ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS

Eva S. Wirstrom, Steven B. Charnley, Martin A. Cordine, and Stefanie N. Milam

Abstract

Organic material found in meteorites and interplanetary dust particles is enriched in D and 15N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amine, were formed by ion–molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and 15N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, these measurements have shown that, in some primitive samples, a large 15N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, 15N enrichment. By considering the spin-state dependence in ion–molecule reactions involving the ortho and para forms of HD, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both 15N and D in dense cloud cores. The calculations therefore support the view that solar system 15N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

Key words: astrochemistry - ISM: clouds - ISM: molecules - meteorites, meteors, meteoroids - molecular processes - planets and satellites: formation.

1. INTRODUCTION

The isotopic enrichments measured in the primitive organic matter found in comets, interplanetary dust particles and meteorites (Remusat et al. 2006; Floss et al. 2006; Aleon 2010), probably had their chemical origin in a low-temperature environment that facilitated ion–molecule isotopic exchange reactions, such as the dense interstellar medium (ISM) or the outer protosolar nebula (Mumma & Charnley 2011; Messinger et al. 2003).

The enhanced D/H ratios seen in some primitive material (Messinger 2000; Robert 2003; Messinger et al. 2003; Keller et al. 2004; Hartogh et al. 2011) almost certainly originated in low-temperature environments. Deuterium enhancement is initiated by the exothermic ion–molecule exchange reaction (Millar et al. 1989) going to the right

\[\text{H}_2^+ + \text{HD} = \text{H}_2\text{D}^+ + \text{H}_2 + 170\text{K}. \]

In dense cores where CO and other heavy molecules have condensed as ices on to dust grains (i.e., become depleted), H2D+ molecules can continue to react with HD, producing HD+ and D2 (Roberts et al. 2003). This produces very high levels of deuteration in the remaining gaseous species as well as, through the resulting high atomic D/H ratios, in molecular ices mantles (e.g., Ceccarelli et al. 2007). A similar D fractionation chemistry can also occur in the cold regions of protoplanetary disks (Willicy 2007).

In both Jupiter Family and Oort Cloud comets, 14N/15N ratios are measured (~130–170) for both CN and HCN (Hutsemekers et al. 2008; Bockelée-Morvan et al. 2008) that are significantly lower than both the terrestrial and protosolar values (272 and 440, respectively; Marty 2012). Primitive materials can exhibit large bulk 15N enhancements (14N/15N ~ 180–300), and high spatial resolution measurements further show that they also contain distinct “hotspots” which exhibit the greatest D and 15N enhancements known (14N/15N < 100) (Messerer 2000; Aleon et al. 2003; Floss et al. 2006; Busemann et al. 2006; Briani et al. 2009a; Aleon 2010).

Theoretical models of nitrogen isotopic chemistry in molecular cloud cores, where gaseous molecules are being depleted by accretion on to dust grains, can reproduce the full range of 14N/15N ratios found in primitive matter (~50–280; Aleon 2010) through exchange reactions between 15N atoms and molecular ions such as HD5+ and HD4+ (Charnley & Rodgers 2002; Rodgers & Charnley 2008a, 2008b). These models predict that N2, NH3, HCN, CN, and HNC molecules should possess the greatest 15N enrichments. There are two 15N-fractionating pathways (Rodgers & Charnley 2008b): a slow one to N2 and ammonia (~106 years) and more rapid one to HCN and other nitriles (~109 years).

Recent, albeit sparse, astronomical observations of starless cores indicate that interstellar NH3 and N2 are not as enriched as predicted for the ISM or as measured in the solar system: [14NH]/[15NH] ~ 334 (Lis et al. 2010) and [14NH]/[15NH] ~ 446 (Bizzocchi et al. 2010). On the other hand, preliminary measurements indicate that interstellar HCN and HNC are highly enriched in 15N (Milam & Charnley 2012). These discrepancies are potentially related to different fractionating pathways and timescales.

However, the most pressing problem for a direct ISM-solar system isotopic connection concerns the fact that, while 15N and D meteoritic hotspots do seem to correlate in some samples (e.g., Aleon et al. 2003), they clearly do not in others (e.g., Busemann et al. 2006; Gounier et al. 2008). Yet, as has been noted by several authors (Alexander et al. 2008; Briani et al. 2009b; Bonal et al. 2010; Aleon 2010), the low-temperature interstellar environments most conducive to producing large 15N enrichments, should also produce concomitantly enormous molecular D/H ratios (e.g., in ammonia or HCN). Thus, one would expect 15N and D hotspots to always be spatially

1. Also at Department of Physics, The Catholic University of America, Washington, DC 20064, USA.
correlated, contrary to what is seen. This presents a serious challenge for ion–molecule fractionation chemistry.

