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Abstract 

 A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on 

separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis 

uses three different algorithms based on the discrete ordinate method (DOM). Two methods, 

DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against 

the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the sin-

gle scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method 

for truncation of the phase function along with the single scattering correction. For reference, a 

standard discrete ordinate method, DOM, is also included in analysis. The obtained results for 

cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS 

provides an accurate solution in the aureole area. Outside of the aureole, the convergence and 

accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more 

accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, 

while the TMS showed better results in case of ice cloud. 
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1. Introduction 

 This paper continues analysis of the scalar radiative transfer equation (RTE) with highly 

asymmetric phase function in the framework of discrete ordinates method (DOM) (Chandrasek-

har, 1950; Stamnes and Swanson, 1981). In our recent paper (Korkin et. al, 2011), a particular 

attention was paid to the methods based on decomposition of the diffuse light field into a smooth 

(regular) part and analytically expressed anisotropic part without truncation of the phase func-

tion. With anisotropy subtraction, the regular part of the signal, which requires a numerical solu-

tion, is essentially smoothed as a function of angles. 
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In DOM, the view zenith angle (VZA) anisotropy of the signal is expressed via an even 

number 2N of linear differential equations in the system. Each ordinate corresponds to one equa-

tion, and there are N ordinates per hemisphere. The azimuthal dependence of radiance is ex-

pressed via Fourier series with M harmonics, where the system of N linear equations is solved 

independently for each m = 0…M  (Thomas and Stamnes, 1999) providing solution in i = 1…N 

discrete points 1 1; 0, 1i i� � � � � � � � . 

Our previous work (Korkin et. al, 2011) showed that anisotropy subtraction using a 

Small-Angle Modification of RTE, implemented in code DOMAS, accelerated azimuthal con-

vergence of solution significantly, by a factor of 3. However, contrary to our expectations, this 

method did not improve convergence in zenith angle, meaning that a large number of streams 

would still be required for high accuracy computations with very asymmetric phase functions. 

It's worth mentioning that accuracy comparison for different number of streams N in (Korkin et. 

al, 2011) used cubic spline interpolation to yield solution at selected angles. This method was 

criticized by Karp (1981) as limiting the computational accuracy. A convenient form of compu-

tation for an arbitrary angle using integration of the source function was introduced in DOM by 

Kourganoff (1952). The current work employs the idea of “natural” interpolation by including 

the required view angles as dummy nodes 1 1d� � � � �  into DOM scheme with zero weighting 

coefficients 0dw 	  (Chalhoub and Garcia, 2000). This new approach yields the high accuracy 

solution with low number of streams. Below, we provide code details and a comparison with 

other approaches for three cases with high scattering anisotropy, including coarse aerosol frac-

tion and liquid water and ice cloud models. 

This paper is structured as follows: Section (2) defines the problem and describes the 

main characteristics of the methods compared in the paper. The definition of the scenarios for 

numerical tests is given in Section (3) followed by discussion of the results in Section (4). The 

paper is concluded with the summary. 

 

2. Definition of the problem 

For simplicity, we consider the boundary problem for the scalar RTE and plane-parallel 

homogeneous atmosphere illuminated at the right angle (Chandrasekhar, 1950) 
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�  (1) 

Here, ( , )I  �  is the radiance given as a function of optical depth � ( 00 �  �  ) and a cosine of 

VZA � = cos�. The surface is assumed to be black. The media scattering properties are given by 
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the single scattering albedo 0�  and phase function ( , )p �� � . Z-axis is pointed downwards, so 

that o o0 90� � �  ( 0�� � ) and o o90 180� � � ( 0�� � ) correspond to transmitted and reflected 

radiation, respectively. 

 The phase function is expanded in Legendre series 

 
0

( , ) (2 1) ( ) ( )
maxK

k k k
k

p k x P P
	

� �� � 	 � � �� , (2) 

where ( )kP �  is the Legendre polynomial of degree k, kx  are expansion  moments, and Kmax is 

the maximum expansion order necessary for accurate representation of the phase function which 

will be denoted hereafter as K if the number of term involved is less then Kmax. 

