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ABSTRACT

MEASUREMENT SYSTEM CHARACTERIZATION IN THE
PRESENCE OF MEASUREMENT ERRORS

Sean A. Commo
Old Dominion University, 2012
Director: Dr. Drew Landman

In the calibration of a measurement system, data are collected in order to esti-

mate a mathematical model between one or more factors of interest and a response.

Ordinary least squares is a method employed to estimate the regression coefficients

in the model. The method assumes that the factors are known without error; yet,

it is implicitly known that the factors contain some uncertainty. In the literature,

this uncertainty is known as measurement error. The measurement error affects both

the estimates of the model coefficients and the prediction, or residual, errors. There

are some methods, such as orthogonal least squares, that are employed in situations

where measurement errors exist, but these methods do not directly incorporate the

magnitude of the measurement errors. This research proposes a new method, known

as modified least squares, that combines the principles of least squares with knowl-

edge about the measurement errors. This knowledge is expressed in terms of the

variance ratio - the ratio of response error variance to measurement error variance.

The variance ratio takes on values between 0 and 1, and for calibration applications,

the ratio is typically less than 0.0625. In addition to modified least squares, a new

definition of residual errors based on the variance ratio is proposed. Through several

simulation studies, it is observed that the new estimator can yield different esti-

mates of the regression coefficients and improve the residual error over ordinary least

squares. As a result, modified least squares is shown to be an alternative estimation

method in the presence of measurement errors.
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NOMENCLATURE

a = Distance Minimized by Ordinary Least Squares

d = Distance Minimized by Modified and Orthogonal Least Squares

E = Expected Value Operator

EFT-1 = Exploration Flight Test-1

F.S. = Full-Scale

k = Number of Factors

ME = Measurement Error

MLS = Modified Least Squares

MSE = Mean Squared Error

n = Number of Design Points

N = Normally Distributed

NIST = National Institute of Standards and Technology

OLS = Ordinary Least Squares

OrthLS = Orthogonal Least Squares

p = Number of Model Terms without the Intercept

Sxx = Sum of Squares in x

Sxy = Sum of Cross-Products in x and y

Syy = Sum of Squares in y

u = Random Error or Measurement Error in x

Var = Variance Operator

W = Factor with Error
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x = Factor without Error

x̄ = Sample Mean of x

x = Model Matrix

y = Observed Response without Error

Y = Observed Response with Error

Ȳ = Sample Mean of Y

Ŷ = Predicted Response of Y

α = Angle Formed by d and Estimated Model

β = Regression Coefficient

β̂ = Estimated Regression Coefficient

ε = Random Error in y

γ = Variance Ratio

φ = Angle Formed by a and Estimated Model

σ̂ = Estimated Measurement System Accuracy

σ2
u = Variance of u

σε = Standard Deviation of ε

σ2
ε = Variance of ε

Σ = Variance-Covariance Matrix of the Measurement Errors
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Regression analysis is a collection of statistical methods and tools used to es-

timate mathematical relationships between one or more explanatory variables, or

factors, and responses. Regression can be classified into several categories includ-

ing simple or multiple, linear or nonlinear, and parametric or nonparametric. The

earliest published work on regression analysis was done by Legendre and Gauss in

the early 19th century although Gauss began formulating his ideas in the late 18th

century (Draper and Smith, 1998). Both Legendre and Gauss independently derived

what is now known as the method of least squares and applied their methods to

orbital mechanics. Additionally, Gauss developed the Gauss-Markov theorem, which

revealed an elegant property of the least squares method. The method of least squares

minimizes the sum of the squares of the errors. The least squares estimator is the

best linear unbiased estimator (BLUE). In other words, the regression coefficients

estimated from least squares have minimal variance and are unbiased. While often

overlooked, this result is useful when applying the least squares method.

As Legendre and Gauss first recognized, the rationale behind estimating these

mathematical relationships ranges from validating physical laws and phenomenon to

understanding system behavior and performance. The relationship representing a

physical law or system response in terms of k factors is expressed as

y = f (x1, . . . , xk) .
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In k-dimensional space, the function f (x1, . . . , xk) is known as a response surface.

The functions that make up the true response surface may be simple or complex.

Because the true functions are seldom known, a simpler function over a small region

of interest is used to approximate f (x1, . . . , xk). The approximate relationship can

be expressed as

y = g (x1, . . . , xk) + ε (1)

where ε is the error. For this research, the form of g (x1, . . . , xk) is limited to a class

of linear models based on a Taylor-series expansion in k factors. These functions are

often sufficient in approximating the true function since they are extremely flexible.

Furthermore, estimating the coefficients in the function from historical or experi-

mental data is accomplished using the method of ordinary least squares (OLS). In

the latter case, experiments are designed to collect sufficient information in order to

estimate the assumed form of g (x1, . . . , xk).

Second-order Taylor-series response surface functions often work well in real-world

applications and therefore are one of the most commonly estimated functions (Myers

et al., 2009). The mathematical form of this model is

y = β0 +
k∑

i=1

βixi +
k−1∑

i=1

k∑

j=i+1

βijxixj +
k∑

i=1

βiix
2
i + ε (2)

where k is the number of factors, the β’s are the regression coefficients, and ε is the

error. Based on Equation (2), there are

1 + 2k +
k (k − 1)

2
= 1 + p

regression coefficients in the model. As a requirement, the experimental design must

contain 1 + p unique design points. If x is the model matrix which contains the

design points, then the experimental design is said to have a sufficient number of
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unique design points when
(
xTx

)
is full rank. Additionally, because the function is

second-order, the experimental design must also contain 3 unique levels of each of

the k factors.

The use of OLS to estimate the regression coefficients carries the following as-

sumptions about the factors, responses, and mathematical model:

• Appropriate model specification. The form of the mathematical model is lin-

ear with respect to the regression coefficients, and the model lack-of-fit is not

significant.

• Linear independence. The factors in the model matrix, x, are linearly inde-

pendent or the responses are a linear combination of the factors and regression

coefficients. From the experimental design perspective, linear independence is

obtained through a sufficient number of unique design points to fit the assumed

mathematical model. Linear independence is expressed mathematically when

x is of full column rank or
(
xTx

)
is well-conditioned.

• Independent errors. The errors, ε, across all the responses are independent.

Mathematically, this is expressed as

Cov (εi, εj) = 0 for i 6= j.

For errors that are not independent, generalized least squares (GLS) should be

used.

• Homoscedasticity or constant variance. The variance of the errors, Var (ε),

across all the responses are equal. This is independent of the settings of the

factors.

• Weak exogeneity. The factors are fixed variables and therefore assumed to

be known without error. From the regression model, the errors across all the
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responses have a conditional mean of zero and are independent of the factors.

Other assumptions about normality and identically independent errors are not nec-

essary for OLS, but these assumptions do support additional properties of the esti-

mators.

The error, ε, in the response surface function is attributed to one or more of the

following:

• The response, y, is observed with error, which may result from systematic biases

or random fluctuations. This is the most commonly assumed cause of error in

the estimated model.

• The form of the response surface function, g (x1, . . . , xk), is incorrect due to:

– factors that were excluded but affect the response, or

– a more complex true function, f (x1, . . . , xk), than the assumed function.

• The factors are not known without error. Typically, any error in the factors

is neglected so the OLS can be used to estimate the mathematical model.

In the literature, errors in the factors are referred to as errors-in-variables or

measurement error (ME). This is the motivation behind the research presented

in this dissertation.

The source of MEs can be attributed to one or more causes, including instrument

and sampling errors. In practice, all physical experiments contain some degree of

ME, but MEs are usually considered negligible in favor of using OLS to estimate a

model. Depending on the application, the MEs may be small relative to the other

sources of error in the mathematical models and therefore are assumed not to impact

the modeling. However, there are a few recommendations for how small the MEs

should be in order to neglect them in the regression analysis. Furthermore, statistical



5

software packages that recognize MEs in the modeling are extremely limited, typically

limited to the simple linear model or

y = β0 + β1x+ ε.

At the National Aeronautics and Space Administration (NASA), MEs occur in many

complex systems and applications, and the simple linear model is not adequate. For

example, consider a wind-tunnel experiment where the factors of interest are angle-

of-attack, yaw angle, and Mach number and the responses are aerodynamic forces

and moments, and the objective of the experiment is to estimate the mathematical

relationships between the factors and responses. It is known implicitly that both the

factors and the responses contain some uncertainty; yet, there is no formal method-

ology employed to estimate the response surface function between the factors and

responses which considers both sources of error. This issue is further exemplified

when the same test article is tested in different facilities and differences in the mod-

eled relationships cannot be reconciled. Since the ultimate goal is an understanding

of the true relationship between the factors and responses, any unaccounted for errors

can complicate the ability to achieve this objective.

The research presented in this dissertation proposes a new general methodology

for mathematical modeling in the presence of MEs. This methodology is applicable

to simple and complex systems and enables direct incorporation of uncertainties in

all variables, which is often not considered in practice.

1.2 APPLICATIONS

Both within and outside of NASA, there exist several examples of ME. At NASA,

complex measurement systems are designed to collect data for various projects across

all the Mission Directorates, including Aeronautics, Exploration, and Atmospheric
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Science. In complex, custom-designed measurement systems, system-level calibra-

tions are critical in understanding and capturing the true performance. However,

there exists a significant difference between classical instrument calibration and the

characterization of a complex measurement system. In laboratory calibration, the

factors are considered to be known without error and are traceable to standards

from the National Institute of Standards and Technology (NIST) within the United

States. In general, many of NASA’s measurement systems cannot be calibrated with

a system-level standard that is traceable to NIST.

In aeronautics, scaled testing of flight vehicles is performed in wind tunnels to un-

derstand aerodynamic performance. The primary measurement system used during

these wind-tunnel experiments is a force-balance. A force-balance is a multiple-axis

load cell that provides simultaneous, high-precision measurements of aerodynamic

forces and moments in up to 6 degrees of freedom. The number of aerodynamic

components that can be measured by a force-balance is a function of its mechanical

and electrical design. Through a calibration experiment, a mathematical model can

be developed between the applied forces and moments, or factors, and the electrical

outputs of the strain gauges, or responses. The literature provides several examples

of improvements in calibration techniques, including calibration in the presence of

additional factors, such as temperature (Lynn et al., 2012; Parker et al., 2001; Parker

and DeLoach, 2001). However, current force-balance calibration methods rely on the

assumption that the applied forces and moments are known without error. For ex-

ample, in force-balance calibrations that use gravity-based loads, or dead-weights,

the individual weights are calibrated against NIST standards; therefore, each weight

is known within a small uncertainty. These uncertainties propagate into errors in the

applied forces and moments.

In exploration, research in the development of newer, more robust entry, descent,

and landing (EDL) technologies is a major focus. Both landed payload mass and
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landing accuracy are driven by the EDL architecture for a given mission. The cur-

rent unmanned exploration mission to Mars, the Mars Science Laboratory (MSL),

is nearing the limit of the capabilities of available EDL technologies. While un-

manned missions have less stringent requirements for landing, manned missions are

infeasible with the current EDL systems (Braun and Manning, 2006). The MSL

Entry, Descent, and Landing Instrumentation (MEDLI) was proposed to address

some of the challenges associated with the development of newer, more robust EDL

technologies (Gazarik et al., 2008). MEDLI is a suite of sensors installed on the

forebody heatshield of the MSL entry vehicle. One of the subsystems of MEDLI

is the pressure measurement system, which consists of two components: the Mars

Entry Atmospheric Data System (MEADS) and the associated electronics. MEADS

is a series of through-holes, or pressure ports, in the heatshield that connect via

stainless steel tubing to pressure transducers. Power is provided to MEADS by the

electronics system. Commo and Parker (2012) discuss a system-level calibration ap-

proach that was developed and employed to characterize the performance of the pres-

sure measurement system. Typically for spaceflight instrumentation, component-by-

component calibrations are performed with some of the components being calibrated

with NIST-traceable standards. However, a system-level, NIST-traceable standard

for the pressure measurement system does not exist.

In atmospheric sciences, Earth’s upper atmosphere is receiving increased research

emphasis. Researchers use satellite observations to gain insight into trends and causes

of changes in the Earth’s climate. Missions such as the Clouds and Earth’s Radiant

Energy System (CERES) have been proposed to answer questions about how radia-

tive energy in the atmosphere affects climate change. This includes how increases in

quantities of carbon dioxide affect the balance of energy. Satellite missions employ a

series of simple instruments and complex measurement systems that are integrated

to collect the appropriate data in order to support the mission objectives. These
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instruments and measurement systems are calibrated on the ground. However, satel-

lites operate in a vacuum environment and are exposed to radiation; both of these

environmental factors are known to influence the measurements. In-situ adjustments

are made to the instruments and measurement systems in flight to correct for en-

vironmental effects. Measurement standards are unavailable for on-orbit satellites,

so any in-situ adjustments are relative to a source, which contains some error. Sim-

ilar to the force-balance example, the uncertainty from the source propagates into

measurements made by the sensors on the satellites.

1.3 CLASSIFICATION OF MEASUREMENT ERRORS

Since both fixed and random variables are discussed within this research, it is

important to distinguish each mathematically. For consistency, Buonaccorsi’s (2010)

convention is used to identify these variables. In the case of a fixed variable, a lower

case letter (e.g. x) is used while a capital letter (e.g. X) indicates a random variable.

Bold letters (e.g. x and X) are used to indicate a vector or matrix of fixed and random

variables, respectively. The given operator is also widely used and is designated by

“|”. For example, |x can be interpreted as “given x.” When referring to the random

variable X, then |x means “given X equal to x.” Furthermore, distinguishing the

difference between fixed and random factors is also important. If the factor x is taken

to be fixed, then the model is identified as a functional model. The random factor

X is the structural model.

To demonstrate the difference between functional and structural models, consider

an experiment where a factor is applied load. Suppose a 100 lbf. load is to be applied

and there are 30 possible configurations to apply the 100 lbf. load. If a configuration

is randomly selected for every instance that the load is applied, then the structural

model is appropriate. However, if the same configuration is selected for every instance

the load is applied, then the functional model is correct. For this application, the
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focus is on the functional model, but many of the conclusions from the functional

model can easily be extended to the structural model (Gleser, 1983). Both functional

and structural models are classified as classical ME models, where W is the error-

prone measurement of the factor x or X.

1.4 GENERAL FORM OF THE MEASUREMENT ERROR MODEL

The general form of the classical linear model is

y = β0 + β1x1 + . . .+ βpxp + ε,

where the βs are the regression coefficients and ε is the normally distributed random

error of y with a mean of zero and a constant variance of σ2
ε . The subscript p is

the number of model terms without the intercept and does not necessarily equal the

number of factors in an experiment. For a second-order response surface model based

on a Taylor series expansion,

p = 2k +
k (k − 1)

2
.

For example, if k = 2, then p = 5 and the model is

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε

= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε,

where β3 = β12, β4 = β11, β5 = β22, x3 = x1x2, x4 = x2
1, and x5 = x2

2. Using

summation notation, the second-order Taylor series model is

y = β0 +
k∑

a=1

βaxa +
k−1∑

a=1

k∑

b=a+1

βabxaxb +
k∑

a=1

βaax
2
a + ε,
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where
k∑
a=1

βaxa are the linear terms,
k−1∑
a=1

k∑
b=a+1

βabxaxb are the two-factor interaction

terms, and
k∑
a=1

βaax
2
a are the second-order terms.

From an experiment, n observations are used to estimate the regression coeffi-

cients in the model. At the ith observation, the classical model is

yi = β0 + β1x1i
+ . . .+ βpxpi

+ εi i = 1, 2, . . . , n.