In cold interstellar environments, nuclear spin states can be an important factor in determining chemical reaction rates (e.g., Flower et al. 2006). The major interstellar collision partner, molecular hydrogen, has a 170.5 K difference in zero-point energy between the para (antiparallel spins) and the ortho (aligned nuclear spins) forms; this allows some endoergic reactions to proceed, even at low temperatures. If a substantial fraction of the H$_2$ is in the higher energy form, o-H$_2$, Pagani et al. (2011) demonstrated that a high H$_2$ ortho-to-para ratio (OPR) therefore inhibits ("poisons") the production of H$_2$D$^+$ in reaction (1), suppressing the overall deuteration.

The fractionation of 15N may also be influenced by the OPR of H$_2$. Ammonia formation is initiated by the production of N$^+$ from N$_2$ by He$^+$, which then reacts in

$$\text{N}^+ + \text{H}_2 \rightarrow \text{NH}^+ + \text{H}. \quad (2)$$

followed by a sequence of ion–molecule reactions with H$_2$ through to NH$_2^+$ and a final electron dissociative recombination. Reaction (2) has an activation energy of ≲ 200 K (Gerlich 1993) which, at low temperatures, can be overcome by the internal energy of o-H$_2$ (Le Bourlot 1991). Thus, ammonia formation in dark clouds is dependent on the H$_2$ OPR, a distinction not made in earlier fractionation models (e.g., Rodgers & Charnley 2008b). A recent re-assessment of the OPR dependence in the original experimental data by Dislaire et al. (2012) indicates that previous work has overestimated the low-temperature rate coefficient for reaction (2), involving o-H$_2$, by almost three orders of magnitude (cf. Le Bourlot 1991). Thus, the precise abundance of o-H$_2$ could play a pivotal role in producing a diverse range of D-15N fractionation in interstellar precursor molecules.

In this Letter, we quantify the effect the H$_2$ OPR has on interstellar 15N fractionation and demonstrate that this can account for the isotopic anomalies observed in primitive solar system materials.

2. MODEL

We consider the chemical evolution of the central regions of a static prestellar core (Charnley & Rodgers 2002) with a gas density $n_0(\text{H}_2) = 10^8$ cm$^{-3}$, a temperature of 10 K and a visual extinction of $A_V > 10$ mag. Cosmic-ray ionization occurs at a rate of $\zeta = 3 \times 10^{-17}$ s$^{-1}$. The chemical model used here is based on Rodgers & Charnley (2008a, 2008b) and Figure 1 shows the most important reactions for 15N fractionation. Helium, carbon, oxygen, and nitrogen are included at elemental abundances given by Savage & Sembach (1996). We are interested in cores that are just about to form protostars and so we assume that all carbon is initially bound up in CO, with the remaining oxygen in atomic form, and the nitrogen is partly atomic with 50% in molecular and atomic forms, respectively. The elemental 14N/15N ratio is assumed to be 440, with the same fraction of 15N in atomic form initially, 15N/14N14N = 1.

The gas–grain interaction is modeled according to Charnley (1997): all neutral gas-phase species, except H$_2$, He, N, and N$_2$, stick and freezeout onto grains upon collision. No grain surface chemistry or desorption is considered, except for sticking of

H atoms (with an efficiency of 0.6) followed by reaction to produce H$_2$ molecules which are ejected upon formation (see Section 2.1).

2.1. Inclusion of Spin-state Reactions

The reaction network has been expanded to contain ortho and para forms of H$_2$, H$_3^+$, and H$_3^-$, and couples 279 gas-phase species by 4420 reactions. Both spin types have been considered equally likely to react with a given species, with the exception of reaction (2), where new rates of Dislaire et al. (2012) for ortho and para H$_2$, $k_{2,a} = 4.20 \times 10^{-10} (T/300)^{0.17} \exp(-44.5/T)$ cm3 s$^{-1}$ and $k_{2,p} = 8.35 \times 10^{-10} \exp(-168.5/T)$ cm3 s$^{-1}$, respectively, have been adopted. Other temperature-dependent H$_2$ reactions have energy barriers that are too high for the ground-state energy difference between the spin types to have a significant effect at 10 K.