 The discrete ordinate method is often used to solve Eq.(1). Using the double-Gauss qua-

drature (Sykes, 1951), the scattering integral in Eq.(1) is expressed as a sum in the form 
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where jw  are the weighting coefficients, j� are the nodes (zeros) of the Legendre polynomial 

( )NP � . Equation (3) yields the system of 2N linear differential equations for Eq.(1). While pa-

rameters K in Eq.(2) and N in Eq.(3) seem to be independent, it was shown that N = K/2 gives 

numerically stable results (Thomas and Stamnes, 1999). Thus N = K/2 is assumed in Section 2. 

 The right-hand side of the RTE Eq.(1) is called the source function (Chandrasekhar, 

1950). The free term of the source function contains all Kmax moments of the phase function 

 0 0

0
( ,1) exp( ) exp( ) (2 1) ( ) (1)
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k k k
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� �
� � 	 � � �� , (4) 

regardless of the number of moments K of the phase function under the scattering integral. The 

acronym DOM will be used further in this paper for the traditional discrete ordinate method de-

fined by Eqs.(1) - (4) without any modifications. Note, that for the azimuthally independent case 

the single scattered radiation is included in DOM exactly. 

 Large particles as in clouds, snow, coarse aerosol fraction etc. cause a strong forward 

scattering and peaks in the backscattering directions. In these cases, K-parameter in Eq.(2) is 

large, ~103 as well as the number 2N of DOM equations. At large N, the matrix of the system 

easily becomes ill-conditioned, and it's solution is time consuming. 

Presently, there are two main approaches to solve the RTE problem with high scattering 

anisotropy. The first one uses different truncation approximations of phase function. These me-

thods were recently analyzed by Rozanov and Lyapustin (2010). The error caused by truncation 

of the phase function is significantly reduced by the postprocessing correction in the single scat-
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tering (Nakajima and Tanaka, 1988; Muldashev et al., 1999) or the source function integration 

(Dave and Armstrong, 1974). The second approach singles out the anisotropic part of the light 

field without changing the phase function (Romanova, 1962; Irvine, 1968; Budak et al. 2010). 

 In this paper we compare three different methods. The first one singles out the anisotropic 

part of radiance, ( , )AI  � , using the Small-Angle Modification (Gaudsmit and Saunderson, 

1940; Budak and Sarmin, 1990): 

 ( , ) ( , ) ( , )A RI I I � 	  � �  � . (5) 

Importantly, ( , )AI  �  has an analytical expression. With major anisotropy of signal thus re-

moved, the RTE for the smooth regular part, ( , )RI  � , becomes more amenable for the numerical 

solution than the original Eq. (1). The resulting code DOMAS was described in (Korkin et al., 

2011). 

 In the second method the single scattering approximation is treated as the anisotropic part  

1( , ) ( , )AI I � 	  �  (van de Hulst, 1948; Sobolev, 1975) 

 1 2( , ) ( , ) ( , )I I I � � 	  � �  �  (6) 

The second and the higher scattering orders, taken together, represent the regular part in this 

case: 2( , ) ( , )RI I � � 	  � . The computational details of this method, called DOM2+, were also 

given in (Korkin et al., 2011). Eqs.(5) and (6) transform the RTE boundary problem as follows 

(Lenoble, 1985) 
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�  (7) 

 Following Eq.(4), the free term of the source function, � �( , )AQ I  � , contains the exact 

phase function (Eq.(2)) with all Kmax moments included. The number of expansion moments K of 

the phase function under the scattering integral should be taken equal to the number of ordinates 

2N on sphere. 

 Finally, the third method used in this work is TMS (Nakajima and Tanaka, 1988). TMS 

uses Delta-M truncation approach (Wiscombe, 1977) and a postprocessing routine to correct the 

single scattering solution. In the framework of Delta-M method, the RTE boundary problem 

Eq.(1) is solved using the scaled optical depth and SSA 

 * *
0 0 0 0(1 ) , (1 ) (1 )f f f 	 ��  � 	 � � �� , (8) 

as well as truncated phase function with K < Kmax moments, which is also renormalized as: 
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� �� � 	 � � � 	 � �� . (9) 

In Eqs. (8) and (9),  f  is the first truncated moment of the phase function, 1Kf x �	 . If K

= Kmax then f = 0. The number of considered moments, K, is twice the number of streams N per 

hemisphere. Unlike in Eqs.(1) and (7), Delta-M method uses K moments of the phase function 

both under the scattering integral and in the free term of the source function Eq.(4). 