For each observation, the expected mean and variance operators are applied to get

E (yi|x1i
, . . . , xpi

) = β0 + β1x1i
+ . . .+ βpxpi

or E (εi) = 0, and

Var (yi|x1i
, . . . , xpi

) = Var (εi) = σ2
ε .

As expressed, the variance is assumed to be constant across all observations. Fur-

thermore, since the observations are assumed to be independently and identically

distributed, the covariance between two responses, or Cov (yi, yj|x1i
, . . . , xpi

) where

i 6= j, is zero. The n equations are expressed as

y1 = β0 + β1x11 + . . .+ βpxp1 + ε1

y2 = β0 + β1x12 + . . .+ βpxp2 + ε2

...

yn = β0 + β1x1n + . . .+ βpxpn + εn.
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Combining the system of equations in matrix form yields




y1

y2

...

yn




=




1 x11 · · · xp1

1 x12 · · · xp2
...

...
. . .

...

1 x1n · · · xpn







β0

β1

...

βp




+




ε1

ε2
...

εn




or

y = xβ + ε

where y is a n× 1 vector, x is a n× (p+ 1) matrix, β is a (p+ 1)× 1 vector, and ε

is a n× 1 vector. The expected mean and covariance, in matrix notation, are

E (y) = E (xβ) + E (ε) = xβ or E (ε) = 0, and

Var (y) = Var (xβ) + Var (ε) = σ2
ε I.

However, the factors are not known without error. Instead, the error-prone value of

the factor x is

Wi = xi + ui

where ui is the random ME associated with xi and is distributed with a mean of

zero and a variance of σ2
ui

. This form of ME is known as the additive model since

E (Wi|xi) = xi. Therefore, Wi is unbiased for the true value of xi. For k factors, the

errors in the xs are

(u1, . . . , uk) ∼
[
0,
(
σ2
u1
, . . . , σ2

uk

)]
.

Constant variance of the errors in the xs is not necessary, but for most practical

applications, this assumption of constant variance is sufficient. The xs in the classical
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model are replaced with the ME model to get

y = β0 + β1 (x1 + u1) + . . .+ βp (xp + up) + ε

= β0 + β1W1 + . . .+ βpWp + ε.

Unlike the classical model, the statistical properties of the ME model cannot be

generalized. Starting with the first-order model (p = k)

y = β0 +
k∑

a=1

βaWa + ε,

the expected value and variance are (Buonaccorsi, 2010)

E (y|W1, . . . ,Wk) = β0 +
k∑

a=1

βaxa, and

Var (y|W1, . . . ,Wk) =
k∑

a=1

β2
aσ

2
ua

+ σ2
ε .

If the MEs are correlated, then the expected value and variance include the co-

variances between u1, . . . , uk. However, independence is assumed between the MEs.

Regardless of independence, the variance of the response is inflated due to the ME.

For a first-order with interaction model (p = k + [k (k − 1)] /2),

y = β0 +
k∑

a=1

βaWa +
k−1∑

a=1

k∑

b=a+1

βabWaWb + ε,

the expected value and variance are (Buonaccorsi, 2010)

E (y|W1, . . . ,Wk) = β0 +
k∑

a=1

βaxa +
k−1∑

a=1

k∑

b=a+1

βabxaxb, and
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Var (y|W1, . . . ,Wk) =
k∑

a=1

β2
aσ

2
ua

+
k−1∑

a=1

k∑

b=a+1

[
β2
ab

(
x2
aσ

2
ub

+ x2
bσ

2
ua

+ σ2
ua
σ2
ub

)]
+ σ2

ε .

Similar to the first-order model, the first-order with interaction model is additive

since response is unbiased for independent MEs. The variance is slightly larger

for the first-order with interaction model since it contains additional model terms.

Lastly, for the second-order model (p = 2k + [k (k − 1)] /2)

y = β0 +
k∑

a=1

βaWa +
k−1∑

a=1

k∑

b=a+1

βabWaWb +
k∑

a=1

βaaW
2
a + ε,

the expected value and variance are (Buonaccorsi, 2010)

E (y|W1, . . . ,Wk) = β0 +
k∑

a=1

βaxa +
k−1∑

a=1

k∑

b=a+1

βabxaxb +
k∑

a=1

βaa
(
x2
a + σ2

ua

)
, and

Var (y|W1, . . . ,Wk) =
k∑

a=1

β2
aσ

2
ua

+
k−1∑

a=1

k∑

b=a+1

[
β2
ab

(
x2
aσ

2
ub

+ x2
bσ

2
ua

+ σ2
ua
σ2
ub

)]

+
k∑

a=1

[
4β2

aax
2
aσ

2
ua

+ σ2
ua

]
+ σ2

ε .

Although the ME is additive for any single factor, the second-order model is nonad-

ditive since E (y|W1, . . . ,Wk) contains some bias. More specifically, the bias in the

second-order model is
k∑
a=1

βaaσ
2
ua

. The variance is further inflated by the second-order

terms in the model. Therefore, the effect of ME on the statistical properties of the

model increases as the order of the model increases. A summary of the bias and

variance results are presented in Table 1.
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1.4.1 EXAMPLE: FORCE TRANSDUCER CALIBRATION

Suppose the output of a force transducer, y, is a function of an applied force,

F , and temperature, T . The applied forces and temperatures have been calibrated

against known standards with the following uncertainties:

uF ∼ N
(
0 lbs., 0.01 lbs.2

)
, and

uT ∼ N
(
0 K, 0.01 K2

)
.

In physical terms, temperature is known with a precision of
√

0.01 K2 = 0.1 degrees

Kelvin. If the true model for the force transducer in the presence of ME is

y = β0 + β1 (F + uF ) + β2 (T + uT ) + β12 (F + uF ) (T + uT ) + ε

where β0 = 0, β1 = β2 = β12 = 1, and ε ∼ N (0, 0.01), then the expected mean is

E (y|F, T, uF , uT ) = β0 + β1F + β2T + β12 (F × T )

= F + T + (F × T ) .

Additionally, the variance is

Var (y|F, T, uF , uT ) = σ2
ε + β2

1σ
2
uF

+ β2
2σ

2
uT

+ β2
12

(
F 2σ2

uT
+ T 2σ2

uF
+ σ2

uF
σ2
uT

)

= 0.01 + 0.01 + 0.01 +
(
0.01T 2 + 0.01F 2 + 0.0001

)

= 0.0301 + 0.01T 2 + 0.01F 2.

In the classical linear model, the variance of y is 0.01, which comes from ε. However,

since variance is never less than zero, the variance in the classical model will always

be an underestimate of the true, unknown variance.
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CHAPTER 2

LITERATURE REVIEW

Adcock (1877, 1878) is credited with developing the first least squares-based method

that is applicable to measurement error (ME) models. He proposed a multi-

dimensional objective function as an alternative to the one-dimensional objective

function that is used in ordinary least squares (OLS) estimation. Adcock considered

the normal distance from the estimated line to an observation. Since he utilized least

squares principles to estimate the regression coefficients, Adcock minimized the sum

of the squared normal distances over n observations. This approach is the basis of

orthogonal least squares (OrthLS) regression. It is noted that the line estimated by

OrthLS always passes through the centroid of the data. However, OrthLS is limited

since it weights equally all the variables in the model. In terms of ME models, it is

equivalent to assuming the variability in the factors is equal to the variability in the

response. Meanwhile, Pearson (1901) showed that the line estimated by OrthLS is

bound by the OLS regressions of Y on x and x on Y in two-dimensional space.

Kummel (1879) expanded upon the work of Adcock by developing a more general

solution that is valid when the errors are not assumed to be equal. He is the first

person to define the concept of variance ratio, γ; mathematically, the variance ratio

is expressed as

γ =
σ2
ε

σ2
u

.

where σ2
ε is the variance of the error in the response and σ2

u is the variance of the

ME. The variance ratio is an important parameter later in this research as it is

used to derive a new estimator. Based on prior experimental data and subject-

matter expertise, Kummel argues that obtaining an estimate of γ is reasonable in
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practice. In most calibration equations, γ takes on values between 0 and 0.0625. The

interpretation of these values is discussed in the next chapter.

Deming (1931, 1964) continued developing the work of Adcock and Kummel and

applied it to the special case of the simple linear model. The method he derived

is appropriately named Deming regression. The error-prone observations in a set of

experimental data are

Yi = yi + εi

and

Wi = xi + ui

where i = 1, 2, . . . , n. The errors ε and u are independent random variables and are

assumed to be distributed with a mean of zero and a constant variance of σ2
ε and σ2

u,

respectively, and are related through the variance ratio, γ. If the variances are not

constant, the method is invalid. The model coefficients are estimated in Deming’s

method by minimizing

n∑

i=1

(
ε2i
σ2
ε

+
u2
i

σ2
u

)
=

n∑

i=1

[
(Yi − β0 − β1xi)

2 + γ (Wi − xi)2]

for the model y = β0 + β1x. This expression assumes that the variance ratio is

a known value. Any errors in estimating the variance ratio are neglected. Using

standard calculus methods, the estimates of the model parameters are

β̂0 = Ȳ − β̂1W̄ ,

β̂1 =
SY Y − γSWW +

√
(SY Y − γSWW )2 + 4γS2

WY

2SWY

, and

x̂i = Wi +
β̂1

β̂2
1 + γ

(
Yi − β̂0 − β̂1Wi

)
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where

Ȳ =
1

n

n∑

i=1

Yi

W̄ =
1

n

n∑

i=1

Wi

SY Y =
n∑

i=1

(
Yi − Ȳ

)2
,

SWW =
n∑

i=1

(
Wi − W̄

)2
,

and

SWY =
n∑

i=1

(
Wi − W̄

) (
Yi − Ȳ

)
.

When γ = 1, the estimates of the model coefficients are equivalent to the OrthLS

estimates. The only difference is that when W is unknown, x is substituted into these

expressions. It is important to note that for normally distributed errors, the Deming

estimates are also maximum likelihood estimates (Casella and Berger, 2002).

Deming regression is considered a special case of total least squares (TLS) (Golub

and Loan, 1980), which is used for multivariate ME models. Unlike Deming regres-

sion, TLS does not generally have a closed-form solution. The method is a numerical

solution to the linear algebraic equation

(x + u) β = y + ε

where the objective is to minimize u and ε given x and y. Singular-value decompo-

sition is one approach to solving for the model coefficients in the equation. However,

implementing TLS in practical application, such as calibration, is difficult.

Carroll and Spiegelman (1986) discuss the effect of small MEs on the estimates

the regression coefficients and confidence intervals in an instrument characterization

experiment. In their discussion, Carroll and Spiegelman only consider the simple
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linear model. For most calibration applications at NASA LaRC, the MEs are at least

four times smaller than the accuracy of the measurement system being characterized.

Carroll and Spiegelman acknowledged two criterion used to determine whether ME,

or uncertainties in the standard, can be neglected in the analysis. These criterion

are:

• the ratio of ME to the true variability in the x’s (Draper and Smith, 1998),

and

• the ratio of the measured response to the slope, or primary sensitivity (Scheffe,

1973; Mandel, 1984).

They stated that the first criterion is most appropriate for estimating the regression

coefficients while the second criterion affects the width of the confidence intervals,

but they argue both criterion should be used in combination when analyzing the

data.

The ratio, ν, based on Draper and Smith’s (1998) criterion is

ν =
ME Variance

Variance of x
=

σ2
u

Sxx
.

In the limit as the number of observations, n, approaches infinity, the estimated

intercept is approximately

β̂0 ∼ β0 +

(
ν

ν + 1

)
x̄β1,

and the estimated slope is approximately

β̂1 ∼
(

ν

ν + 1

)
β1.

Therefore, for small ν, the estimated coefficients are only affected slightly by ME.
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Centering the x’s also negates any effect of ME on the estimate of the intercept.

The width of the confidence interval without ME is approximately 2tα/2,n−pσε,

where tα/2,n−p is the (1− α/2) percentage point of the t-distribution with n − p

degrees of freedom. When MEs are ignored, the confidence interval is approximately

2tα/2,n−p (σ2
ε + β2

1σ
2
u)

1/2
. As a result, the ratio of confidence interval width when

ignoring ME to confidence interval width without ME is

2tα/2,n−p (σ2
ε + β2

1σ
2
u)

1/2

2tα/2,n−pσε
=

(
1 +

β2
1σ

2
u

σ2
ε

) 1
2

.

It is evident that the confidence interval width is increased by

(
1 +

β2
1σ

2
u

σ2
ε

)1/2

when

ignoring the ME. This result is also true for prediction intervals.

Carroll and Ruppert (1996) study the effect of modeling error in OrthLS. In any

regression, it is desired that the estimated mathematical model adequately char-

acterize the relationship in the experimental data. Standard regression techniques

utilize a lack-of-fit (LOF) test to assess model adequacy, but this test is a function

of the pure experimental error and the available number of degrees of freedom. In

experiments with MEs, replicates are not genuine; instead, data points that are close

enough may be considered pseudo-replicates. Therefore, without a LOF-equivalent

test for ME models, it is difficult to assess model adequacy. Carroll and Ruppert go

on further to suggest that incorrect knowledge of the variance ratio also attributes to

LOF in the model. They argue that in practice γ is underestimated, which leads to

an overcorrection in the estimated slope in OrthLS. For appropriate use of OrthLS,

the variance ratio should be redefined to be

γ′ =
σ2
q + σ2

ε

σ2
u
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where σ2
q is the variance of the modeling error and is assumed to be constant. In simu-

lation, the modeling error may be neglected since the appropriate model form is often

known. For practical applications, Carroll and Ruppert recommended that OrthLS

be used with caution, especially when the appropriate model form is unknown.
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CHAPTER 3

SIMPLE LINEAR MODELS

3.1 APPLICATION OF THE SIMPLE LINEAR MODEL

In the literature review, a body of research associated with measurement errors

(ME) for the simple linear model was discussed. For some applications, the simple

linear model works well. In general, the simplest model that adequately explains the

experimental data is desired. It is important to recognize that any estimated model is

only an approximation of the true, underlying function. There are many applications

that require multi-dimensional, higher-order response surface models, and the theory

for the simple linear problem provides the necessary framework on which to expand

in order to model more complex situations. Therefore, the discussion begins with

the simple linear model in order to formulate a general methodology.

In this research, some of the most common techniques used for MEs in the simple

linear model were explored. While additional statistical theory is available, the prac-

tical implementation of this theory is limited. As a result, the goal of this work was

to develop an engineering solution using some principles from least squares theory.

The results are applicable to practical situations including the calibration of simple

instruments such as single-axis load cells and pressure transducers.

Consider an instrument where the output, y, is assumed to be linearly related to a

single applied factor, x. A calibration experiment is designed to measure the response

at known values of x. The resulting set of n design points are used to estimate the

linear relationship between x and the observed response Y . The estimated model is

then employed on future observations of x to predict Y , as long as the value of x falls

within the region spanned by the calibration experiment. However, in the calibration,
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it is assumed that the applied values of x are known, fixed quantities. In practice,

the actual value of x applied is seldom known without error. Since OLS estimation

requires that the regression parameters be known without error, it is necessary to

utilize practical assumptions with regard to their actual accuracies. The two most

common assumptions are:

• The error in x is small relative to the error in the response. In calibration

applications, the magnitude of the error in x is typically stipulated.

• The error in x is captured in the error in the response. This results in the

model containing a single error term; namely ε∗ = ε+ u.

For ME models, Fuller (1987) demonstrated the consequences of this naive analysis,

including induced bias in the estimate of the slope coefficient.