Initially, the H$_2$ OPR is set to the high-temperature statistical equilibrium value of 3. Measurements in the diffuse ISM by Crabtree et al. (2011) are consistent with an H$_2$ OPR around 1; we find adopting this lower value has little effect on our results. The reaction

$$\text{H}^+ + o-\text{H}_2 \rightarrow \text{H}^+ + p-\text{H}_2 \quad (3)$$

is exothermic by 170.5 K and so o-H$_2$ is efficiently converted into p-H$_2$ at low temperatures. We assume that the H$_2$ formed and ejected from grains has an OPR of 3; this ensures a steady-state OPR is reached. Reaction rates for conversion between ortho and para species, as well as for their interaction with electrons and cosmic rays, have been implemented from Walmsley et al. (2004). Branching ratios for o/p-H$_2^+$ formation from H$_3^+$ and H$_2$, and rates for H$_2^+$ interaction with CO and N$_2$, are taken from Pagani et al. (2009). Furthermore, all reactions involving proton transfer from H$^+_3$ to neutral molecules have been assigned branching ratios according to Oka (2004) and no spin conversion is assumed to take place in reactions involving electron transfer to H$_3^-$. Apart from these special cases, reactions are assumed to produce ortho and para versions of H$_2$, H$_3^+$, and H$_3^-$ with equal probability.
years (A), He+ becomes available to produce 15N. Crucial times for the 15N fractionation in nitrogen hydrides are marked by vertical dotted lines, labeled A, B, and C. Right panel: evolution of the 15N/14N ratio in gas-phase molecules and bulk of ammonia and nitrile ices. Black curves represent the current model, while red curves show the corresponding isotopic ratios in the model of Rodgers & Charnley (2008a). The assumed elemental value of \(400\) is marked by a dotted horizontal line. Values for gas-phase species are omitted after \(2 \times 10^5\) years when abundances for both isotopologues are essentially zero due to freezeout. Dashed curves represent ice-phase species.

2.2. Other Reactions

Since nitrogen fractionation is initiated by He+ reactions (see Figure 1), the He+ chemistry dictates the timescale of fractionation. In particular, the rate for the reaction

\[
\text{He}^+ + \text{H}_2 \rightarrow \text{H}^+ + \text{H} + \text{He}
\]

has previously been assigned widely different values at 10 K, ranging from \(1.1 \times 10^{-15}\) cm\(^3\) s\(^{-1}\) (Rodgers & Charnley 2008b) to \(2.5 \times 10^{-13}\) cm\(^3\) s\(^{-1}\) (Walsmley et al. 2004). We have adopted the measured low-temperature rate \(k_2 = 3.0 \times 10^{-14}\) cm\(^3\) s\(^{-1}\) (Schauer et al. 1989).

In order to qualitatively compare the temporal patterns in 15N fractionation to the expected levels of deuteration during core evolution, we also include the chemistry for ortho and para 2H\textsubscript{2}D+ in the model since o-H\textsubscript{2} can overcome the barrier for the reverse of reaction (1), i.e.,

\[
\text{H}_2\text{D}^+ + \text{o-H}_2 \rightarrow \text{H}_2^+ + \text{HD}.
\]

The most important reactions for spin-state-dependent o/p-H\textsubscript{2}D+ formation and destruction are adapted from Walsmley et al. (2004), and we assume a deuteron abundance corresponding to HD = \(1.5 \times 10^{-5}\) relative to elemental hydrogen.

3. RESULTS

Figure 2 shows the evolution of the major chemical species. The ammonia abundance builds up to about \(10^{-7}\) with respect to 2H\textsubscript{2} around a core age of \(10^5\) years (left panel), which is comparable to what is typically observed (Hothel et al. 2004). Similarly, the peak HCN and HNC agree well with values observed in dense cores (Padovani et al. 2011). At this time the CO is depleted by a factor of \(> 10^3\). A steady-state 3H\textsubscript{2} OPR of \(2.3 \times 10^{-3}\), consistent with attempts to quantify the OPR in the cold dark cloud BG8 (Troscompt et al. 2009), is reached after about \(10^6\) years.

