13th. However, the energy storage and power generation, as well as materials 

processing, may be planned in the international space station (ISS) and in the projects 

beyond ISS project after the year 2020. The study of electrochemical interfacial 

phenomena under microgravity conditions will be likely focused in the future.  

Electrodeposition or electrochemical dissolution of metal in aqueous solution is a 

good subject for primary stage of microgravity electrochemical research. Its reaction 

mechanism is relatively well understood.  Moreover, the electrochemical reaction rate 

can be easily controlled by changing the current density or potential.  A transition from 
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smooth metal film to dendrite morphology is sometimes found. From the viewpoint of 

fundamental electrochemistry, dendritic electrodeposits may provide simple model 

systems to study Diffusion Limited Aggregation (DLA) phenomena. Furthermore, 

dendrite growth was intensively studied for practical reasons, because of its detrimental 

role in battery technology[2]. The surface flatness is a key issue to guarantee a longer 

reversibility of secondary battery during charging/discharging repetition.  Thus, the 

coupling behavior between the morphological variations and ionic mass transfer rate 

must be indispensably understood.   

However, for liquid electrolytes, and whatever the electrochemical system under 

concern, a precise study of dendrite growth mechanisms may be complicated by 

convective motion due to buoyancy: even in thin, quasi-two-dimensional horizontal 

cells with vertical electrodes, electrodeposition is accompanied by a gravity-induced 

fluid flow at the electrodes. This effect is due to the electrolyte stratification near both 

electrodes: it has been extensively studied in the recent literature, both theoretically 

[4-6] and experimentally [7-11]. Convective motion mixes the electrolyte and tends to 

homogenize the concentration. The effect depends on cell configuration, salt 

concentration, and current density [4]. This convection driven by buoyancy was shown 

to increase the instability of system [11].  Obviously, zero-gravity experiments [12] 

should give a straightforward mean to avoid this effect: apart from gravity, no other 

parameter is altered. However, these experiments are relatively difficult to work out and 

of short duration (around 2-25 s in the most affordable facilities: drop tower and 

parabolic flight). 

JAMIC experiments are described at first in this paper. Then, we present a study 

of electrodeposition in the zero-gravity environment provided by parabolic flights. This 

project is supported by the Centre National d'Etudes Spatiales (CNES): it plans copper 

electrodeposition on copper electrode and lithium electrodeposition on Ni electrodes in 

the Airbus A300 from Novespace. During these flights, almost zero-gravity conditions 

are available over 20 to 25 seconds. The project includes the concentration 

measurements by laser interferometry, and similar but longer experiments performed at 

1-G in the cathode over anode configuration. Both series of experimental results are to 

be compared with numerical calculations.  

 

 

2. Experimental 

2.1 JAMIC Drop Tower 

A quasi two-dimensional electrolytic cell(Figure1) was used in JAMIC. A 1 mm 
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diam. disk cathode was placed at the center of the cell and a flat ring-shaped anode was 

placed at the outer edge. The thickness of the cathode made of 1 mm diam. copper wire 

was adjusted to 100μm by a polishing technique. The circular periphery area of this 

disk was used as the effective surface of the cathode. Copper foil of 100μm thickness 

was perforated to manufacture a flat ring-type anode with a 20 mm inner diam. Both 

electrodes were sandwiched by two sheets of slide glass. This electrolytic cell was filled 

with 0.9 M CuSO4 aqueous solution. Electrolysis was carried out at relatively high and 

constant current densities in order that the interference fringe pattern would appear soon 

after starting the electrolysis. Thus, the diffusion layer grows in the radial direction. 

 

Figure 1. Quasi Two Dimensional Cell with     Figure 2  2-D Cell with Linear  

Radial Diffusion Field                        Diffusion Field 

 

A common path microscopic interferometry was installed in JAMIC drop capsule.  

Laser diodes of 5 mW with 680 nm wavelength and a luminous light-emitting diode 

were used to observe the interference fringe pattern and the field image, respectively. 