As a motivating, practical example for the simple linear case, consider the NASA

Orion Multi-Purpose Crew Vehicle (MPCV), which is currently being designed to

transport astronauts beyond low-Earth orbit (LEO). The first flight test of the Orion

MPCV will be the Exploration Flight Test 1 (EFT-1) and will be a four-hour orbital

test scheduled for late 2014. The flight test will test various spacecraft subsystems

and includes several on-board measurement systems to collect flight data. One of

these measurement systems is a Flush Air Data System (FADS). The FADS for

EFT-1 contains nine pressure ports located in a cruciform pattern across the fore-

body heatshield of the aeroshell and the data collected will be inputs to post-flight

trajectory reconstruction algorithms that estimate various flight parameters, such

as angle-of-attack and Mach number. Each pressure port is connected via tubing

to a digital pressure transducer that is mounted on the backside of the heatshield.

The uncertainty in estimating the flight parameters is a function of the calibration

of each pressure transducer (Commo and Parker, 2012). The transducer output, y,



24

is assumed to be linearly related to the sensed pressure, x. To verify this assump-

tion, a simple calibration experiment was designed to estimate the mathematical

relationship between the output and sensed pressure. The pressure levels during the

calibration were applied via a reference pressure standard. Reference standards at

NASA are calibrated against a NIST-traceable standard. However, reference stan-

dards contain a small amount of uncertainty although they are often used in a similar

manner as a NIST standard. As a result, the applied pressures are only known to

within a certain accuracy. The actual applied pressure in this case is

W = x+ u

where u is the uncertainty in the reference standard as estimated from the NIST-

traceable calibration.

Assuming the simple linear model is appropriate for this example, then

yi = β0 + β1xi + εi (3)

where β0 is the zero-offset, β1 is the sensitivity, and ε is the normally-distributed

random error of y with a mean of zero and a constant variance of σ2
ε . The stan-

dard deviation, σε, is typically considered to be the accuracy of the instrument in

the classical model, but the accuracy is redefined later for the ME model. As ex-

pressed, Equation (3) is consistent with the x’s being known without error. Under

this assumption, OLS is appropriate for estimating the regression coefficients. In the

presence of MEs, Equation (3) becomes

yi = β0 + β1 (xi + ui) + εi (4)

where ui is the error in xi and is distributed with a mean of zero and a constant
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variance of σ2
u. If u was known for every instance of x, then estimation could proceed

with OLS estimation using W = x + u as the regressor instead of x. In physical

experiments, the value of u is not known and other methods are required to estimate

the regression coefficients.

From statistical regression theory, OLS minimizes the squared difference between

the observed value of the response, Y , and the predicted observed value of the re-

sponse from the estimated model, Ŷ . Mathematically, this is expressed as

[
β̂0, β̂1

]
= min

n∑

i=1

(
Yi − Ŷi

)2

.

If the observed value contains no error, then the minimization is

[
β̂0, β̂1

]
= min

n∑

i=1

(yi − ŷi)2 .

It is easily seen that any MEs are not considered in this objective function, therefore,

the objective function is one-dimensional. For the simple linear model with MEs, a

two-dimensional objective function is appropriate. The form of this objective function

is determined by the variance ratio, γ. The variance ratio is

γ =
σ2
u

σ2
ε

.

This ratio is particularly important in determining how well the x’s should be known

in a calibration experiment. For OLS, γ is assumed to be zero.

One particularly well-known and useful estimation technique in the presence of

ME is orthogonal least squares (OrthLS) (Carroll et al., 1985). Most of the literature

available on OrthLS is related to the simple linear problem. While OrthLS provides

a nice alternative to OLS for ME models, it relies on the assumption of equal error

variances of both variables. In other words, the variance ratio is assumed to be one.
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In terms of the calibration application, the uncertainty in the calibration reference is

on the order of the uncertainty in the response, which is insufficient. It is preferred

that the uncertainty in the reference standard be at least four (4) times smaller than

the uncertainty in the response of the measurement system. This corresponds to a

variance ratio of

γ =

(
1

4

)2

= 0.0625.

The variance ratio for typical calibration applications at NASA are 0.0625. Because

of this, neither OLS or OrthLS is most appropriate for estimation of the mathematical

model. However, there is no known least squares-based technique that can be applied

for variance ratios between 0 and 1.

The uncertainties in the responses of the measurement systems at NASA can vary

drastically. Highly-accurate instruments, such as the pressure transducers for EFT-1,

range from 0.01 to 0.1 percent of the full-scale (F.S.) range. For a 0.01 percent F.S.

uncertainty, the calibration reference should have a maximum uncertainty of 0.0025

percent of F.S. Other measurement systems, like force-balances, are transducer-class

instruments with slightly larger uncertainties, on the order of 0.10 to 10 percent of

F.S. The worse-case is seen in atmospheric science applications where uncertainties

can approach 50 percent of F.S. For this research, the focus is limited to a maximum

uncertainty of 20 percent of F.S.

For the simple linear model, Figures 1-4 show the spatial dispersion of errors in

x and y for several variance ratios. It is obvious that as errors in x become larger,

the assumptions required for OLS estimation no longer hold and the estimate of the

slope is affected. Therefore, other estimators, such as OrthLS for γ = 1, are more

appropriate and more robust with regards to the MEs. In addition, the implications

of the two ME assumptions discussed earlier are revealed. For small MEs relative to

the errors in the response (i.e. γ = 0.01), Figure 2 shows that the estimate of the
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slope can still be affected. If the ME is combined with the response error to form

a single error term, then the dimension of error is reduced from two to one, as in

Figure 1.
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FIG. 1: Spatial Dispersion of Errors for the Simple Linear Model for γ = 0
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FIG. 2: Spatial Dispersion of Errors for the Simple Linear Model for γ = 0.01
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FIG. 3: Spatial Dispersion of Errors for the Simple Linear Model for γ = 0.25
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FIG. 4: Spatial Dispersion of Errors for the Simple Linear Model for γ = 1

3.2 ESTIMATION METHODS FOR THE SIMPLE LINEAR MODEL

For the simple linear measurement system characterization problem, the following

three methods of estimating the model coefficients are discussed: OLS, OrthLS, and
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propose modified least squares (MLS) as a more general approach to address the

limitation previously mentioned.

3.2.1 ORDINARY LEAST SQUARES

For a calibration experiment with n design points, the sample means are

x̄ =
1

n

n∑

i=1

xi

and

Ȳ =
1

n

n∑

i=1

Yi.

where the responses are the error-prone values. Using the sample means, the sum of

squares are

Sxx =
n∑

i=1

(xi − x̄)2

and

Syy =
n∑

i=1

(
Yi − Ȳ

)2
.

Similarly, the sum of cross-products is

Sxy =
n∑

i=1

(xi − x̄)
(
Yi − Ȳ

)
.

As stated previously, the minimization criteria for OLS is

[
β̂0, β̂1

]
= min

[
n∑

i=1

(
Yi − Ŷi

)2
]

= min

[
n∑

i=1

(Yi − β0 − β1xi)
2

]
. (5)

The OLS estimators are found by differentiating the objective function in Equation
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(5) with respect to β0 and β1 and setting each resulting equation to zero. Therefore,

[
∂

∂β0

]

β̂0,β̂1

= −2
n∑

i=1

(
Yi − β̂0 − β̂1xi

)
= 0

and [
∂

∂β1

]

β̂0,β̂1

= −2
n∑

i=1

(
Yi − β̂0 − β̂1xi

)
xi = 0.

These are known as the least squares normal equations. Solving for β̂0 and β̂1, the

OLS estimators for the simple linear model are

β̂0 = Ȳ − β̂1x̄ (6)

and

β̂1 =

n∑
i=1

(xi − x̄)
(
Yi − Ȳ

)

n∑
x=1

(xi − x̄)2
=
Sxy
Sxx

. (7)

When the xs are centered, x̄ = 0 and the estimator of the zero-intercept, β̂0, is Ȳ .

As mentioned earlier, the Gauss-Markov Theorem states that under the objective

function given in Equation (5) and for uncorrelated, homoscedastic errors, the esti-

mates β̂0 and β̂1 are best linear unbiased estimates (BLUE). Simply put, under the

criteria of minimizing the distance between Y and Ŷ , the OLS estimates will always

yield the smallest sum of squared errors. This concept leads to a new definition of

residual error for ME models as a function of the variance ratio.

3.2.2 ORTHOGONAL LEAST SQUARES

When the xs are known without error, the OLS criteria for minimizing the errors

in the ys is a logical choice. However, in the ME models, it is more appropriate to

use an estimator that considers the error in the xs in addition to the ys. The most

commonly-employed method that accounts for errors in both variables for the simple
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linear model is OrthLS. In OrthLS, the estimators are found by minimizing the sum

of the squared orthogonal distances from all the points to the estimated line. See

Figure 5 for the geometrical interpretation of the two estimators. Therefore, OrthLS

equally weighs the errors in both x and y when deriving the estimators. In terms of

the variance ratio, γ = 1.
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FIG. 5: Distance Minimized by Orthogonal Least Squares

Now consider the data point (x1, Y1) in Figure 5. Since u is unknown and an

additive ME model is assumed, the best estimate of the unknown, actual level of

factor W is x. Therefore, the derivation of the OrthLS estimators proceeds based on

x. From algebra, it is shown that the shortest distance from a point to a line is the
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orthogonal distance. If the line is given by the simple linear model

Y = β0 + β1x,

then the corresponding closest point on the line is (Stewart, 2003)

x̂1 =
β1Y1 + x1 − β0β1

1 + β2
1

, (8)

and

Ŷ1 = β0 +
β1

1 + β2
1

(β1Y1 + x1 − β0β1) . (9)

The squared orthogonal distance between the point and the line is defined as

(x− x̂)2 +
(
Y − Ŷ

)2

. Over n design points in an experiment, the objective function

is
[
β̂0, β̂1

]
= min

n∑

i=1

[
(xi − x̂i)2 +

(
Yi − Ŷi

)2
]
.

Substituting Equations (8) and (9) into the objective function

[
β̂0, β̂1

]
= min

[
1

1 + β2
1

n∑

i=1

[Yi − (β0 + β1xi)]
2

]
. (10)

Differentiating Equation (10) with respect to β0 and setting the resulting equation

to zero yields β̂0 = Ȳ − β̂1x̄, which is identical to the OLS estimate of the zero-

intercept. Regardless of whether the errors in x are included or excluded, the estimate

of the zero-intercept is unaffected in the simple linear model. Substituting this result

back into the right-hand side of Equation (10) and setting equal to zero to find the

minimum gives

1

1 + β̂2
1

n∑

i=1

[(
Yi − Ȳ

)
− β̂1 (xi − x̄)

]2
=

1

1 + β̂2
1

[
Syy − 2β̂1Sxy + β̂2

1Sxx

]
= 0
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using the prior definitions of the sample sum of squares and sum of cross-products.

The minimum and thus the OrthLS estimate of the sensitivity is

β̂1 =
− (Sxx − Syy) +

√
(Sxx − Syy)2 + 4S2

xy

2Sxy
(11)

which is similar to Deming’s estimate of the slope. As in the OLS derivation, we

define the residual error as the distance between a point and the estimated line.

Hence, the residual error for OrthLS is (x− x̂)2 +
(
Y − Ŷ

)2

.

3.2.3 MODIFIED LEAST SQUARES

The estimators for two cases, γ = 0 and γ = 1, have been derived. As men-

tioned previously, for most applications, the variance ratio is between 0 and 1. How-

ever, a least squares estimator that can be used generally for these cases would be

useful. The geometry of the problem is exploited to help define the new estima-

tor.
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FIG. 6: Distance Minimized by Modified Least Squares

Consider the point (x1, Y1) in Figure 6. The vertical line segment between the

point and the line is a = Y1− Ŷ ∗1 . The angle, φ, is made by the line segment of length

a and the estimated line as

φ =
π

2
− tan−1

(
dy

dx

)

where
dy

dx
is the slope of the line or β1. Next, the line segment d is defined as the

distance minimized in MLS. This distance is a function of both the slope of the

estimated line and the variance ratio. From d and the estimated line, a second angle,

α, is defined as

α =
π

2
+ (1− γ) tan−1

(
dy

dx

)

where γ is the variance ratio. The angle α is a first-order approximation based on
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known angles when γ = 0 and γ = 1. From trigonometry, the Law of Sines states

sinα

a
=

sinφ

d
.

Solving for d yields

d =
sinφ

sinα
a. (12)

Using Equation (12), the newly defined objective function for MLS minimizes the

sum of the squared lengths of the di’s or

[
β̂0, β̂1

]
= min

n∑

i=1

d2
i = min

n∑

i=1

[
sinφ

sinα
a

]2

(13)

Note that as α→ π
2
, Equation (13) is equivalent to the OrthLS estimator. As in the

case of OrthLS, the only additional information required to use Equation (13) is an

assumption about the variance ratio. For the calibration applications, the variance

ratio varies between 0.0625 and 0.0001.

3.3 SIMULATION STUDY FOR THE SIMPLE LINEAR MODEL

The statistical properties of the OLS estimators are well-known. From the Gauss-

Markov theorem, the expected values of β̂0 and β̂1 are β0 and β1, respectively due to

the unbiased nature of the OLS estimator (Myers, 1990). Furthermore, the variance

of the estimators are

Var
(
β̂0

)
= σ2

ε

(
1

n
+

x̄

Sxx

)

and

Var
(
β̂1

)
=

σ2
ε

Sxx
,

and these are minimum variance estimators. To understand the statistical properties

of the OrthLS and MLS estimators, a simulation study was conducted to make
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inferences on the effects of MEs on the prediction capabilities of each method. The

prediction capabilities are based on the residual error, which has been redefined to be

the variance ratio-weighted distance between any point and the estimated line. This

is represented by the distance, d, in Figure 6. The simulation study was designed

to be representative of an actual calibration used on simple instruments, such as

the pressure transducers for EFT-1 discussed earlier. A calibration experiment is

designed with n = 6 design points in order to fit the simple linear model

y = β0 + β1x+ ε.

In the presence of ME, this model becomes

y = β0 + β1 (x+ u) + ε. (14)

The following assumptions were made with regard to Equation (14):

• β0 = 0 and β1 = 1. Through appropriate centering and scaling of the data,

this is always a plausible option in real experiments.

• The errors u and ε are independent and identically distributed as normal with

means of zero and constant variances of σ2
u and σ2

ε , respectively.

• σ2
u and σ2

ε are proportionally related through the variance ratio, γ.

• Wi and Yi are the error-prone values of xi and yi. Therefore, Wi and Yi are

jointly distributed as a bivariate normal distribution

[Wi, Yi] ∼ N [(xi, β0 + β1xi) ,Σ]

where Σ = diag (γσ2
ε , σ

2
ε ). Both Wi and Yi are independent random variables.
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From these n design points and corresponding responses, the zero-intercept and sen-

sitivity coefficients were estimated, and the mean squared residual errors (MSE) were

calculated for each of the estimation methods. The MSE is defined as

MSE = (Bias)2 + Precision

Next, five (5) confirmation points located at x = −1,−0.5, 0, 0.5, and 1 were used

to generate confirmation data to further examine the prediction capabilities of each

estimated model. For a given calibration design, each method estimates a set of

coefficients M times. Each set of estimated coefficients are used L times on the

confirmation points and the MSE is calculated.

The simulation study considered three (3) different calibration designs as shown

in Table 2. Each design is sufficient for estimating the regression coefficients in the

model, and each design has certain advantages and disadvantages over the other de-

signs. Design #1 is a balanced design with replicates throughout the design space.