In order to obtain the angular distribution of the radiance, TMS uses the following routine 

 * * * * * * *
0 1 0 1 0( , ) ( , ) ( , , , ) ( , , , ) ( , , , )TMS

TMS MI I I p I p I p�� � �  � 	  � � �  � � �  � � , (10) 

where * * *
0( , , , )MI p��  � �  and * * *

1 0( , , , )I p � �  are the Delta-M and single scattering solutions of 

Eq.(1), respectively, with optical parameters and phase function *p  given by Eqs.(8) and (9) re-

spectively. *
1 0( , , , )TMSI p � �  is the solution of Eq.(1) in the single scattering approximation with 

optical depth *  scaled following Eq.(8), rescaled single scattering albedo 0 0 0(1 )TMS f� 	 � �� , 

and the exact phase function p given by Eq.(2). Rozanov and Lyapustin (2010) found that the 

TMS method provides the best overall accuracy for the intensity computations among different 

techniques based on truncation of the phase function. 

 In this work, we used previously developed codes DOMAS and DOM2+ upgraded with 

the dummy node interpolation technique described above. For comparison, we also used our own 

straightforward implementation of DOM (Eqs.(1) and  (4)) and of TMS instead of commonly 

used codes DISORT (ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/) or Rstar 

(http://www.ccsr.u-tokyo.ac.jp/~clastr/). All DOM-based codes feature standard numerical tech-

niques including a singular-value decomposition (Karp et al., 1980; Stamnes and Swanson, 1981) 

and a scaling transformation (Karp et al., 1980) for conditioning the matrix of the system. The 

codes DOMAS, DOM2+, and DOM were tested in our previous paper (Korkin et al., 2011). Our 

implementation of the TMS method was tested against DOM by assuming K = Kmax (no trunca-

tion). The observed agreement was within the computational accuracy. 

 After definition of scenarios in Section 3, these three approaches, Eqs.(5), (6) and (10), 

are analyzed in Section 4. The traditional approach of solving RTE Eq.(1) is discussed as well. 

 

3. Definition of Test Cases 

The accuracy of the methods was investigated using three types of phase functions with 

different scattering anisotropy. The first two cases are defined in the code comparison study of 

Kokhanovsky (2010). A lognormal size distribution at wavelength �=412 nm were used for both 

of these cases. The expansion moments are available at www.iup.physik.uni-bremen.de/~alexk. 
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The first case represents the coarse aerosol fraction with effective radius ro = 0.3�m, variance � 

= 0.92�m, real refractive index m = 1.339, and size integration limits �r = 0.005�m …30�m. 

The case is characterized by the average scattering cosine x1 = 0.79 and Kmax = 917 (918 total, 

see Eq.(2)). 

The second case represents the cloud with the following parameters: ro = 5�m, � = 

0.4�m, m = 1.339, �r = 0.005�m …100�m, x1 = 0.86 and Kmax = 1671. 

The third case represents the cirrus cloud or snow crystals based on the model of random 

fractal crystals (Mishchenko et al., 2006, pp.352-353). The expansion moments are available at 

http://www.giss.nasa.gov/staff/mmishchenko/brf/. For this model the power law distribution of 

project-area-equivalent-sphere radii was assumed (Mishchenko et al., 2006, p.128, Eq.(5.3.14)) 

with ro = 50�m, � = 0.2�m, m = 1.311, �=650nm, x1 = 0.75, and Kmax = 1999.The phase func-

tions for the defined three cases are shown in Figure 1. 

The results were analyzed for a nearly conservative case 6
0 1 10�� 	 �  and a wide range of 

optical depth �0 = 0.1, 1, 10 for each of the phase functions. 

The relative error ( , )�  � , %, as a function of VZA was the focus of our analysis: 

 
( , ) ( , )

( , ) 100%
( , )

e

e

I I
I
 � �  �

�  � 	
 �

, (11) 

where ( , )eI  �  is the “exact solution”. The “exact solution” is defined as the solution of the 

boundary problem, Eq.(1), with all Kmax+1 terms of the phase function taken into account, and 

with 2N  =  Kmax+1 streams in Eq.(3). Namely, 2N = 918, 1672, 2000 was assumed for the aero-

sol, water cloud and ice cloud respectively. 