The electrolytic cell was horizontally installed in this common path interferometry 

inside a drop capsule. The thickness of electrolyte solution in the cell was measured to 

be 200 μm, because both sides of cathode were coated for insulation with 

polyvinylchloride (PVC). The concentration dependence of refractive index of the 

electrolyte solution is 0.028 M
-1

 and the resolution power of concentration was, 

therefore, 5.7 x 10
-2

M CuSO4 per fringe.  

JAMIC drop capsule started to descend by gradually reducing the electromagnetic 

current.  It was evacuated around the inner capsule, and the outer capsule was 

accelerated by injecting gas at an appropriate rate to compensate the friction of air 

inside the drop shaft. A microgravity level less than 10
-4

G was thus attained 1 s after 

disengagement of the capsule. The descending capsule started to decelerate in the 

braking zone 10 s after free fall.  It experienced about 8G as a maximum value. The 
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electrolysis was, therefore, initiated 1 s after the capsule had descended the shaft. 

Electrolysis was then terminated at 9 s in order to recover the sample electrodeposited 

only under microgravity conditions. 

 

 

2.2 CNES Parabolic Flight 

The project presented here consists in carrying out electrochemical experiments 

during zero-g periods provided by parabolic flights. The experiments are carried out in a 

pseudo 2 D-cell (Figure 2). Care is taken to obtain a well defined cell geometry: see Ref. 

[19] for details. Copper electrodes are used for the copper electrodeposition and nickel 

electrodes are for lithium electrodeposition: they are held between two glass plates 

enabling to observe in-situ the electrochemical cell.   

The cell has a parallelepipedic shape, with dimensions L, the active length of the 

electrodes, l, the inter-electrode distance, and d, the thickness of the cell, respectively. 

Practical values are: L =0.8-1.5 cm, l ≈ 0.09 - 0.3 cm, d ≈ 0.012 - 0.1 cm. The lateral 

faces of the electrodes are coated with a hydrophobic film which limits the invasion of 

the electrolyte between the electrodes and the glass plates. After filling the cell with the 

electrolyte, it is sealed with a two-component resin before taking off: this allows to keep 

it under almost constant conditions for several hours [19]. During the flight, the 

temperature in the plane is kept at 18°C. Two electrochemical systems are studied: 

copper deposition from 0.1 and 0.2 mol L
-1

 aqueous CuSO4 solutions and lithium 

deposition from an ionic liquid.The ionic liquid is 

N-methoxymethyl-N-methylpyrrolidinium bis (trifluoro-methane-sulfonyl) imide 

containing 1.0 mol L
-1

 LiTFSI. 

In these microgravity experiments, a concentration variation of the electrolyte 

induced a variation of the refractive index which is measured by a common path laser 

interferometer. Laser interferometry is a well known technique for measuring the 

concentration changes in electrochemical processes [20-24]. This study use the 

interferometer described in Ref. [12] to measure in-situ the variations of ionic 

concentration in the electrolyte.  Because a thin cells (0.1 or 1 mm) is used, we expect 

negligible light deflection due to refractive index gradients [25]. The laser source is a 

laser diode with 685 nm wavelength. The change in the refractive index is given by 

 

  dΔn=Sλ  (1) 

 

where d: the optical path length in the electrochemical cell (here the cell thickness), Δn:  
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the change of refractive index, S: the shift of interference fringes, and λ: the laser 

wavelength. The relationship between refractive index and concentration is given by: 

 

C
C

n
n 












                    (2) 

We use (∂n/∂C) = 0.0279 for a CuSO4 aqueous solution and (∂n/∂C) = 0.005 for LiTFSI 

in ionic liquid.  The transient behaviour of this shift is recorded with a CCD camera. 

Electrolytic condition is conducted at a constant current or a constant potential.  