TABLE 2: Designs Considered for the Simple Linear Simulation Study

Design Design Points Comments
Design #1 -1, -1, 0, 0, 1, 1 Replicates throughout Design Space
Design #2 -1, 0, 0, 0, 0, 1 Suspicion of Significant Lack-of-fit
Design #3 -1, -1, -1, 1, 1, 1 Strictly First-order Design

This allowed testing of the constant variance assumption, and for calibration appli-

cations, this replication strategy provided insight on the repeatability of the mea-

surement system over the calibration range. Design #2 contains the same number

of degrees of freedom for replication as Design #1, but it does not allow testing of

constant variance throughout the design space. This design is suited for instances
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when lack-of-fit is suspected to be significant. Both designs allow for estimation of a

second-order model term. Design #3 is a first-order-only calibration design. Repli-

cation is dispersed equally at the low and high ends of the range so testing of the

constant variance assumption is permissible. However, inferences on the estimation

methods are not design-dependent. Table 3 shows the values of γ and σε that are used

as inputs to the simulation. For variance ratios, the maximum variance ratio stud-

ied is γ = 1, representing errors of equal orders of magnitude. Commonly-assumed

TABLE 3: Variance Ratio and Response Uncertainties Considered for the Simple
Linear Simulation Study

Run No. Variance Ratio, γ Response Uncertainty, σε, % F.S.
1 1 (1:1) 0.2 (20% F.S.)
2 0.25 (2:1) 0.2
3 0.0625 (4:1) 0.2
4 0.01 (10:1) 0.2
5 0.0001 (100:1) 0.2
6 1 0.1 (10% F.S.)
7 0.25 0.1
8 0.0625 0.1
9 0.01 0.1
10 0.0001 0.1
11 1 0.05 (5% F.S.)
12 0.25 0.05
13 0.0625 0.05
14 0.01 0.05
15 0.0001 0.05
16 1 0.01 (1% F.S.)
17 0.25 0.01
18 0.0625 0.01
19 0.01 0.01
20 0.0001 0.01
21 1 0.001 (0.1% F.S.)
22 0.25 0.001
23 0.0625 0.001
24 0.01 0.001
25 0.0001 0.001
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ratios for most calibration applications at NASA are also included in the simulation,

such at γ = 0.0001, 0.01, 0.0625, and 0.25. The response uncertainties studied in this

simulation are representative of a large population of measurement systems at NASA

so the F.S. accuracies range from 0.1 to 20 percent. The simulation study employed

a factorial combination of variance ratios and response uncertainties. An outline of

the simulation study is provided below:

1. For a given calibration design in Table 2, generate the yi’s from the simple

linear model β0 + β1xi, where β0 = 0 and β1 = 1.

2. Using (xi, yi) for i = 1, 2, . . . , 6, generate (Wi, Yi) from a bivariate normal

distribution. The distribution is [Wi, Yi] ∼ N [(xi, β0 + β1xi) ,Σ], where Σ =

diag (γσ2
ε , σ

2
ε ) and γ and σε are taken from Table 3.

3. From (xi, Yi) for i = 1, 2, . . . , 6, estimate
(
β̂0, β̂1

)
for OLS, MLS, and OrthLS.

Using
(
β̂0, β̂1

)
, compute the predicted value ŷi for each method and calculate

the MSE based on γ and σε.

4. For the confirmation points xc = [−1.0,−0.5, 0.0, 0.5, 1.0], generate the yci ’s

from the simple linear model β0 + β1xci , where β0 = 0 and β1 = 1.

5. Using (xi, yi) for i = 1, 2, . . . , 5, generate (Wci , Yci) from a bivariate normal

distribution. The distribution is [Wci , Yci ] ∼ N [(xi, β0 + β1xi) ,Σ], where Σ =

diag (γσ2
ε , σ

2
ε ) and γ and σε are the same values as in Step 2.

6. Using
(
β̂0, β̂1

)
, compute the predicted value Ŷci for each method and calculate

the MSE based on the values γ and σε in Step 2.

7. Repeat Steps 5 and 6 for L = 1000 times.

8. Repeat Steps 2 through 7 for M = 100 times.

9. Repeat Step 8 for K = 25 times.
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3.3.1 SIMULATION RESULTS

Tables 4 shows the mean estimate of the sensitivity coefficient for the three cali-

bration designs and the three estimation methods. The mean estimates of the zero-

intercept are not provided since all three methods yield the same value for a given

design, variance ratio, and response uncertainty. From Table 4, the following infer-

ences are made based on the structure of the simulation:

• For a variance ratio of one (γ = 1), the estimates of β̂1 obtained from MLS and

OrthLS are equivalent as expected. In the limit as γ → 0, the estimate of β̂1

from MLS converges towards the OLS estimate.

• For an uncertainty of 1 percent or less (σε ≤ 0.01), the three methods yield

numerically-similar estimates of the sensitivity coefficient to four significant

figures.

• Larger differences between the estimates are observed when the uncertainty

is worse than 5 percent (σε > 0.05). The magnitude of the difference varies

between designs and levels of response uncertainty.

• The difference between the OLS estimate and OrthLS is approximately constant

across the levels of variance ratio for a given design and uncertainty. For

example, in the first design with an uncertainty of 20 percent, the differences

are

γ = 1 : ∆ = 1.0229− 1.0031 = 0.0198,

γ = 0.25 : ∆ = 1.0177− 0.9975 = 0.0202,

γ = 0.0625 : ∆ = 1.0172− 0.9967 = 0.0205,

γ = 0.01 : ∆ = 1.0173− 0.9974 = 0.0199, and

γ = 0.0001 : ∆ = 1.0231− 1.0033 = 0.0198.
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In this example, the differences correspond to a range of approximately 2 per-

cent.

Table 5 presents the variance of the mean estimate of the sensitivity coefficient for the

three designs and the three methods. For a given design and level of uncertainty, the

variance of the estimates were consistent between the methods and across the levels

of variance ratio. Small differences were observed in the magnitude of the variance

between the designs for any level of uncertainty, but this could be attributed to the

design properties rather than the estimation method. However, from a practical

application perspective, using MLS to estimate the sensitivity coefficient resulted in

the same magnitude of variability as OLS.
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Table 6 shows the average MSE across all the design and confirmation points for

the three designs and the three methods. Recall that the MSE includes both bias in

the prediction and precision of the prediction. The root mean squared error (RMSE)

is the square root of MSE and is typically used to quote the estimated accuracy of a

measurement system after calibration. For example, the 1-σ estimated measurement

system accuracy for Design #1, γ = 1, and σε = 0.2 based on OLS is

σ̂ =

√
Mean Squared Error

Full-Scale Range
=

√
0.0132

1
= 0.115

or 11.5 percent of F.S. While Table 6 shows the absolute MSE values, Table 7 reveals

the difference between OLS and either MLS or OrthLS. From this table, it is evident

that MLS has a smaller MSE than OLS in all the cases studied. Additionally, OrthLS

shows a benefit over OLS in most cases when the variance ratio is greater than or

equal to 0.25. These differences are expressed in terms of percent improvement in

Table 8. Both MLS and OrthLS provide up to a 3 percent reduction in MSE over

OLSE, such as in the case of γ = 1 and σε = 0.2. As the variance ratio departed

from unity, the relative improvement of MLS decreased while OrthLS showed neg-

ative impact at small values of γ. Through the use of one-way analysis of variance

(ANOVA), the differences observed between the methods were tested for statistical

significance. ANOVA compares the means of two or more groups in the presence of

the variability within each of the groups (Casella and Berger, 2002). Using a criteria

of 0.05, the hypothesis that the MSE between methods are equal is rejected if the

p-value from the ANOVA is less than 0.05. ANOVA does not directly indicate which

groups are different or by how much the groups differ. The ANOVA is shown in Ta-

bles 9-11. Separately, the tables reveal that the difference in MSE is not statistically

detectable since the p-value is near one. When comparing the three hypothesis tests
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simultaneously, the rejection criteria becomes

αtotal = 1− (1− αindiv)n = 1− (1− 0.05)3 = 0.14

where n is the number of simultaneous tests. This value, also known as the family-

wise error rate, is the probability of making a Type I error across all the hypothesis

tests. However, the conclusion remains that there is no detectable differences in the

MSE between the three methods.

Table 12 emphasizes a practical interpretation of the differences in the MSE. The

percent improvement in MSE relative to the uncertainty in the response is calculated

by √
Improvement in Mean Squared Error

σε
× 100.

If the improvement in MSE is less than zero, then the percent improvement is zero.

These results show that the impact of MLS is greater when comparing the improve-

ment to the uncertainty in the response for the three calibration designs studied. For

example, a 0.01 percent improvement in MSE is achieved on a measurement system

with a 0.1 percent response uncertainty using the first calibration design and a vari-

ance ratio of 0.0625. This difference is considered practically significant. In summary,

while the statistical hypothesis tests revealed no difference in the MSE between the

methods, the practical benefit of MLS is evident in Table 12. For variance ratios

greater than 0.0625, it is recommended that MLS be employed instead of OLS.
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TABLE 9: Analysis of Variance of the Mean Squared Error for the Simple Linear
Simulation – Design #1

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000002 0.0000001 0.00 0.999

Error 447 0.0358240 0.0000801
Total 449 0.0358242

TABLE 10: Analysis of Variance of the Mean Squared Error for the Simple Linear
Simulation – Design #2

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000008 0.0000004 0.00 0.996

Error 447 0.0397981 0.0000890
Total 449 0.0397989

TABLE 11: Analysis of Variance of the Mean Squared Error for the Simple Linear
Simulation – Design #3

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000001 0.0000000 0.00 0.999

Error 447 0.0342407 0.0000766
Total 449 0.0342408
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FIG. 7: Percent Improvement in Mean Squared Error of MLS for the Simple Linear
Simulation – Design #1
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FIG. 8: Percent Improvement in Mean Squared Error of MLS for the Simple Linear
Simulation – Design #2
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CHAPTER 4

MULTI-DIMENSIONAL, HIGHER-ORDER MODELS

4.1 APPLICATION OF THE SIMPLE POLYNOMIAL MODEL

In the previous chapter, the simple linear model was discussed in detail, and mod-

ified least squares (MLS) was proposed as an alternative method to ordinary least

squares (OLS) for estimating the regression coefficients in the presence of measure-

ment errors. The statistical properties of the estimator and the prediction capabilities

of MLS were studied through simulation along with OLS and orthogonal least squares

(OrthLS). Results showed that the numerical differences in estimating the sensitiv-

ity coefficient were small between the three methods. Furthermore, differences in

the mean squared error (MSE) were also small between the methods, and through

the use of analysis of variance (ANOVA), the differences were deemed statistically

undetectable. However, the practical implications of the different methods were pro-

nounced. For the three designs considered, MLS showed a substantial improvement

in MSE over OLS relative to the uncertainty in the response. As an example, MLS

had a 0.06 to 0.51 percent reduction for an response uncertainty of 0.01, depending

on the level of the variance ratio. Based on these results, it was recommended to

employ MLS for simple linear models when the variance ratio was larger than 0.0625.

While the simplest form of the estimated model is desired, many applications are

more complex and include additional factors or higher-order model terms. For now,

the focus is limited to single-factor, polynomial models. The multiple-factor case

is discussed shortly. The single-factor, polynomial model is identified as the simple

polynomial model within this research. For OLS estimation of a simple polynomial

model, the theory is readily available and is briefly reviewed in this chapter (Myers,
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1990). Methods comparable to OrthLS for simple polynomial models are under-

developed within the literature. Other estimation techniques, such as those based

on the Method of Moments, for the simple polynomial model are limited in practical

application and available in popular ME references (Fuller, 1987; Buonaccorsi, 2010).

The methods of OrthLS and MLS discussed in the previous chapter provide the

necessary framework to expand upon for simple polynomial models. Developing

these methods for other model forms is important to understanding the implications

of using naive estimation methods, such as OLS.

In this research, the focus is on second-order polynomial models, which are used

in several calibration applications. Similar to the simple linear problem, the goal is

to develop an engineering solution that can be easily applied to practical situations

where the estimated model is a polynomial. Consider again the calibration of the

pressure transducers for EFT-1. Due to certain properties of the sensing element

inside the transducer, the applied pressure is suspected to have a nonlinear effect on

the response. The magnitude of this nonlinear effect is small relative to the primary

sensitivity of the transducer but nonetheless is significant in affecting the response.

Therefore, the simple linear model may not be sufficient in capturing the functional

behavior between x and y. A set of n design points are used to estimate the regression

coefficients in the model, and the assumed appropriate form of the model is now

yi = β0 + β1xi + β11x
2
i + εi (15)

where β0 is the zero-offset, β1 is the sensitivity, β11 is the nonlinear effect, and ε is the

normally-distributed random error of y with a mean of zero and a constant variance

of σ2
ε . The applied pressures are only known to a certain accuracy and as a result,

the actual applied pressure is

W = x+ u
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where u is the uncertainty in the reference standard as estimated from the NIST-

traceable calibration. With MEs, Equation (15) becomes

yi = β0 + β1 (xi + ui) + β11 (xi + ui)
2 + εi (16)

where ui is distributed with a mean of zero and constant variance of σ2
u. Since the

value of u at a value of x is unknown, the variance ratio is used to develop both MLS

and OrthLS as alternative estimation methods to OLS in the presence of MEs.

When comparing the effect of MEs on the simple linear and quadratic models,

there are a few important points to remember. While the assumed form of the

ME model is additive, the expected value and variance of the response are affected

by the order of the model, as discussed earlier in Chapter 1. For convenience, the

results are summarized for the simple linear and quadratic models below in Table

13. In the simple linear model, the expected value for classical and measurement

errors are similar while the variance is inflated due to the ME. Conversely, both the

expected value and variance of y are affected by the ME in the quadratic model. The

expected value of y is biased by β11σ
2
u and the variance of y is further inflated by

σ2
u (1 + 4β2

11x
2
1).

TABLE 13: Comparison of Bias and Variance of Simple Linear and Quadratic Models

Classical Error Measurement Error

Simple Linear Model
E (y) β0 + β1x1 β0 + β1x1

Var (y) σ2
ε σ2

ε + β2
1σ

2
u

Simple Quadratic Model
E (y) β0 + β1x1 + β11x

2
1 β0 + β1x1 + β11 (x2

1 + σ2
u)

Var (y) σ2
ε σ2

ε + σ2
u (1 + β2

1 + 4β2
11x

2
1)
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The objective function within each method is a geometric interpretation. For

instance, OLS minimizes the sum of the squared differences between the observed

response, Yi, and the predicted response, Ŷi, over n design points. Geometrically, this

is equivalent to the Y -distance between a point and the estimated line. Alternatively,

OrthLS minimized the sum of the squared orthogonal distances between n design

points and the estimated line. MLS minimizes the sum of the squared variance-

weighted distances and is bound at the extremes by OLS and OrthLS. One advantage

of OLS in practical applications is that the minimization yields a closed-form set

of equations that are readily solvable. The other two methods lend themselves to

numerical solutions. Because of this, OLS is simpler to use in practice and most

basic software packages contain OLS regression.