The right panel of Figure 2 shows the evolution of the molecular 14N/15N ratios in the current model, compared to the corresponding results from the Rodgers & Charnley (2008a) model. As expected (see, e.g., Figure 1), the inclusion of a spin-state dependence does not significantly affect the evolution of fractionation in the nitriles; the 15N enhancement starts to buildup from the initial pool of atomic 15N early on, and continues to increase until gas-phase abundances have dropped to below \(10^{-13}\). The 14N/15N ratios in gas-phase HCN and HNC lie in the range \(\approx 50-260\). When all nitriles are frozen out, the 15N enhancement in the bulk of nitrite ices (CN, HCN, HNC, and H\textsubscript{2}CN) is \(\approx 5\).

The inclusion of spin-state dependence does however have a dramatic effect on the 15N fractionation in ammonia. The relative delay in the timing of the late enhancement peak in the current model, as compared to Rodgers & Charnley (2008a), stems from the higher rate (\(\sim 3\times\)) of reaction (4) (see Section 2.2). However, the main difference is that the NH\textsubscript{3} enrichment is not monotonic in time. The sharp decrease starting around \(2 \times 10^5\) years (time B) (i.e., an increase in 14NH\textsubscript{3}/15NH\textsubscript{3}), is caused by the inefficiency of reaction (2) as the o-H\textsubscript{2} abundance drops (see Figure 2).

To understand what causes the fractionation patterns, we compare abundances to isotopologue ratios at crucial times in the evolution, marked by vertical lines A, B, and C in Figure 2. Initially, the limiting reaction for fractionation is the production of 15N\textsubscript{4}, and the 15N/14N ratio in ammonia is simply double that of 14N\textsubscript{2}/15N\textsubscript{3}. As gas-phase CO gets depleted after \(\sim 10^5\) years (A), more He+ becomes available to produce 15N4, which starts to enrich the nitrogen hydrides beyond that of N\textsubscript{2}. However, after \(\sim 10^5\) years, the H\textsubscript{2} OPR drops below \(2 \times 10^{-7}\).
(B), reaction (2) becomes less efficient, and more 15N$^+$ is instead circulated back into molecular nitrogen by

$15N$^+ + ^{14}N_2 \rightarrow ^{14}N^+ + ^{15}N^+$

(Terzieva & Herbst 2000), lowering the 15N fraction in ammonia to less than half the elemental fraction. The reason for ammonia to subsequently become 15N enriched after 10^6 years (C) is that the molecular nitrogen fraction decrease substantially. This both reduces the fraction of 15N$^+$ converted back into molecular form (Figure 1) and decreases the amount of 14N$^+$ available to produce 14NH$_3$.

Fractionation changes in the bulk of amine ices follows the pattern of gas-phase fractionation, but with a time lag and not as pronounced extreme values. While the bulk of amine ices on grains has 15N fractions within 30% of the elemental fraction, at any given time the fractionation in the outer monolayer may show much larger variations (Rodgers & Charnley 2008a).

In Figure 3 the calculated deuterium fractionation in H$_2$ is plotted together with the molecular 15N fractionation. The D/H ratios in other gas-phase molecules, in atoms, and therefore also in the accreted molecular ices, will closely follow that of H$_2$. The increase in deuterium follows very closely the drop in 15N$_2$ abundance, and after 2×10^5 years (time B), ratios of D/H $> 1\%$ are predicted. These trends in both deuterium and OP evolution agree well with previous investigations (Pagani et al. 2011; Flower et al. 2006).

Figure 3 shows that gas-phase chemistry can indeed reproduce the requisite range of D and 15N enrichments in nitrile and amine functional groups. Three fractionation patterns develop as the core evolves as following.

1. For times less than about $\sim 2 \times 10^5$ years, gaseous nitriles can develop large enrichments in 15N (HC15N/HC14N ≈ 50--260) but will only be modestly enriched in D, as observed (e.g., DNC/HNC ≈ 0.01--0.05; Hirota et al. 2001); this will be reflected in the accreted ices. Ammonia will be similarly enriched in D but less enriched in 15N than the nitriles. At this stage the nitrile gas-grain fractionation is complete.

2. Between $\sim 2 \times 10^5$--10^6 years, the remaining ammonia can become highly fractionated in D but is either not enriched, or even depleted, in 15N.