 

3. Results 

3.1. Copper Electrodeposition in JAMIC Drop Tower 

Figure 3 compares the time variation of interferograms recorded during the 

electrodeposition of copper at 0.2 A cm
-2

 from 0.9 M CuSO4 solutions obtained under 

1- and 0-G conditions. At 1 s after the start of electrolysis, a single fringe appears 

around the cathode under 1-G field, whereas no clear image of interference fringe is 

seen under 0-G. At 4 s, the annular fringe pattern under 1-G recedes from the cathode 

surface, and a fringe appears in the vicinity of the cathode surface under 0-G. After 8 s, 

two clear interference fringes with broader width are observed in 1-G experiments. At 

the same time, several fringes with narrower width appear within a distance of 100μm 

from the cathode surface under 0-G. It is difficult to count exactly the number of 

interference fringe with naked eye. The growth of annular interference fringe along the 

radial direction indicates the development of the diffusion layer of Cu
2+

 ions, when 

convection is not induced.  The interferogram recorded at 15 s after the start of 

electrolysis is also illustrated. The electrolysis has already been terminated, and the 

capsule has started to decelerate.  The less concentrated solution stays near the cathode 

and slightly concentrated electrolyte does near the anode (with larger surface area). The 

acceleration force starts to act upon the electrolyte. Then, the lighter electrolyte, 

constrained inside the diffusional layer adjacent to the cathode, begins to flow to induce 

a convection loop along two glass sheets. This is a reason why the radius of the annual 

interference fringe pattern suddenly increased.   

In 1-G experiments, the fringes are observed at nearly constant intervals along the 

radial direction.   The time variation of Cu
2+

 ion concentration at the cathode surface 

is compared with a transient diffusion model.  It decreases much slower than the 

calculated value. The ionic mass-transfer rate from the bulk electrolyte to the cathod 

surface superimposed by the fluid flow induced even in such a quasi two-dimensional 

shallow electrolytic cell may partly contribute such a deviation as well as the optical 
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deflection error.  

 

 

Figure 3  Transient Variations of Interference Fringes and Diffusion Layer 

Thickness with Progress of Cu Electrodeposition(0-G and 1-G)  

Followed by a Kind of Natural Convection Confined in Quasi-2D Cell 

in Deccelerated Zone  

 

The laser beam propagates in a straight line in the bulk electrolyte. Considering 

the resolution power of concentration in the present optical arrangement (0.057 M per 

fringe), the outer periphery of the diffusion layer may be conventionally defined as the 

position where the concentration is decreased by 3% of the bulk value. Thus, the time 

variation of the diffusion layer thickness can be reasonably measured. At 0.2 A cm
-2

, the 

diffusion layer thickness increases proportionally to the square root of time in 0-G.  

The measured diffusion layer thickness in 1-G begins to deviate from this linearity at 1 

or 3.2 s after the starting electrolysis, most probably due to induced natural convection.  
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The development of diffusion layer thickness under microgravity is analyzed 

based on the one-dimensional transient diffusion model including the migration effect. 

Although the physical properties of diffusivity and the transfer number vary with 

electrolyte composition, constant physical properties of diffusivity and the transfer 

number are assumed as a first-order approximation. A diffusivity of 5 x 10
-6

 cm
2
 s

-1
 and 

a cation transference number of 0.3 are found to give good agreement with measured 

thicknesses, which are very close to the reported values.
22

  

Figure 4 illustrates the potential difference between both electrodes.  It almost 

stays constant at 620 mV for the first 3 s.  It suddenly increases by 200 mV around 4 s, 

followed by a slight increase of potential difference in 0-G experiment, while the 

measured potential difference is slightly raised to 680 mV at 4 s and remained afterward 

under 1-G. The abrupt jump in the potential difference may be referred to the increase in 

concentration overpotential caused by depleted cupric ion at the cathode surface, since 

the calculated surface concentration of Cu
2+

 ion reached zero at 3 s. This behavior has 

been partly observed in the ground level experiment with a horizontal cathode over 

anode configuration. After the considerable concentration overpotential develops, 

copper grains grow in a dendritic manner (see Appendix below). 