For the simple quadratic model given by Equation (15), Figures 10-13 demon-

strate the effect of variance ratio on the distribution of errors in x and Y . In Figure

10 where γ = 0, it is obvious that the errors are again one-dimensional and because

of this, OLS is a sufficient estimator of the model. Additionally, while the curvature

is small, it is still observed in Figure 10. As γ → 1, it is seen that both the slope and

curvature are affected by the errors in x and OLS is no longer a sufficient estimator

since the errors are two-dimensional. In the simple linear case, only the slope was

affected by any MEs. Furthermore, the errors in x can also disguise any departures

from linearity, as seen in Figure 13.
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FIG. 10: Spatial Dispersion of Errors for the Simple Quadratic Relationship for γ = 0
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FIG. 11: Spatial Dispersion of Errors for the Simple Quadratic Relationship for
γ = 0.01
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FIG. 12: Spatial Dispersion of Errors for the Simple Quadratic Relationship for
γ = 0.25
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FIG. 13: Spatial Dispersion of Errors for the Simple Quadratic Relationship for γ = 1

4.2 ESTIMATION METHODS FOR THE SIMPLE QUADRATIC

MODEL

For the simple quadratic measurement system characterization problem, the

methods of OLS, MLS, and OrthLS are again discussed. As a note, the OLS estima-

tor derived shortly is applicable to both polynomial and multi-dimensional response

surface models.

4.2.1 ORDINARY LEAST SQUARES
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Consider the calibration of a measurement system with k factors of interest and n

design points are executed during the calibration. These n design points are sufficient

in estimating a model of the general form

Yi = β0 + β1x1i
+ . . .+ βpxpi

(17)

where Yi = yi+ εi and p is the order of the equation. Equation (17) can be expressed

more generally in matrix form as

Y = xβ

where Y is a (n× 1) vector of responses with error, x is a [n× (p+ 1)] expanded

model matrix, and β is a [(p+ 1)× 1] vector of regression coefficients. In matrix

form, OLS minimizes

β̂ = min

[(
Y − Ŷ

)′ (
Y − Ŷ

)]
= min

[(
Y − xβ̂

)′ (
Y − xβ̂

)]
.

The minimum is found by differentiating with respect to β and setting the resulting

equation to zero or

∂

∂β̂

[(
Y − xβ̂

)′ (
Y − xβ̂

)]
= 0.

Performing the indicated differentiation yields

−2x′Y + 2 (x′x) β̂ = 0.

Therefore, the least squares normal equations are

(x′x) β̂ = x′Y.
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Finally, solving for β̂ gives

β̂ = (x′x)
−1

x′Y (18)

where x must be of full column rank. The matrix (x′x)−1 is commonly known as the

variance-covariance matrix of the estimated regression coefficients (Myers, 1990). The

elements of this matrix are important to the statistical properties of the estimated

coefficients. Furthermore, the failure of x to be of full column rank leads to a matrix

that cannot be inverted; namely, (x′x).

4.2.2 ORTHOGONAL AND MODIFIED LEAST SQUARES

At this point, the OLS estimator derived in the previous section addresses the

case when the variance ratio is zero. Next, a more general estimator is derived that

can be employed when the variance ratio is greater than zero. Based on the results

of the simple linear model, the new estimator is expected to perform similarly. The

approach used to derive the MLS method in the simple linear model is expanded

upon to derive both MLS and OrthLS for the simple quadratic model. The only

distinction between the two methods is that the variance ratio is set equal to one for

OrthLS.
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FIG. 14: Distance Minimized by Modified and Orthogonal Least Squares for the
Simple Polynomial Model

Consider the point (x1, Y1) in Figure 14. The solid curve in the figure represents

the estimated curve, which is of the form

Ŷ = β̂0 + β̂1x+ β̂11x
2.

As mentioned previously, there are restrictions on how large β̂11 can be relative to

β̂1. In normalized units, β̂11 is restricted to values of -0.2 to 0.2. This assumption

is typically valid in measurement system applications. The vertical line segment, a,

represents the one-dimensional distance between the data point and the estimated

curve, which is the distance minimized in OLS. The point
(
x1, Ŷ

∗
1

)
is located where

the line segment a intersects the estimated curve. At the point
(
x1, Ŷ

∗
1

)
, the deriva-

tive of the estimated curve is evaluated. For a simple quadratic model, the derivative
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is

dy (x1)

dx
= β̂1 + 2β̂11x1,

which is the local slope of the tangent line. This slope determines the angle, φ, given

by

φ =
π

2
− tan−1

(
dy (x1)

dx

)
=
π

2
− tan−1

(
β̂1 + 2β̂11x1

)
.

It is clear that φ in the quadratic model is a function of the location in the design

space. From the line segment d and the slope of the tangent line, the angle α is

defined as

α =
π

2
+ (1− γ) tan−1

(
dy (x1)

dx

)

which is the same first-order approximation used in the simple linear case. The

distinction between MLS and OrthLS is due to the angle α being a function of the

variance ratio γ. For OrthLS, γ = 1; thus, α =
π

2
. The value of α in MLS varies

between
π

2
and

π

2
+ tan−1

(
β̂1 + 2β̂11x1

)
. Exploiting the geometry of the problem,

the Law of Sines yields

d =
sinφ

sinα
a

where a can be written as Y1 − β̂0 − β̂1x1 − β̂11x
2
1. The MLS estimates are obtained

by minimizing the squared length of d or

[
β̂0, β̂1, β̂11

]
= min

n∑

i=1

d2
i = min

n∑

i=1

[
sinφi
sinαi

ai

]2

. (19)

For the OrthLS estimates, Equation (19) simplifies to

[
β̂0, β̂1, β̂11

]
= min

n∑

i=1

d2
i = min

n∑

i=1

[(sinφi) ai]
2 (20)

since sin
π

2
= 1. While it is possible to solve this equation analytically, the solutions

to Equations (19) and (20) are obtained numerically. The OLS estimates are used
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as an initial guess for the algorithm, and since the initial guess is generally close,

convergence of the solution occurs rather quickly.

4.3 SIMULATION STUDY FOR THE SIMPLE QUADRATIC

MODEL

In the simple quadratic model, the εs are assumed to be independently and iden-

tically distributed as normal with a mean of zero and a constant variance of σ2
ε .

Under these conditions, the Gauss-Markov theorem holds, and the statistical prop-

erties of the OLS estimators are well-known. Specifically, the estimated coefficients

are unbiased, or E
(
β̂
)

= β, and the coefficients have minimal variance. It is shown

that

Var
(
β̂
)

= σ2
ε (x′x)

−1

where (x′x)−1 is known as the variance-covariance matrix of the β’s. The variances

of the estimated coefficients are located along the diagonal with the covariances

appearing on the off-diagonal (Myers, 1990). To understand the statistical properties

of the OrthLS and MLS estimators, a simulation was conducted to make inferences

on the effects of MEs on the prediction capabilities of each method for the simple

quadratic model. The prediction capabilities are again based on a variance ratio-

weighted distance between any data point and the estimate curve. A representative

calibration experiment is designed with n = 6 design points in order to fit the simple

quadratic model

y = β0 + β1x+ β11x
2
i + ε.

In the presence of ME, this model becomes

y = β0 + β1 (x+ u) + β11 (xi + ui)
2 + ε. (21)
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The following assumptions are made about Equation (21):

• β0 = 0, β1 = 1, and β11 = 0.2. These values are representative of real mea-

surement systems, where the sensitivity is the dominant effect. The curvature

is limited to 20 percent of F.S. effect.

• The errors u and ε are independent and identically distributed as normal with

means of zero and constant variances of σ2
u and σ2

ε , respectively.

• σ2
u and σ2

ε are proportionally related through the variance ratio, γ.

• Wi is the error-prone value of xi. Therefore, Wi and Yi are jointly distributed

as a bivariate normal distribution

[Wi, Yi] ∼ N
[(
xi, β0 + β1xi + β11x

2
i

)
,Σ
]

where Σ = diag (γσ2
ε , σ

2
ε ). Both Wi and Yi are independent random variables.

The structure of the simulation is similar to the simulation executed for the simple

linear model. From the n design points and corresponding responses, the three

model coefficients are estimated and the MSE is calculated for each of the estimation

methods. Five (5) confirmation points located at x = −2/3,−1/3, 0, 1/3, and 2/3

are used to generate confirmation data to further examine the prediction capabilities

of each estimated model. For a given calibration design, each method estimates a

set of coefficients M times. Each set of estimated coefficients are used L times with

the confirmation points and the MSE is calculated across (M × L) observations.

The simulation study considered two of the three designs that were used for

the simple linear simulation and are shown in Table 14. As mentioned previously,

Design #3 used in the simple linear simulation does not allow estimation of the

curvature since there are only two unique levels of x. The features of each design are

briefly reviewed for convenience. In Design #1, the replicates are evenly dispersed



66

TABLE 14: Designs Considered for the Simple Quadratic Simulation Study

Design Design Points Comments
Design #1 -1, -1, 0, 0, 1, 1 Replicates throughout Design Space
Design #2 -1, 0, 0, 0, 0, 1 Suspicion of Significant Lack-of-fit

among the unique levels, which provides a more appropriate metric for assessing

the constant variance assumption. Design #2 assumes constant variance and simply

uses the estimate of repeatability at the center (i.e. x = 0) to quote the repeatability

throughout the design space. Table 3 shows the values of variance ratio and response

uncertainty that are used as inputs to the simulation. The simulation employs a

factorial combination of the variance ratio and response uncertainty.

4.3.1 SIMULATION RESULTS

Table 15 shows the mean estimates of the model coefficients for the two calibration

designs and the three estimation methods. Unlike the simple linear simulation results,

all three model coefficients are provided. From Table 15, the following inferences are

made based on the structure of the simulation:

• The zero-intercept estimate varies between the three estimation methods de-

pending on the level of variance ratio and response uncertainty. In the simple

linear simulation, all three methods yielded the same estimate of the zero-

intercept. The impact of the method on the estimates of the coefficients is

greater for a quadratic model than a linear model.

• For a variance ratio of one (γ = 1), the estimates of all three model coefficients

obtained from MLS and OrthLS are equivalent as expected. In the limit as

γ → 0, it is evident that the estimate of β̂1 from MLS converges towards the

OLS estimate.
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• For an uncertainty of 1 percent or better (σε ≤ 0.01), the three methods yield

numerically-similar estimates of the sensitivity coefficient to four significant

figures.

• Larger differences between the estimates are observed when the uncertainty

is larger than 5 percent (σε > 0.05). The magnitude of the difference varies

between designs and levels of uncertainty.

• For any level of variance ratio or uncertainty,

(
β̂1

)
OLS
≤
(
β̂1

)
MLS
≤
(
β̂1

)
OrthLS

.

However, the table reveals that a similar conclusion cannot be made for the

other two coefficients.

Table 16 presents the variance of the mean estimates of the model coefficients for the

two designs and three methods. Based on the results, it is clear that the variances

are a function of the calibration design. In Design #1, the replicated points are

evenly dispersed throughout the design space, which benefits the sensitivity estimate.

Therefore, a more precise (less variable) estimate is obtained. Design #2 is more

centrally weighted in its replication strategy, which favors the zero-intercept estimate.

Comparing the results for Design #2, it is evident that the design yields a more

precise estimate of the zero-intercept. Between-method variability is small and from a

practical standpoint, the variability in the MLS estimates is approximately equivalent

to the variability in the OLS estimates.
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Table 17 shows the average MSE across all the design and confirmation points

for the two designs and the three methods. Based on the values shown, the 1-σ

estimated accuracy, in percent, is calculated using

σ̂ =

√
Mean Squared Error

Full-Scale Range
× 100.

For Runs 11 through 15, the estimated 1-σ accuracy ranges from 2.6 to 3.6 percent

of F.S., which is smaller than the response error of 5 percent. While Table 17 shows

the absolute MSE values, Table 18 gives the difference between OLS and either

MLS or OrthLS. From this table, it is once again observed that MLS has a smaller

MSE than OLS for every combination of variance ratio and response uncertainty

studied. Meanwhile, OrthLS only shows improvement when the variance ratio is

one. When the variance ratio is one, OrthLS is equivalent to MLS by definition. The

improvement in MSE is expressed in terms of percent in Table 19. There appears

to be additional benefit in using MLS for the simple quadratic model when MEs

are present. However, there also appears to be a larger penalty for using OrthLS as

the variance ratio approaches zero. An analysis of variance (ANOVA) is performed

to test whether differences in MSE are statistically detectable. From the results of

the ANOVA shown in Tables 20 and 21, it is inferred that there is no detectable

difference in MSE between the three methods for this simulation. This conclusion is

also valid when looking at the hypothesis tests simultaneously.

Table 22 relates the improvement in MSE to the known response uncertainty, σε.

For cases where OLS had a smaller MSE, the percent improvement is expressed as

zero in the table. The results in the table show that MLS has a significant impact

on the reduction in MSE for most of the cases tested during the simulation. For

example, a 0.14 percent improvement in MSE is achieved on a 1 percent uncertainty

measurement system using the first calibration design and a variance ratio of 0.0625.
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This translates to an overall reduction of 14 percent, which is considered practically

significant. Based on the results from the simple quadratic simulation, it is recom-

mended that MLS be employed instead of OLS when the variance ratio is greater

than 0.0625. Below a variance ratio of 0.0625, the practical benefit of MLS is small.



76

T
A

B
L

E
17

:
M

ea
n

S
q
u
ar

ed
E

rr
or

fo
r

th
e

S
im

p
le

Q
u
ad

ra
ti

c
S
im

u
la

ti
on

R
un

N
o.

V
ar

ia
nc

e
U

nc
er

ta
in

ty
,

D
es

ig
n

#
1

D
es

ig
n

#
2

R
at

io
,
γ

σ
ε

O
L

S
M

L
S

O
rt

hL
S

O
L

S
M

L
S

O
rt

hL
S

1
1

0.
2

0.
01

13
0.

01
08

0.
01

08
0.

00
96

0.
00

93
0.

00
93

2
0.

25
0.

2
0.

01
60

0.
01

58
0.

01
61

0.
01

55
0.

01
53

0.
01

56
3

0.
06

25
0.

2
0.

01
86

0.
01

86
0.

01
94

0.
01

98
0.

01
98

0.
02

08
4

0.
01

0.
2

0.
02

06
0.

02
06

0.
02

14
0.

01
65

0.
01

65
0.

01
71

5
0.

00
01

0.
2

0.
01

91
0.

01
91

0.
02

03
0.

02
19

0.
02

19
0.

02
33

6
1

0.
1

0.
00

28
0.

00
27

0.
00

27
0.

00
23

0.
00

23
0.

00
23

7
0.

25
0.

1
0.

00
36

0.
00

36
0.

00
36

0.
00

38
0.

00
38

0.
00

38
8

0.
06

25
0.

1
0.

00
44

0.
00

44
0.

00
45

0.
00

48
0.

00
48

0.
00

49
9

0.
01

0.
1

0.
00

60
0.

00
60

0.
00

60
0.

00
45

0.
00

45
0.

00
46

10
0.

00
01

0.
1

0.
00

45
0.

00
45

0.
00

46
0.

00
51

0.
00

51
0.

00
51

11
1

0.
05

0.
00

07
0.

00
07

0.
00

07
0.

00
05

0.
00

05
0.

00
05

12
0.

25
0.

05
0.

00
10

0.
00

10
0.

00
10

0.
00

08
0.

00
08

0.
00

08
13

0.
06

25
0.

05
0.

00
10

0.
00

10
0.

00
10

0.
00

11
0.

00
11

0.
00

11
14

0.
01

0.
05

0.
00

12
0.

00
12

0.
00

12
0.

00
15

0.
00

15
0.

00
15

15
0.

00
01

0.
05

0.
00

13
0.

00
13

0.
00

13
0.

00
13

0.
00

13
0.

00
13

16
1

0.
01

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

17
0.

25
0.

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
18

0.
06

25
0.

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
19

0.
01

0.
01

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
01

20
0.

00
01

0.
01

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
00

01
0.