3. Beyond 10^6 years, ammonia becomes very highly enriched in both D and 15N.

Thus, the model naturally produces a range of D--15N fractionation in nitrile and amine functional groups that is qualitatively consistent with that found in primitive organic matter. In general, the highest 15N enrichments and lowest D enrichments should be carried by nitriles. Amines could account for the fractionation of material that is highly enriched in D only, as well as the material that is simultaneously highly enriched in both D and 15N. This functional-group dependency has already been noted in analyses of meteoritical samples. However, an important caveat is that conversion of nitriles to amines by H and D additions on grain surfaces (e.g., hydrogenation of HCN to CH$_2$NH and CH$_3$NH$_2$; Theule et al. 2011) has to be negligible. The 30% enrichment of the bulk ammonia ice cannot account for all the enhanced ammonia fractionation measured in carbonaceous chondrites (14NH$_3$/15NH$_3$ ≈ 185--256; Pizzarello & Williams 2012). However, we predict 14NH$_3$/15NH$_3$ ≈ 100 as the highest gas-phase enrichment and this would lead to higher 15NH$_3$/15NH$_2$ ratios in the uppermost monolayers of the stratified ices (Rodgers & Charnley 2008a).

Interstellar gas-phase 14N/15N ratios in nitriles have been measured in several Galactic sources selected for being unlikely to have experienced significant isotopic fractionation (Adande & Zizys 2012). For cold dark cores, few measurements exist; our model predicts very low 14N/15N ratios for HCN and HNC. For ammonia, the observed 14NH$_3$/15NH$_3$ ratios in dense protostellar cores (≈ 340; Lis et al. 2010) are consistent with the modest enrichments which can occur within 10^5 years. The measurement of 14NH$_3$/15NH$_3$ > 700 in L1544 (Gerin et al. 2009) is consistent with the prediction that 15N nuclei can be underabundant in ammonia. It also suggests a chemical age of
\(\approx 3 \times 10^5 \) years for the fractionated ammonia gas (Figure 3), and that it should exist in a region of the L1544 core spatially distinct from HCN and HNC (cf. Padovani et al. 2011).

4. CONCLUSIONS

By considering the ortho-para dependence in ion–molecule reactions involving H\(_2\), ammonia, and related molecules are expected to exhibit a wide range of fractionation in both \(^{15}\)N and D, consistent with those found in primitive solar system organic matter. These include very large enrichments in both D and \(^{15}\)N, as found in previous models, but also low \(^{15}\)N enrichment or even depletion, coupled with modest to large D/H values. Nitrile functional groups on the other hand, while being the most likely source of \(^{15}\)N hotspots, are not predicted to correlate with extreme D enrichment. These calculations support the premise that the \(^{15}\)N isotopic anomalies found in meteorites were set in functional groups formed in a cold molecular cloud.

The predicted \(^{14}\)N/\(^{15}\)N and D/H ratios can account for the limited measurements existing for interstellar cloud cores. To further test and constrain these theoretical models, surveys for key molecules and measurements of relevant \(^{14}\)N/\(^{15}\)N ratios in molecular clouds are required. A more extensive analysis of how correlations between deuterium and \(^{15}\)N enrichment in specific molecules are affected by spin-state-dependent chemistry is beyond the scope of this Letter and will be considered elsewhere (E. S. Wristrom et al. 2012, in preparation). Predictions from these models can be tested by measurements of various multiply substituted isotopologues (e.g., DC\(^{15}\)N, \(^{15}\)NH\(_2\)D; Gerin et al. 2009), which will be facilitated with the Atacama Large Millimeter Array.

This work was supported by NASA’s Origins of Solar Systems Program and the Goddard Center for Astrobiology.

REFERENCES

Queries

Page 5
Q1
Author: Please update reference citation “E. S. Wirström et al. (2012, in preparation),” if possible.

Q2
Author: Please check the details for any journal references that do not have a pale purple link (CrossRef doi) or a blue link (NASA ADS or arXiv e-print) in the two-column proof (article-style layout). A journal reference with no links may contain some incorrect information.

Q3
Author: Please confirm whether in reference “Alexander et al. (2008)” the conference title is correct as included.

Q4
Author: Please confirm whether in reference “Ceccarelli et al. (2007)” editors’ names and publisher details (name and location) are correct as included.

Online-only colour figures

This proof PDF is identical in specification to the PDF file that will be published in the online journal. To view any online-only color figures as they will appear in the printed journal, we recommend that this color PDF file be printed on a black & white printer.