Note that N = 240 streams per hemisphere, Delta-M, and single scattering correction  

were used for the same aerosol case in SCIATRAN code in the benchmark test of codes (Kokha-

novsky et al., 2010) that included polarization effects. N = 180 streams were assumed for Pstar in 

order to generate accurate results for aerosol scattering. For the cloud case SCIATRAN used N = 

360 streams and Pstar used N = 180 streams. No significant difference was reported between 

SCIATRAN and Pstar. In our case, all expansion moments were used for the aerosol and cloud 

case (2N = 918 and 1672), respectively, to generate the baseline solution using standard code 

DOM. The obtained “exact solutions” for the three cases are plotted in Figure 2 as functions of �0 

and VZA. 

 

4. Results and Discussion 

 The results of analysis for the aerosol, liquid water and ice cloud models are presented in 

Figures 3-5, respectively. They show the logarithm of relative error as a function of �0 and VZA 
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for the transmitted (VZA = 0o…80o) and reflected (VZA =100o…180o) radiance for codes 

DOMAS, TMS, and DOM2+. The results for DOM as compared with the exact solution are giv-

en for the reference as well. The results are displayed for two cases N = 16 and 32 to show the 

convergence of solution. The figures show that code DOMAS has a significant advantage over 

other methods in the aureole area. Even for the most difficult case of ice crystals (Figure 5), the 

relative error of DOMAS does not exceed 0.1% for N = 32. One exception is the case with low 

optical depth �0 = 0.1 where DOM2+ has a more accurate result. 

Note, that the obtained results for DOM2+ demonstrate the systematical error component 

similar to the standard DOM but with significantly smaller values. It shows that using the single 

scattering field as a source leads to regular part which is not "enough regular". Truncation of the 

regular part of DOM2+ using the Delta-M technique may improve the performance of DOM2+. 

 For all considered cases, the error of TMS in the sun direction was relatively high. For 

the particular case of ice crystals and N = 32, the error reached 4%, 40%, and 2000% at �0= 0.1, 

1 and 10 respectively. For the aerosol case, it was 0.7%, 4%, and 12% for the same optical 

depths at N = 32. The described error of TMS in the aureole area may slightly affect the accuracy 

in other directions if the surface reflection is considered. 

 Outside of the aureole region, DOMAS and TMS provide a generally comparable accura-

cy for both reflected and transmitted radiance. For example, DOMAS performs slightly better 

overall for the aerosol and liquid cloud cases, while TMS shows a better accuracy for the case of 

ice crystals, especially at low optical depth �0 = 0.1. 

 As a summary of this analysis, an average error over all angles, 

 
1

1( ) ( , )
L

i
iL 	

�  	 �  �� , (12) 

is provided in Tables 1, 2, and 3 for the aerosol case and liquid water and ice cloud models, re-

spectively. The tables show additional results with different number of streams N = 8 and 64 than 

those presented in figures. The average represents L = 81 values with 1 degree step for 
o o0 SZA 80� �  for the transmitted radiation and o o100 SZA 180� �  for the reflected tradition. 

The overall best result is highlighted in gray. 

In case with coarse fraction of aerosol (Tables 1b, c), DOMAS provided the best result 

for any considered number of streams and any optical depth, except for the thin layer (�0=0.1, 

Table 1a), where DOM2+ was on average the best for any number of streams. Also, DOM2+ is a 

perfect method for the case of thin water cloud and low (8, 16) number of streams (Table 2a). 

In cases with water and ice clouds, moderate (�0=1, Tables 2b and 3b) and high (�0=10, 

Tables 2c and 3c) optical depths, and low number of streams (8, 16), TMS provided the most 

accurate results for the reflected radiation. In the same cases, DOMAS was the best for the 
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transmitted radiation. Note that for the case of ice crystals and 8 streams per hemisphere, TMS 

was the only method that provided the numerically stable solution. Also, the TMS method pro-

vided the best result for 8-32 streams in case with thin ice cloud (Table 3a) 

In case with water cloud, 32 and 64 streams, DOMAS showed the best average result 

both for the transmitted and reflected radiation at moderate and high optical depths (Tables 2b, 

2c). In case with ice crystals and large number of streams (64), DOMAS was more accurate only 

at moderate optical depth (Table 3b) with relatively insignificant improvement over TMS for the 

reflected radiation. For a thick cloud with ice crystals (Table 3c) TMS and DOMAS provided the 

best results for the reflectance and transmittance, respectively. 