00
01

21
1

0.
00

1
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
22

0.
25

0.
00

1
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
23

0.
06

25
0.

00
1

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

24
0.

01
0.

00
1

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

25
0.

00
01

0.
00

1
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00



77

TABLE 18: Improvement in Mean Squared Error over OLS for the Simple Quadratic
Simulation

Run No.
Variance Uncertainty, Design #1 Design #2
Ratio, γ σε MLS OrthLS MLS OrthLS

1 1 0.2 0.0004 0.0004 0.0002 0.0002
2 0.25 0.2 0.0002 0.0000 0.0001 -0.0001
3 0.0625 0.2 0.0000* -0.0008 0.0000* -0.0010
4 0.01 0.2 0.0000* -0.0008 0.0000* -0.0006
5 0.0001 0.2 0.0000* -0.0012 0.0000* -0.0014
6 1 0.1 0.0000* 0.0000* 0.0000* 0.0000*
7 0.25 0.1 0.0000* 0.0000 0.0000* 0.0000
8 0.0625 0.1 0.0000* 0.0000 0.0000* 0.0000
9 0.01 0.1 0.0000* -0.0001 0.0000* 0.0000
10 0.0001 0.1 0.0000* -0.0001 0.0000* 0.0000
11 1 0.05 0.0000* 0.0000* 0.0000* 0.0000*
12 0.25 0.05 0.0000* 0.0000 0.0000* 0.0000
13 0.0625 0.05 0.0000* 0.0000 0.0000* 0.0000
14 0.01 0.05 0.0000* 0.0000 0.0000* 0.0000
15 0.0001 0.05 0.0000* 0.0000 0.0000* 0.0000
16 1 0.01 0.0000* 0.0000* 0.0000* 0.0000*
17 0.25 0.01 0.0000* 0.0000 0.0000* 0.0000
18 0.0625 0.01 0.0000* 0.0000 0.0000* 0.0000
19 0.01 0.01 0.0000* 0.0000 0.0000* 0.0000
20 0.0001 0.01 0.0000* 0.0000 0.0000* 0.0000
21 1 0.001 0.0000* 0.0000* 0.0000* 0.0000*
22 0.25 0.001 0.0000* 0.0000 0.0000* 0.0000
23 0.0625 0.001 0.0000* 0.0000 0.0000* 0.0000
24 0.01 0.001 0.0000* 0.0000 0.0000* 0.0000
25 0.0001 0.001 0.0000* 0.0000 0.0000* 0.0000

Note: Asterisk represents an improvement of less than 0.00005
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TABLE 19: Percent Improvement in Mean Squared Error over OLS for the Simple
Quadratic Simulation

Run No.
Variance Uncertainty, Design #1 Design #2
Ratio, γ σε MLS OrthLS MLS OrthLS

1 1 0.2 3.95% 3.95% 2.59% 2.59%
2 0.25 0.2 1.35% -0.30% 0.66% -0.83%
3 0.0625 0.2 0.09% -4.44% 0.06% -5.22%
4 0.01 0.2 0.00%* -3.73% 0.00%* -3.34%
5 0.0001 0.2 0.00%* -6.09% 0.00%* -6.17%
6 1 0.1 0.97% 0.97% 0.67% 0.67%
7 0.25 0.1 0.20% -0.14% 0.15% -0.05%
8 0.0625 0.1 0.03% -1.10% 0.01% -0.63%
9 0.01 0.1 0.00%* -1.47% 0.00%* -0.75%
10 0.0001 0.1 0.00%* -1.47% 0.00%* -0.78%
11 1 0.05 0.31% 0.31% 0.14% 0.14%
12 0.25 0.05 0.08% -0.05% 0.04% -0.01%
13 0.0625 0.05 0.00%* -0.17% 0.00%* -0.15%
14 0.01 0.05 0.00%* -0.33% 0.00%* -0.22%
15 0.0001 0.05 0.00%* -0.30% 0.00%* -0.21%
16 1 0.01 0.02% 0.02% 0.00%* 0.00%*
17 0.25 0.01 0.00%* 0.00% 0.00%* 0.00%
18 0.0625 0.01 0.00%* -0.01% 0.00%* 0.00%
19 0.01 0.01 0.00%* -0.01% 0.00%* -0.01%
20 0.0001 0.01 0.00%* -0.01% 0.00%* -0.01%
21 1 0.001 0.00%* 0.00%* 0.00%* 0.00%*
22 0.25 0.001 0.00%* 0.00% 0.00%* 0.00%
23 0.0625 0.001 0.00%* 0.00% 0.00%* 0.00%
24 0.01 0.001 0.00%* 0.00% 0.00%* 0.00%
25 0.0001 0.001 0.00%* 0.00% 0.00%* 0.00%

Note: Asterisk represents an improvement of less than 0.005%
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TABLE 20: Analysis of Variance of the Mean Squared Error for the Simple Quadratic
Simulation – Design #1

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000014 0.0000007 0.02 0.985

Error 447 0.0209744 0.0000469
Total 449 0.0209759

TABLE 21: Analysis of Variance of the Mean Squared Error for the Simple Quadratic
Simulation – Design #2

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000016 0.0000008 0.01 0.990

Error 447 0.0339253 0.0000759
Total 449 0.0339269
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TABLE 22: Percent Improvement in Mean Squared Error Relative to Response
Uncertainty for the Simple Quadratic Simulation

Run Variance Uncertainty, Design #1 Design #2
No Ratio, γ σε MLS OrthLS MLS OrthLS
1 1 0.2 10.56% 10.56% 7.87% 7.87%
2 0.25 0.2 7.35% 0.00% 5.05% 0.00%
3 0.0625 0.2 2.09% 0.00% 1.73% 0.00%
4 0.01 0.2 0.41% 0.00% 0.23% 0.00%
5 0.0001 0.2 0.00%* 0.00% 0.00%* 0.00%
6 1 0.1 5.19% 5.19% 3.92% 3.92%
7 0.25 0.1 2.71% 0.00% 2.43% 0.00%
8 0.0625 0.1 1.05% 0.00% 0.82% 0.00%
9 0.01 0.1 0.25% 0.00% 0.13% 0.00%
10 0.0001 0.1 0.00%* 0.00% 0.00%* 0.00%
11 1 0.05 2.96% 2.96% 1.72% 1.72%
12 0.25 0.05 1.75% 0.00% 1.09% 0.00%
13 0.0625 0.05 0.47% 0.00% 0.40% 0.00%
14 0.01 0.05 0.10% 0.00% 0.08% 0.00%
15 0.0001 0.05 0.00%* 0.00% 0.00%* 0.00%
16 1 0.01 0.77% 0.77% 0.45% 0.45%
17 0.25 0.01 0.29% 0.00% 0.21% 0.00%
18 0.0625 0.01 0.14% 0.00% 0.07% 0.00%
19 0.01 0.01 0.02% 0.00% 0.02% 0.00%
20 0.0001 0.01 0.00%* 0.00% 0.00%* 0.00%
21 1 0.001 0.05% 0.05% 0.04% 0.04%
22 0.25 0.001 0.03% 0.00% 0.02% 0.00%
23 0.0625 0.001 0.00%* 0.00% 0.00%* 0.00%
24 0.01 0.001 0.00%* 0.00% 0.00%* 0.00%
25 0.0001 0.001 0.00%* 0.00% 0.00%* 0.00%

Note: Asterisk represents an improvement of less than 0.005%
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FIG. 15: Percent Improvement in Mean Squared Error of MLS for the Simple
Quadratic Simulation – Design #1
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FIG. 16: Percent Improvement in Mean Squared Error of MLS for the Simple
Quadratic Simulation – Design #2

4.4 APPLICATION OF THE MULTI-DIMENSIONAL,

HIGHER-ORDER RESPONSE SURFACE MODEL

Recall that an estimated model is an approximation of the true, unknown model

and is highlighted frequently throughout this research. The models discussed to this

point are examples of the simplest possible forms. In the context of measurement

systems, the true behavior is often not characterized by a simple linear or quadratic

model. This is primarily due to the fact that more than one factor often affects the

response of the system. Unless prior knowledge exists to suggest that one of these

simple models are sufficient, a more robust, flexible model is recommended. In cali-

bration applications at NASA LaRC, the second-order Taylor-series model is used for

modeling the functional relationship of a complex measurement system. The appeal
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of the Taylor-series model is that it is flexible, the model coefficients are estimated

through standard regression techniques, and the model is easily expanded to include

any number of factors of interest. Furthermore, experiments are strategically de-

signed to ensure certain favorable properties of the estimated model. Therefore, the

second-order Taylor-series model is the final model considered within this research.

At NASA LaRC, most force-balances utilize the second-order Taylor-series model

to approximate the relationship between the applied loads and the measured output

of the strain gauges. For a standard six-component force-balance, the model is

yi = β0 +
6∑

a=1

βaxai
+

5∑

a=1

6∑

b=a+1

βabxai
xbi +

6∑

a=1

βaax
2
ai

+ εi.

This model contains 6 linear, 15 two-factor interaction, and 6 pure quadratic terms.

Each of the terms in the model represents some physical or electrical characteristic

of the force-balance. For example, the first-order terms are attributed to machin-

ing or gauging errors. The two-factor interactions are typically associated with the

magnitude of the deflections present while the force-balance is under load (Guarino,

1964).

The NTF-113A/B/C are a family of single-piece force-balances used for testing in

the NASA LaRC’s National Transonic Facility (NTF). With a full-scale normal force

capacity of 6500 lbf., the NTF-113 family of force-balances are capable of measuring

the six aerodynamic forces and moments simultaneously. These force-balances are

gauged in the standard force configuration, which only resolves axial force and rolling

moment directly (AIAA, 2003). Two sets of normal force and side force gauges, one

located in the forward cage section and the other located in the aft cage section, are

used to compute the remaining four forces and moments. The typical accuracies for

each component for this family of force-balances is on the order of 0.1 to 0.2 percent

of full-scale, with axial force typically having the largest amount of uncertainty.



84

The NTF-113 family of force-balances are calibrated using manual stand systems.

Gravity-based loads, or deadweights, are applied to the force-balance through an

intricate system of pulleys and cables. These deadweights are not known without

error but are traceable to a NIST standard. Since the applied loads contain some

uncertainty and because no force-balance standard exists, there are several sources of

ME that are introduced into the calibration. Within this research, it is assumed that

the MEs are equal across all the factors that contain MEs. However, it is possible in

practice for the MEs to be unequal. The effect of the MEs on these complex model

forms is studied throughout and the results are discussed shortly.

4.5 ESTIMATION METHODS FOR THE MULTI-DIMENSIONAL,

HIGHER-ORDER RESPONSE SURFACE MODEL

Because the OLS estimator derived earlier for the simple quadratic model is

also valid for multi-dimensional response surface models, it is not discussed here.

However, the OrthLS and MLS require small modifications to the derivations in

order to apply them to these more complex models.

4.5.1 ORTHOGONAL AND MODIFIED LEAST SQUARES

Recall that in the derivation of the OrthLS and MLS methods that the Law of

Sines was used to define the vector d that was to be minimized. The Law of Sines

required knowledge of the angles φ and α, which were given by

φ =
π

2
− tan−1

(
dy (x1)

dx

)

and

α =
π

2
+ (1− γ) tan−1

(
dy (x1)

dx

)
.

Both φ and α contain derivatives that need to be evaluated. For the simple linear
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model, these derivatives were constants. Conversely, the derivatives for the simple

quadratic model were a function of the location in the design space. In both cases,

however, the geometry was relatively simple. The derivative can be interpreted as the

rate-of-change in two-dimensional space. The corollary to this in multi-dimensional

space is the gradient, which provides both the magnitude and direction of the rate-

of-change of a surface. If f (x1, . . . , xk) is the response surface function, then the

gradient is defined as

∇f =

[
∂f

∂x1

, . . . ,
∂f

∂xk

]
.

The magnitude of the gradient

|∇f | =
√(

∂f

∂x1

)2

+ . . .+

(
∂f

∂xk

)2

replaces the derivates in φ and α to give

φ =
π

2
− tan−1



√(

∂f

∂x1

)2

+ . . .+

(
∂f

∂xk

)2



and

α =
π

2
+ (1− γ) tan−1



√(

∂f

∂x1

)2

+ . . .+

(
∂f

∂xk

)2

 .

The rest of the procedure for OrthLS and MLS estimation remains the same as

previously derived.

4.6 SIMULATION STUDY FOR THE SIX-COMPONENT

FORCE-BALANCE

For the six-component force-balance simulation, only one experimental design is

considered. The design points in Table 23 are based on a spherical central composite
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design (CCD) (Myers et al., 2009). This design is part of a larger class of second-

order designs which are sufficient in estimating all the coefficients in the regression

model and are typically more efficient to execute than a three-level factorial design.

At NASA LaRC, a variant of the CCD is used for force-balance calibrations on

the Single-Vector System (Parker et al., 2001). A full-factorial, spherical CCD in 6

factors contains 77 unique design points, but the simulation employs a half-fraction of

the two-level, six-factor factorial design. With a half-fraction of the factorial design,

the CCD contains 45 unique points. In practice, fractional factorial designs are

used as a part of screening experiments or in cases where experimental resources are

limited. However, there are some consequences to fractionating a design, which are

typically discussed in terms of design resolution. When estimating the coefficients

in the second-order Taylor-series model, the fraction must be resolution V or higher.

The half-fraction of the two-level, six-factor factorial design is a resolution VI, which

means that there is no confounding between any of the terms in the model. Designs

with a resolution III or IV have confounding between linear and two-factor interaction

terms (Montgomery, 2009).

TABLE 23: Spherical Central Composite Design for the Six-Component Force-
Balance Simulation Study

Design Point x1 x2 x3 x4 x5 x6

1 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 -0.6390 -0.6390 0.6390 0.6390 0.6390 0.6390
4 0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000
5 0.6390 0.6390 0.6390 -0.6390 -0.6390 0.6390
6 -0.6390 0.6390 -0.6390 0.6390 0.6390 0.6390
7 0.6390 0.6390 0.6390 0.6390 0.6390 0.6390
8 0.6390 -0.6390 -0.6390 0.6390 -0.6390 -0.6390
9 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
10 -0.6390 -0.6390 0.6390 0.6390 -0.6390 -0.6390
11 0.6390 -0.6390 0.6390 -0.6390 -0.6390 -0.6390
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 23 – Continued
Design Point x1 x2 x3 x4 x5 x6

13 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
14 0.6390 0.6390 -0.6390 -0.6390 0.6390 0.6390
15 0.6390 -0.6390 -0.6390 -0.6390 -0.6390 0.6390
16 0.6390 -0.6390 0.6390 0.6390 -0.6390 0.6390
17 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000
18 -0.6390 0.6390 0.6390 0.6390 0.6390 -0.6390
19 -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
21 -0.6390 -0.6390 -0.6390 0.6390 -0.6390 0.6390
22 0.6390 0.6390 -0.6390 -0.6390 -0.6390 -0.6390
23 0.6390 0.6390 0.6390 -0.6390 0.6390 -0.6390
24 -0.6390 0.6390 0.6390 0.6390 -0.6390 0.6390
25 -0.6390 0.6390 -0.6390 0.6390 -0.6390 -0.6390
26 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 -0.6390 0.6390 0.6390 -0.6390 -0.6390 -0.6390
29 0.6390 -0.6390 -0.6390 -0.6390 0.6390 -0.6390
30 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
31 -0.6390 -0.6390 -0.6390 -0.6390 0.6390 0.6390
32 0.6390 0.6390 -0.6390 0.6390 0.6390 -0.6390
33 0.6390 -0.6390 0.6390 0.6390 0.6390 -0.6390
34 0.6390 0.6390 -0.6390 0.6390 -0.6390 0.6390
35 0.6390 -0.6390 0.6390 -0.6390 0.6390 0.6390
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
37 -0.6390 -0.6390 0.6390 0.6390 0.6390 -0.6390
38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
39 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
40 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
41 0.6390 -0.6390 -0.6390 0.6390 0.6390 0.6390
42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
43 0.0000 0.0000 0.0000 0.0000 -1.0000 0.0000
44 -0.6390 0.6390 0.6390 -0.6390 0.6390 0.6390
45 0.6390 0.6390 0.6390 0.6390 -0.6390 -0.6390
46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
47 -0.6390 0.6390 -0.6390 -0.6390 0.6390 -0.6390
48 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50 -0.6390 -0.6390 0.6390 -0.6390 -0.6390 0.6390
51 -0.6390 -0.6390 -0.6390 0.6390 0.6390 -0.6390
52 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
53 -0.6390 0.6390 -0.6390 -0.6390 -0.6390 0.6390
54 0.0000 0.0000 -1.0000 0.0000 0.0000 0.0000
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The CCD is used M = 100 times to simulate 100 calibrations of the force-balance.