 

Figure 4  Time Variations of Potential 

         Difference 

         (0.9 M CuSO4, 0.3Acm
-2

) 

 

 

 

 

 

 

The effect of microgravity on the morphology of copper electrodeposited at  

0.05 and 0.3 A cm
-2

 is seen in Figure 5. The electrolysis was conducted over 8 s under 

both environments.  If copper could be precipitated densely and uniformly on the 

copper substrate without any voids, the average film thickness would be 0.17 and 1.0 

μm, respectively. At ground level, a number of 0.5 μm diameter grains is uniformly 

precipitated at both current densities. Since the averaged size of grains is close to the 

resolution power of the scanning electron microscope (SEM), it is difficult to 

distinguish any difference on the crystallographic aspect of each grain obtained at both 

current densities.  These most likely grow in a three-dimensional nucleation manner. 
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Surprisingly, the significant difference of morphology of copper obtained at the 

same current density is noticed between 0-G and 1-G level experiments.  Some grains 

grow with preferential growth of the lower index planes at both current densities. A 

similar difference is also noticed at 0.1 A cm
-2

. At the low current density, the size of 

larger grains reaches about 2 μm, which is about four times larger than that for the 

sample obtained at ground level. The preferential growth of lower index planes is more 

evident at the lower current density. 

It is not clear why such a morphological difference is induced by the different 

level of gravitational acceleration.   As shown above, the surface concentration of 

Cu
2+

 ion is more quickly lowered with time under microgravity, so long as the 

electrolysis conducted at the same current density. The main part of the cathode surface 

is thus exposed to the electrolyte with lower concentration of Cu
2+

 ion under 

microgravity. If we assume that the three dimensional nucleation rate becomes low with 

decreasing in the surface concentration of Cu
2+

 ion, we obtain fewer nuclei on the 

cathode under microgravity. When the electrolysis is conducted to produce the same 

amount of charge, more coulombic charge should be distributed on the particular grain 

to introduce the larger-sized grains.   

 

Figure 5. Comparison of Morphology of 

Copper Electrodeposited in Terrestrial and 

Microgravity Experiment: Scratched Traces 

by Sandpaper are Visible on Cu Disk 

Substrate Surface with 100μm Thickness. 

(0.9M CuSO4 Aqueous Solution, 

Electrodeposition Duration Period of 8s, 

0.05 and 0.3A cm
-2

) 

 

 

 

 

 

 

However, the electrical conductivity is simultaneously reduced with lowered 

concentration of Cu
2+

 ions near the cathode. It may considerably influence the ionic 

mass transfer rate due to the migration effect.
25

 Thus, the concentration gradient of Cu
2+

 

ion near the cathode is no longer the same as that observed at the initial stage of 
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electrolysis. Further measurement of Cu
2+

 ion concentration profile is necessary to 

understand the morphological variations introduced by the different level of the 

gravitational acceleration force. 

 

3.2. Electrodeposition of Metals in Parabolic Flight 

3.2.1 Copper Electrodeposition 

The concentration profile in the electrolyte for various current density and bulk 

concentrations were measured. Figure 6 shows an example of interference fringes 

recorded before and 15 seconds after the beginning of cell polarization. The fringes are 

bent in the vicinity of the cathode, at the bottom of the Figure, because of the variation 

of concentration.  These concentration variations were also numerically calculated, 

using general equations describing transport phenomena in electrochemical systems 

[30], and taking into account the variation of the diffusion coefficients with 

concentration in CuSO4 aqueous solution [31].  The time variation of surface 

concentration during and after one parabola is shown in Figure 7, and compared with 

theory.  A good agreement between experimental and theoretical results was found. 

After the end of the parabola, the concentration at the cathode rapidly returned to its 

initial value: this was due to the large G (~ 1.5G) imposed at this time in order to drive 

back the plane to its normal flying conditions. 

We have reported elsewhere [28] the concentration measurements obtained in 1-G 

conditions in a C/A cell. A similar agreement with theory was found for measurements 

performed before the onset of dendritic growth. On the other hand, in experiments 

performed in horizontal cells [4, 7-10], the concentration variations were markedly 

different. 