Computational time and memory use are two other important dimensions of numerical 

codes. Given the number of streams, N, all considered methods solve the system of 2N linear eq-

uations resulting in the same singular value decomposition part of the codes. The main differenc-

es appear in treatment of the source function and the bottom boundary condition. 

Let us consider the case of liquid water cloud with �0 = 10 and N = 16 as an example. The 

relative error for this case is shown by the red line in Figure 4. The accurate DOM solution with  

N=K/2 streams (DOM(exact)) took 48 seconds in the MathWorks Matlab environment running 

on Intel Pentium T4300, 2.1GGz machine with 4Gb RAM under Microsoft Windows 7. Assum-

ing this time as 1000 in relative units, the time of the other methods is: 

 DOM(exact) / DOMAS / TMS / DOM2+ / DOM  = 1000 / 16 / 1 / 15 / 2.  (13) 

The TMS method shows the best performance with the single scattering correction taking only 

2% of the total time. The computer time generally grows along with the complexity of the source 

function related computations which amounts to 20%, 63% and 84% of the total time for DOM, 

DOMAS and DOM2+, respectively. 

 

Conclusions 

This paper continued analysis of RTE with strongly anisotropic scattering, comparing ap-

proaches based on decomposition of the diffuse light field into a regular and anisotropic part. 

The TMS method, that uses the Delta-M method for truncation of the phase function along with 

the single scattering correction, was also included in our analysis. It is shown numerically that 

with anisotropy subtraction, the regular part of the signal, which requires a numerical solution, is 

essentially smoothed as a function of view zenith angle. The algorithm DOMAS, that singles out 

the anisotropic radiance in the forward scattering peak using the Small-Angle Modification of 

RTE, gives accurate results in the aureole area where TMS was shown to have a peak of error. If 

the reflecting ground surface is considered, this peak of error reduces the accuracy of the result at 

any view zenith angle beyond the aureole area. Outside of the aureole area, the convergence and 



9 
 

accuracy of DOMAS and TMS is found to be approximately similar: DOMAS was found more 

accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, 

while the TMS showed better results in case of ice clouds. In case with optically thin aerosol 

layer or water cloud, DOM2+ showed accurate results for a low number of streams. 

The memory requirement is found comparable for all of the discussed methods. The best 

computational efficiency has been demonstrated by the TMS method due to the analytical sim-

plicity of the source function. 
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Table 1a: Mean Relative Error, %, for optical depth �0 = 0.1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  0.7960 0.4443 0.3766 1.5447
��  0.1817 0.2352 0.0956 1.5864

1
6 

��  0.2077 0.1472 0.0933 1.1249
��  0.0504 0.0943 0.0292 0.9198

3
2 

��  0.0270 0.0241 0.0089 0.6735
��  0.0065 0.0315 0.0048 0.4185

6
4 

��  0.0015 0.0025 0.0003 0.1779
��  0.0003 0.0110 0.0003 0.1156

 
 
Table 1b: Mean Relative Error, %, for optical depth �0 = 1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  0.3098 0.3254 0.8248 10.823

7 
��  0.0741 1.3031 1.0754 12.832

9 

1
6 

��  0.0360 0.1135 0.3726 6.4296
��  0.0146 0.6164 0.4021 7.5713

3
2 

��  0.0032 0.0383 0.1002 2.8152
��  0.0012 0.1795 0.1024 3.2824

6
4 

��  0.0005 0.0054 0.0095 0.7921
��  0.0001 0.0276 0.0094 0.9268

 
 
Table 1c: Mean Relative Error, %, for optical depth �0 = 10 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  0.1315 0.0805 6.5087 27.155