Each calibration produces a new set of estimated coefficients for each method and

from these coefficients, the MSE based on the design points alone is calculated. For

a given set of estimated coefficients, each set are applied L = 1000 times to the

confirmation points shown in Table 24. The 34 confirmation points are based on a

computer algorithm that distributes the points evenly throughout the six-dimensional

design space. These points are used to generate confirmation data to further examine

the prediction capabilities of each estimated model and calculate an overall MSE. In

total, for one given set of coefficients, 34 × 1000 = 34000 confirmation points are

applied. This simulation can be interpreted practically as the number of data points

collected on a force-balance over the period of one calibration cycle.

TABLE 24: Confirmation Points for the Six-Component Force-Balance Simulation
Study

Confirmation Point x1 x2 x3 x4 x5 x6

1 -0.1380 -0.6000 -0.4140 0.2640 -0.1380 -0.6000
2 -0.6000 -0.6000 -0.6000 0.6000 0.6000 0.3660
3 -0.6000 -0.6000 0.3720 -0.6000 -0.6000 -0.6000
4 -0.1260 0.6000 -0.0960 -0.6000 -0.2280 -0.2700
5 -0.1260 0.6000 -0.0960 -0.6000 -0.2280 -0.2700
6 -0.6000 -0.6000 0.6000 0.6000 0.6000 -0.6000
7 -0.6000 0.6000 0.6000 -0.6000 -0.6000 0.6000
8 -0.5280 0.6000 -0.3480 0.2880 -0.0060 0.6000
9 0.6000 -0.6000 -0.6000 -0.6000 -0.2580 0.6000
10 -0.6000 0.6000 -0.6000 0.6000 -0.6000 -0.6000
11 0.6000 0.2280 -0.5520 0.6000 0.6000 0.6000
12 -0.5400 -0.4080 0.0720 -0.4740 0.4620 0.6000
13 -0.4500 -0.1200 -0.6000 -0.2880 -0.6000 0.1680
14 -0.6000 -0.1240 0.1500 0.6000 -0.2640 -0.0480
15 -0.1860 0.1740 0.6000 0.0000 -0.3060 -0.6000
16 -0.6000 -0.1240 0.1500 0.6000 -0.2640 -0.0480
17 0.5040 -0.5580 -0.0942 -0.0780 0.6000 -0.0840
18 0.6000 0.6000 0.6000 -0.6000 0.6000 -0.6000
19 0.6000 -0.1200 -0.6000 -0.6000 -0.6000 -0.6000
20 0.6000 0.5280 -0.6000 0.2340 0.0809 -0.2160
21 0.6000 0.6000 0.1620 0.6000 -0.2270 -0.6000
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TABLE 24 – Continued
Confirmation Point x1 x2 x3 x4 x5 x6

22 0.0308 0.2520 -0.0715 0.6000 0.6000 -0.5100
23 0.1800 -0.2700 0.6000 -0.6000 0.1020 0.0360
24 -0.1260 -0.6000 0.6000 0.2390 -0.6000 0.6000
25 0.6000 0.2160 0.1780 -0.2280 -0.6000 0.4560
26 0.1800 -0.2700 0.6000 -0.6000 0.1020 0.0360
27 0.2880 0.5400 -0.6000 -0.6000 0.6000 0.6000
28 0.6000 -0.6000 -0.3240 0.0420 -0.6000 -0.0180
29 0.5040 -0.5580 -0.0942 -0.0780 0.6000 -0.0840
30 0.6000 -0.6000 0.6000 0.6000 -0.6000 -0.5340
31 0.3660 -0.1800 -0.6000 0.6000 -0.6000 0.6000
32 -0.1860 0.1740 0.6000 0.0000 -0.3060 -0.6000
33 -0.5760 0.6000 0.5820 -0.0660 0.6000 0.0720
34 0.2400 0.6000 0.6000 0.6000 -0.6000 0.2400
35 -0.6000 0.5400 -0.6000 -0.4660 0.1140 0.2500
36 -0.6000 0.0420 -0.6000 -0.6000 0.6000 -0.6000
37 0.6000 0.6000 0.1260 -0.0900 0.3360 0.3410
38 0.6000 -0.0360 0.6000 0.6000 0.4020 0.6000

If the assumed form of the model is

yi = β0 +
6∑

a=1

βaxai
+

5∑

a=1

6∑

b=a+1

βabxai
xbi +

6∑

a=1

βaax
2
ai

+ εi,

then in the presence of ME, it becomes

yi = β0 +
6∑

a=1

βa (xai
+ uai

) +
5∑

a=1

6∑
b=a+1

βab (xai
+ uai

) (xbi + ubi)

+
6∑

a=1

βaa (xai
+ uai

)2 + εi. (22)

The following assumptions are made about Equation (22)

• The βs are given in Table 25, which are based on an actual set of coefficients

for the axial force component of the NTF-113C force-balance.

• u1 = u2 = u3 = u4 = u5 = u6 = u. The six MEs are assumed to be equal



90

and are represented by u. The errors u and ε are independently and identically

distributed as normal with means of zero and constant variances of σ2
u and σ2

ε ,

respectively.

• σ2
u and σ2

ε are proportionally related through the variance ratio, γ.

• (W1i
, . . . ,W6i

) are the error-prone values of (x1i
, . . . , xxi

). Therefore,

(W1i
, . . . ,W6i

) and Yi are jointly distributed as a multivariate normal distribu-

tion

[W1i
, . . . ,W6i

, Yi]

∼ N

[(
x1i
, . . . , x6i

, β0 +
6∑

a=1

βaxai
+

5∑

a=1

6∑

b=a+1

βabxai
xbi +

6∑

a=1

βaax
2
ai

)
,Σ

]

where Σ = diag (γσ2
ε , γσ

2
ε , γσ

2
ε , γσ

2
ε , γσ

2
ε , γσ

2
ε , σ

2
ε ). Both (W1i

, . . . ,W6i
) and Yi

are independent random variables.
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TABLE 25: Model Coefficients for the Six-Component Force-Balance Simulation
Study

First-Order Terms Interaction Terms Quadratic Terms
β0 0.0000 β12 0.0321 β11 -0.1015
β1 0.1334 β13 0.0934 β22 0.0007
β2 1.0000 β14 0.0014 β33 0.0387
β3 -0.0095 β15 -0.0027 β44 0.0624
β4 0.0257 β16 0.0023 β55 -0.0025
β5 -0.0029 β23 -0.0025 β66 -0.0299
β6 0.0006 β24 0.0000

β25 -0.0003
β26 0.0009
β34 0.0000
β35 -0.0013
β36 -0.0001
β45 -0.0683
β46 -0.0105
β56 0.0306

4.6.1 SIMULATION RESULTS

Table 26 shows the mean estimates of the model coefficients for two combinations

of variance ratio and response uncertainty: γ = 0.25, σε = 0.1 and γ = 0.0625,

σε = 0.001. In the first case, larger differences in the estimates are observed in the

linear and quadratic terms. For example, the primary sensitivity, β̂2, ranges from

0.9920 for OLS to 1.0284 for OrthLS. This corresponds to a 3.6 percent difference

over the F.S. range. Smaller effects, such as β̂11, vary as much as 2.5 percent of F.S.

It is also interesting to note the trends in the estimates for the first case are not

consistent. Simply put,

β̂iOLS
≤ β̂iMLS

≤ β̂iOrthLS

does not hold for all 28 estimates. The second case of γ = 0.0625 and σε = 0.001

shown in the table is representative of a NTF-113 calibration. Unlike the first case,
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these estimates are numerically equivalent to four significant figures across the three

methods. Table 27 shows the variance of the coefficient estimates for the three

methods. Between the methods, the variances are similar for a given coefficient.

Furthermore, variances within like coefficients are also similar. For example, the

variance of the linear coefficients is approximately 0.0006. These variances are again

attributed to the design rather than the estimation method; thus, the variability in

the MLS estimates are equal to the OLS estimates.
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TABLE 26: Mean Estimates of the Model Coefficients for the Six-Component Force-
Balance Simulation

Model Term
γ = 0.25, σε = 0.1 γ = 0.0625, σε = 0.001

OLS MLS OrthLS OLS MLS OrthLS

β̂0 0.0069 0.0071 0.0071 0.0000 0.0000 0.0000

β̂1 0.1343 0.1364 0.1388 1.0000 1.0000 1.0000

β̂2 0.9920 1.0087 1.0284 -0.0801 -0.0801 -0.0801

β̂3 -0.0020 -0.0019 -0.0018 0.0900 0.0900 0.0900

β̂4 0.0144 0.0148 0.0152 -0.0300 -0.0300 -0.0300

β̂5 -0.0104 -0.0108 -0.0112 -0.0500 -0.0500 -0.0500

β̂6 -0.0037 -0.0038 -0.0038 0.3500 0.3500 0.3500

β̂12 0.0364 0.0380 0.0397 0.0500 0.0500 0.0500

β̂13 0.0918 0.0926 0.0926 0.0000 0.0000 0.0000

β̂14 0.0203 0.0212 0.0221 -0.0100 -0.0100 -0.0100

β̂15 0.0075 0.0084 0.0095 -0.0201 -0.0201 -0.0201

β̂16 0.0052 0.0043 0.0029 0.0699 0.0699 0.0699

β̂23 -0.0029 -0.0028 -0.0023 -0.0500 -0.0500 -0.0501

β̂24 0.0190 0.0184 0.0180 -0.0099 -0.0099 -0.0099

β̂25 0.0007 0.0012 0.0020 0.0000 0.0000 0.0000

β̂26 0.0020 0.0021 0.0023 0.0300 0.0300 0.0300

β̂34 0.0009 0.0003 0.0000 0.0000 0.0000 0.0000

β̂35 0.0027 0.0027 0.0029 -0.0199 -0.0199 -0.0199

β̂36 0.0110 0.0105 0.0099 -0.1000 -0.1000 -0.1000

β̂45 -0.0671 -0.0685 -0.0697 -0.0300 -0.0300 -0.0300

β̂46 -0.0119 -0.0126 -0.0130 -0.4500 -0.4500 -0.4499

β̂56 0.0399 0.0399 0.0401 0.0200 0.0200 0.0200

β̂11 -0.1151 -0.1265 -0.1401 0.1200 0.1200 0.1199

β̂22 -0.0003 0.0015 0.0041 -0.0100 -0.0100 -0.0100

β̂33 0.0432 0.0473 0.0512 0.0399 0.0399 0.0400

β̂44 0.0709 0.0785 0.0884 -0.0498 -0.0498 -0.0498

β̂55 -0.0141 -0.0143 -0.0151 0.0100 0.0100 0.0100

β̂66 -0.0357 -0.0382 -0.0404 -0.0401 -0.0401 -0.0401
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TABLE 27: Variance of the Mean Estimates of the Model Coefficients for the Six-
Component Force-Balance Simulation

Model Term
γ = 0.25, σε = 0.1 γ = 0.0625, σε = 0.001

OLS MLS OrthLS OLS MLS OrthLS

β̂0 0.0006 0.0006 0.0006 0.0000 0.0000 0.0000

β̂1 0.0006 0.0007 0.0007 0.0000 0.0000 0.0000

β̂2 0.0006 0.0006 0.0006 0.0000 0.0000 0.0000

β̂3 0.0005 0.0006 0.0006 0.0000 0.0000 0.0000

β̂4 0.0006 0.0006 0.0006 0.0000 0.0000 0.0000

β̂5 0.0005 0.0005 0.0005 0.0000 0.0000 0.0000

β̂6 0.0007 0.0007 0.0007 0.0000 0.0000 0.0000

β̂12 0.0015 0.0015 0.0016 0.0000 0.0000 0.0000

β̂13 0.0018 0.0018 0.0019 0.0000 0.0000 0.0000

β̂14 0.0015 0.0015 0.0016 0.0000 0.0000 0.0000

β̂15 0.0020 0.0020 0.0020 0.0000 0.0000 0.0000

β̂16 0.0019 0.0020 0.0020 0.0000 0.0000 0.0000

β̂23 0.0017 0.0017 0.0017 0.0000 0.0000 0.0000

β̂24 0.0017 0.0017 0.0018 0.0000 0.0000 0.0000

β̂25 0.0019 0.0019 0.0020 0.0000 0.0000 0.0000

β̂26 0.0018 0.0018 0.0018 0.0000 0.0000 0.0000

β̂34 0.0013 0.0013 0.0013 0.0000 0.0000 0.0000

β̂35 0.0019 0.0019 0.0020 0.0000 0.0000 0.0000

β̂36 0.0018 0.0019 0.0019 0.0000 0.0000 0.0000

β̂45 0.0019 0.0019 0.0019 0.0000 0.0000 0.0000

β̂46 0.0019 0.0019 0.0019 0.0000 0.0000 0.0000

β̂56 0.0016 0.0016 0.0016 0.0000 0.0000 0.0000

β̂11 0.0049 0.0050 0.0052 0.0000 0.0000 0.0000

β̂22 0.0051 0.0054 0.0063 0.0000 0.0000 0.0000

β̂33 0.0043 0.0045 0.0048 0.0000 0.0000 0.0000

β̂44 0.0035 0.0036 0.0038 0.0000 0.0000 0.0000

β̂55 0.0039 0.0041 0.0042 0.0000 0.0000 0.0000

β̂66 0.0049 0.0052 0.0055 0.0000 0.0000 0.0000
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Table 28 shows the average MSE across all the design and confirmation points for

each of the three methods. The case of γ = 0.0625 and σε = 0.001 is closest to the

actual calibration of a NTF-113 force-balance. Based on the results from this case,

the quote accuracy is

σ̂ =

√
MSE

Full-Scale Range
=

√
4.5190× 10−7

1
= 0.0007

or 0.07 percent of F.S. Table 29 shows the difference in MSE between OLS and

either MLS or OrthLS. While the MSE for MLS is smaller in all the cases studied,

the absolute difference is once again smaller than 5.0 × 10−5. In terms of percent

difference, as shown in Table 30, there are more noticeable improvements in MSE

for variance ratios greater than 0.25 and uncertainties larger than 0.1. From the

ANOVA in Table 31, there still remains strong evidence (p > 0.05) that the three

methods do not provide a detectable difference in MSE.