We did not observe dendritic growth of copper, however, because the dendrites 

only appear after an induction time ts the so-called Sand time [29]. Sand time varies as 

2

2

0

2
)1(

J

CDe
t aC

S

 
                           (3) 

 

where e is the electronic charge, D the diffusion constant, μc and μa the cationic and 

anionic mobilities respectively, C0 is the initial ionic concentration and J the current 

density.  To obtain a Sand time shorter than 10 seconds for example, would require a 

high current density (larger than 20 mA cm
-2

) and still, the time available for observing 

dendritic growth would be very short. Experimental environment did not provide such 

conditions in this parabolic flight campaign.  Further experiments are thus necessary to 

explore dendritic growth itself.         
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Figure 6. Interference Fringes before    Figure 7.  Surface Concentration Variations 

of and 15 s after Cu Electrodeposition.    Cu
2+

 Ion during Parabolic Flight          

(0.1 mol L
-1

; 8 mA cm
-2

;             (Closed Circles: Measured,  

Cell Thickness is 0.1 cm.)              Dashed Line: Calculated)   

 

3.2.2. Lithium Electrodeposition 

As mentioned earlier, a series of experiments were performed at 1-G. A typical 

result is given in Figure 8, showing the variation of the cathode surface concentration as 

a function of the square root of time.  In this experiment, the applied current density is 

1 mA cm
-2

 and cell thickness is d = 0.1 cm. One clearly sees a first stage, where the 

concentration variation is very small. Then, after 90 s, the variation is much more rapid. 

Such an induction time was already reported [16]. In the present case, the observed 

induction time might be due to side reactions of the electrodeposited lithium metal.  

The diffusion coefficients in the ionic liquids are very low: from the variation of the 

diffusion layer thickness in the experiment illustrated in Figure 8, we estimated a 

diffusion coefficient D ~ 10
-7

 cm
2
 s

-1
. This value is in good agreement with that reported 

by other methods [32]. The concentration variations are compared in Figure 8 with 

theoretical values [30], which are calculated without taking into account the 

concentration dependence of the diffusion coefficient. The result obtained for the above 

value of D and a transport number of 0.35 for Li
+
 ion is shown in Figure 8 as a straight 

continuous line. 

Due to the very low diffusion coefficient and to the induction time mentioned 

above, the concentration variations due to Li deposition during the first 20 seconds are 

very small, and the concentration boundary layer thickness is at most 10 μm: thus 

concentration variations are hardly detectable by our interferometer. The Li deposition 

experiment would thus require longer zero-g times. 
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Figure 8. Li Electrodeposition in Ionic Liquid: Time Variations of Cathode Surface 

Concentration with Electrolysis(Experimental: Circles, Calculated: Straight Line). 

 

4. Conclusion 

A common path microscopic interferometry was used in a drop shaft experiment. 

The growth of the diffusion boundary layer of Cu
2+

 ions associated with 

electrodeposition of copper in CuSO4 solution was successfully measured in situ under 

microgravity.  When the electrolysis is conducted at 1-G, natural convection is induced 

even in such a shallow electrolyte layer of 200 μm thick.  Meaurements of voltage 

drop betwen both electrodes show the abrupt increase in potential difference, just after 

the surface concentration of Cu
2+

 ion reaches zero under 0-G.  A significant difference 

of morphology appears after only 8s of electrodeposition at constant current density.  

Larger grains with preferential growth of lower indexes are obtained in 0-G.  The 

coupling effect of the diffusion and migration mechanism to the electrocrystallization 

phenomena under 0-G must be further examined.   It is necessary to monitor the 

transient variation of cathodic overpotential with the progress of electrodeposition.    

Although of limited duration, parabolic flight experiments can provide interesting 

results on the early stage of electrodeposition. The evolution of concentration profiles is 

consistent with the theoretical calculation curves. However, a more complete study 

would require further zero-g experiments: for studying dendritic growth of copper, or 

for deposition of lithium from ionic liquids, longer times would be necessary (such as 

those available in sound rockets or in the International Space Station).  These 

improvements are considered in the framework of a project developed by an 

“Electrochemical Nucleation & Growth” ESA Topical Team. 
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