4 
��  0.0749 3.8765 10.886

4 
35.031

3 

1
6 

��  0.0196 0.0279 2.1218 16.513
4 

��  0.0103 0.8915 3.6423 21.481
9 

3
2 

��  0.0020 0.0087 0.3288 7.0701
��  0.0010 0.1745 0.5839 9.2676

6
4 

��  0.0005 0.0012 0.0214 1.9744
��  0.0001 0.0329 0.0387 2.5949
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Table 2a: Mean Relative Error, %, for optical depth �0 = 0.1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  1.0840 0.2479 0.5959 2.6603
��  0.2011 0.1758 0.1581 2.5550

1
6 

��  0.4536 0.3181 0.2860 2.1873
��  0.1120 0.1760 0.0943 2.1805

3
2 

��  0.1504 0.1519 0.0591 3.0376
��  0.0312 0.1367 0.0529 2.0271

6
4 

��  0.0148 0.1139 0.1140 5.5597
��  0.0033 0.1664 0.0409 1.9635

 
 
Table 2b: Mean Relative Error, %, for optical depth �0 = 1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  1.5387 0.4384 2.0589 14.708

4 
��  0.2359 1.1369 2.8039 19.476

2 

1
6 

��  0.4649 0.3555 2.0003 15.771
2 

��  0.0102 1.1251 2.2606 17.612
2 

3
2 

��  0.1324 0.2633 1.9490 13.443
6 

��  0.0219 1.1164 1.8501 15.260
8 

6
4 

��  0.0103 0.2727 2.1346 13.330
7 

��  0.0024 0.8652 1.5551 9.6011
 
 
Table 2c: Mean Relative Error, %, for optical depth �0 = 10 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  0.7246 0.1508 16.697

7 
41.224

1 
��  0.1933 26.485

5 
26.915

6 
51.994

2 

1
6 

��  0.2382 0.1078 14.755
3 

38.977
7 

��  0.0296 15.274
2 

23.460
1 

48.816
7 

3
2 

��  0.0514 0.0672 10.115
1 

33.946
5 
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��  0.0071 5.1885 16.351
8 

42.821
9 

6
4 

��  0.0048 0.0559 1.8227 18.340
0 

��  0.0007 0.6998 3.1250 23.468
3 
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Table 3a: Mean Relative Error, %, for optical depth �0 = 0.1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  - 0.1179 - - 
��  - 0.0945 - - 

1
6 

��  1.8685 0.0188 1.2173 2.4418
��  0.3873 0.0754 0.2593 2.3467

3
2 

��  0.7519 0.0207 0.5628 2.2796
��  0.1422 0.0724 0.1218 2.3214

6
4 

��  0.1823 0.0109 0.0999 2.3671
��  0.0350 0.0806 0.0492 2.1538

 
 
Table 3b: Mean Relative Error, %, for optical depth �0 = 1 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  - 0.1090 - - 
��  - 0.8765 - - 

1
6 

��  0.2080 0.0556 2.3336 16.718
2 

��  0.1556 0.7920 2.8423 19.528
0 

3
2 

��  0.0981 0.0429 2.0994 16.460
7 

��  0.0763 0.7558 2.7598 19.382
8 

6
4 

��  0.0329 0.0360 2.1134 15.719
5 

��  0.0186 0.8193 2.5319 18.042
0 

 
 
Table 3c: Mean Relative Error, %, for optical depth �0 = 10 

N HS DOM
AS TMS DOM

2+ DOM 

8 
��  - 0.0367 - - 
��  - 46.720

5 - - 

1
6 

��  0.1027 0.0176 17.785
7 

42.367
8 

��  0.0766 33.874
8 

29.750
2 

54.812
4 

3
2 

��  0.0538 0.0133 17.203
6 

41.799
4 

��  0.0275 27.181
6 

29.327
7 

54.692
4 
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6
4 

��  0.0254 0.0106 14.937
8 

39.136
8 

��  0.0061 16.333
6 

27.878
4 

51.957
7 
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Highlights 

(a) DOMAS is accurate in the aureole area even for a low number of streams; 

(b) Beyond the aureole, the accuracy of DOMAS and TMS is similar; 

(c) DOM2+ has a good accuracy for a thin cloud/aerosol layer at a low number of streams; 

(d) All codes have comparable memory requirements, and TMS requires least computer time. 
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