Lastly, Table 32 reiterates the practical benefits of the improvement in MSE at-

tained by the method of MLS. For instances where the OLS had a smaller MSE, the

percent improvement is expressed as zero. The improvement in MSE by using MLS

estimation is once again observed in the results. For example, 0.2 percent improve-

ment in MSE is achieved on a measurement system with a 0.1 percent uncertainty

in the response with a variance ratio of 0.025. This is a substantial difference over

the improvement in the same combination of uncertainty and variance ratio in the

simple linear study, where the percent improvement was 0.02 percent. Therefore, in

complex model forms, such as the Taylor-series model, the impact of MLS is much

greater. It is once again concluded that the largest benefit of MLS is in situations

where the variance ratio is greater than 0.0625. However, the data do suggest that

the practical benefit of MLS at lower variance ratios may become more pronounced

in higher-order models.
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TABLE 28: Mean Squared Error over OLS for the Six-Component Force-Balance
Simulation

Run No.
Variance

Uncertainty, σε OLS MLS OrthLS
Ratio, γ

1 1 0.2 0.0096 0.0090 0.0090
2 0.25 0.2 0.0136 0.0134 0.0137
3 0.0625 0.2 0.0169 0.0169 0.0179
4 0.01 0.2 0.0185 0.0185 0.0198
5 0.0001 0.2 0.0202 0.0202 0.0219
6 1 0.1 0.0024 0.0024 0.0024
7 0.25 0.1 0.0034 0.0034 0.0034
8 0.0625 0.1 0.0045 0.0045 0.0045
9 0.01 0.1 0.0048 0.0048 0.0048
10 0.0001 0.1 0.0050 0.0050 0.0051
11 1 0.05 0.0006 0.0006 0.0006
12 0.25 0.05 0.0008 0.0008 0.0008
13 0.0625 0.05 0.0011 0.0011 0.0011
14 0.01 0.05 0.0012 0.0012 0.0012
15 0.0001 0.05 0.0012 0.0012 0.0012
16 1 0.01 0.0000 0.0000 0.0000
17 0.25 0.01 0.0000 0.0000 0.0000
18 0.0625 0.01 0.0000 0.0000 0.0000
19 0.01 0.01 0.0000 0.0000 0.0000
20 0.0001 0.01 0.0000 0.0000 0.0000
21 1 0.001 0.0000 0.0000 0.0000
22 0.25 0.001 0.0000 0.0000 0.0000
23 0.0625 0.001 0.0000 0.0000 0.0000
24 0.01 0.001 0.0000 0.0000 0.0000
25 0.0001 0.001 0.0000 0.0000 0.0000
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TABLE 29: Improvement in Mean Squared Error over OLS for the Six-Component
Force-Balance Simulation

Run No. Variance Ratio, γ Uncertainty, σε MLS OrthLS

1 1 0.2 0.0005 0.0005
2 0.25 0.2 0.0002 -0.0001
3 0.0625 0.2 0.0000* -0.0010
4 0.01 0.2 0.0000* -0.0013
5 0.0001 0.2 0.0000* -0.0017
6 1 0.1 0.0000* 0.0000*
7 0.25 0.1 0.0000* 0.0000
8 0.0625 0.1 0.0000* 0.0000
9 0.01 0.1 0.0000* -0.0001
10 0.0001 0.1 0.0000* -0.0001
11 1 0.05 0.0000* 0.0000*
12 0.25 0.05 0.0000* 0.0000
13 0.0625 0.05 0.0000* 0.0000
14 0.01 0.05 0.0000* 0.0000
15 0.0001 0.05 0.0000* 0.0000
16 1 0.01 0.0000* 0.0000*
17 0.25 0.01 0.0000* 0.0000*
18 0.0625 0.01 0.0000* 0.0000
19 0.01 0.01 0.0000* 0.0000
20 0.0001 0.01 0.0000* 0.0000
21 1 0.001 0.0000* 0.0000*
22 0.25 0.001 0.0000* 0.0000*
23 0.0625 0.001 0.0000* 0.0000
24 0.01 0.001 0.0000* 0.0000
25 0.0001 0.001 0.0000* 0.0000

Note: Asterisk represents an improvement of less than 0.00005
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TABLE 30: Percent Improvement in Mean Squared Error over OLS for the Six-
Component Force-Balance Simulation

Run No. Variance Ratio, γ Uncertainty, σε
Design #1

MLS OrthLS
1 1 0.2 5.48% 5.48%
2 0.25 0.2 1.21% -0.58%
3 0.0625 0.2 0.11% -6.13%
4 0.01 0.2 0.00%* -7.01%
5 0.0001 0.2 0.00%* -8.46%
6 1 0.1 1.09% 1.09%
7 0.25 0.1 0.27% -0.07%
8 0.0625 0.1 0.02% -0.81%
9 0.01 0.1 0.00%* -1.08%
10 0.0001 0.1 0.00%* -1.28%
11 1 0.05 0.25% 0.25%
12 0.25 0.05 0.07% 0.00%
13 0.0625 0.05 0.00%* -0.21%
14 0.01 0.05 0.00%* -0.27%
15 0.0001 0.05 0.00%* -0.27%
16 1 0.01 0.01% 0.01%
17 0.25 0.01 0.00%* 0.00%*
18 0.0625 0.01 0.00%* -0.01%
19 0.01 0.01 0.00%* -0.01%
20 0.0001 0.01 0.00%* -0.01%
21 1 0.001 0.00%* 0.00%*
22 0.25 0.001 0.00%* 0.00%*
23 0.0625 0.001 0.00%* 0.00%
24 0.01 0.001 0.00%* 0.00%
25 0.0001 0.001 0.00%* 0.00%

Note: Asterisk represents an improvement of less than 0.005%

TABLE 31: Analysis of Variance of the Mean Squared Error for the Six-Component
Force-Balance Simulation

Source DF SS MS F P
Method (OLS, MLS, OrthLS) 2 0.0000253 0.0000126 0.24 0.790

Error 4047 0.2165413 0.0000535
Total 4049 0.2165666
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TABLE 32: Percent Improvement in Mean Squared Error Relative to Response
Uncertainty for the Six-Component Force-Balance Simulation

Run No. Variance Ratio, γ Uncertainty, σε
Design #1

MLS OrthLS
1 1 0.2 11.45% 11.45%
2 0.25 0.2 6.41% 0.00%
3 0.0625 0.2 2.16% 0.00%
4 0.01 0.2 0.37% 0.00%
5 0.0001 0.2 0.00%* 0.00%
6 1 0.1 5.16% 5.16%
7 0.25 0.1 3.06% 0.00%
8 0.0625 0.1 1.04% 0.00%
9 0.01 0.1 0.18% 0.00%
10 0.0001 0.1 0.00%* 0.00%
11 1 0.05 2.46% 2.46%
12 0.25 0.05 1.57% 0.00%
13 0.0625 0.05 0.52% 0.00%
14 0.01 0.05 0.09% 0.00%
15 0.0001 0.05 0.00%* 0.00%
16 1 0.01 0.60% 0.60%
17 0.25 0.01 0.35% 0.05%
18 0.0625 0.01 0.12% 0.00%
19 0.01 0.01 0.02% 0.00%
20 0.0001 0.01 0.00%* 0.00%
21 1 0.001 0.32% 0.32%
22 0.25 0.001 0.20% 0.02%
23 0.0625 0.001 0.07% 0.00%
24 0.01 0.001 0.01% 0.00%
25 0.0001 0.001 0.00%* 0.00%

Note: Asterisk represents an improvement of less than 0.005%
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FIG. 17: Percent Improvement in Mean Squared Error of MLS for the Six-Component
Force-Balance Simulation
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CHAPTER 5

CONCLUSIONS

Measurement errors (ME) are a source of variability in a calibration experiment that

are often ignored due to the complexities associated with the regression analysis.

Standard regression techniques, such as ordinary least squares (OLS), are not appro-

priate in situations that contain MEs since these methods assume that the factors are

known without error. In practice, it is more appropriate to assume that the factors

are known within a certain level of uncertainty. Methods, such as those proposed by

Adcock (1878), Kummel (1879), and Deming (1931, 1964), are available for instances

where MEs are present in the data, but these methods are under-developed or limited

in calibration applications at NASA. For example, there are no known methods that

are capable of estimating the model for a 6-component force-balance while account-

ing for any MEs. Furthermore, it is reasonable to assume that a variance ratio of 1

is unlikely in calibration, which is the basis of using a method like orthogonal least

squares (OrthLS). Therefore, the method of modified least squares (MLS) derived

within this research is a method that accounts for any MEs and is employable for

simple or complex mathematical models.

Based on the scope of the simulations, the following are contributions of the MLS

method:

• New definition of residual error. In OLS, this is defined as the difference in the

observed and predicted values of the response, or Yi− Ŷi. However, the residual

error should include other sources of variability if present, such as MEs. For

MLS, the residual error is defined as a variance ratio-weighted distance between

the observed and predicted data point. Geometrically, this is represented by
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the length d, which is the distance that is minimized in MLS. In terms of quoted

accuracy of a measurement system, the former definition of residual error is an

underestimate of the true accuracy.

• Smaller mean squared error (MSE). The MSE for MLS is smaller than the

MSE for OLS for all the cases studied, and depending on the variance ratio

and accuracy of the measurement system, the improvement in MSE ranges from

0 to 5.5 percent. The improvements are attributed to small differences in the

estimates of the model coefficients. However, the practical impact of MLS is

seen when the MSE is compared with the accuracy of the measurement system.

Even in cases where the accuracy is high (i.e. σε ≤ 0.01), the improvements in

MSE are meaningful.

The pressure transducers for EFT-1 are an example of a simple linear instrument

with a stated accuracy of 0.1 percent of full-scale (F.S.). With the NIST-traceable

uncertainty in the reference standard, the variance ratio for this type of calibration is

on the order of 0.0625. From the results of the simulation, the practical improvement

in MSE is small, approximately 0.01 percent. The accuracies of the six components

on the NTF-113 family of force-balances range from 0.1 percent to 0.5 percent of

F.S. Considering the same value of variance ratio of 0.0625, the results indicate a

more substantial improvement in MSE by employing MLS. The improvement for the

6-component is at least 0.07 percent.

For multiple-component calibrations, the method of MLS is derived assuming that

the MEs are equal across the k factors. In practice, it is unlikely that the variances

are equal. Unequal errors translate into multiple variance ratios instead of a single

variance ratio, as used in the 6-component force-balance simulation. By allowing

multiple variance ratios, the individual factors are more appropriately weighted based

on the respective uncertainties. As a result, the potential impact of MLS could be
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greater when considering individual variance ratios.

Model reduction is a technique that is frequently used in calibration applications

to remove terms from the estimated model that do not detectably influence the

response. A statistical hypothesis test is used to evaluate whether a term in the

model is influential to a specified significance level. The test is based on Student’s

t-distribution (Casella and Berger, 2002). The model term is considered statistically

significant if ∣∣∣∣∣∣
β̂i

s.e.
(
β̂i

)

∣∣∣∣∣∣
> tn−2,0.025

where s.e.
(
β̂i

)
is the standard error if the βi estimate, which is given by

s.e.
(
β̂i

)
=

√√√√Var
(
β̂i

)

n
,

and tn−2,0.025 is the t-statistic with n − 2 degrees of freedom and a 95 percent con-

fidence level. While model reduction is not discussed within the research, it is sus-

pected that the terms deemed significant in OLS would also be significant in MLS

and OrthLS. The same is suspected of the terms that are determined not to be sig-

nificant. This rationale is based on the results that for any given estimated model

coefficient, the variance of the estimate is nearly equivalent across the three methods.

Finally, the simulations conducted within this research only represent a small

sample of all possible simulations that are possible. The simulations are representa-

tive of typical calibrations and life-cycles of measurement systems at NASA. However,

to understand the general statistical properties of the MLS estimators, one of the

following need to be completed:

• Analytical derivation of the properties. The estimators are ratios of random

variables, which complicates the derivation process. The delta method can be
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used to obtain an asymptotic approximation of the ratios (Parker et al., 2010).

• Larger-scale simulation. In order to make general inferences based on numerical

results, the simulation should consider a large number of additional calibration

designs, variance ratios, and measurement system accuracies. Furthermore, the

number of times that the coefficients are estimated in the simulation should be

expanded since 100 is considered a small number in estimating variance.

From a practical standpoint, a larger simulation is the logical choice in proceeding

with understanding the statistical properties of the estimators.
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APPENDIX A

SIMPLE LINEAR SIMULATION CODE

function [dist, ccdist, bmean, bvar] = simplinsim5(n,N,std,gamma)

% n: number of calibrations

% N: number of uses per calibration

% std: measurement system accuracy

% gamma: variance ratio (delta-to-epsilon)

warning off all;

options = optimset(’Algorithm’,’levenberg-marquardt’, ...

’TolFun’,1e-12,’TolX’,1e-12,’Display’,’off’);

tic;

%% Design Points

x1 = [-1; -1; 0; 0; 1; 1];

x2 = [-1; 0; 0; 0; 0; 1];

x3 = [-1; -1; -1; 1; 1; 1];

x1m = [1 -1; 1 -1; 1 0; 1 0; 1 1; 1 1];

x2m = [1 -1; 1 0; 1 0; 1 0; 1 0; 1 1];

x3m = [1 -1; 1 -1; 1 -1; 1 1; 1 1; 1 1];

%% Confirmation Points

xconf = [-1; -0.5; 0; 0.5; 1];

%% True Model and Responses

% b0 = 0, b1 = 1

y1 = x1;

y2 = x2;

y3 = x3;

yconf = xconf;
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%% Error in x and y --- Sampled from Bivariate Normal Distribution

sigma = [gamma*(std^2) 0; 0 (std^2)];

for i = 1:n

for j = 1:6

cal(i).des1(j,:) = mvnrnd([x1(j,1) y1(j,1)],sigma);

yobs_des1(j,i) = cal(i).des1(j,2);

cal(i).des2(j,:) = mvnrnd([x2(j,1) y2(j,1)],sigma);

yobs_des2(j,i) = cal(i).des2(j,2);

cal(i).des3(j,:) = mvnrnd([x3(j,1) y3(j,1)],sigma);

yobs_des3(j,i) = cal(i).des3(j,2);

end

%% Ordinary Least Squares Estimation

bord1(:,i) = regress(yobs_des1(:,i),x1m);

bord2(:,i) = regress(yobs_des2(:,i),x2m);

bord3(:,i) = regress(yobs_des3(:,i),x3m);

%% Ordinary Least Squares Distance

for j = 1:6

phi_ord1(j,i) = (pi/2) - atan(bord1(2,i));

phi_ord2(j,i) = (pi/2) - atan(bord2(2,i));

phi_ord3(j,i) = (pi/2) - atan(bord3(2,i));

alpha_ord1(j,i) = (pi/2) + (1-gamma)*atan(bord1(2,i));

alpha_ord2(j,i) = (pi/2) + (1-gamma)*atan(bord2(2,i));

alpha_ord3(j,i) = (pi/2) + (1-gamma)*atan(bord3(2,i));

dist_ord1(j,i) = ((sin(phi_ord1(j,i))/ ...

sin(alpha_ord1(j,i))) ...

(yobs_des1(j,i) - bord1(1,i) - bord1(2,i)*x1(j,1)));

dist_ord2(j,i) = ((sin(phi_ord2(j,i))/ ...

sin(alpha_ord2(j,i)))* ...

(yobs_des2(j,i) - bord2(1,i) - bord2(2,i)*x2(j,1)));

dist_ord3(j,i) = ((sin(phi_ord3(j,i))/ ...

sin(alpha_ord3(j,i)))* ...

(yobs_des3(j,i) - bord3(1,i) - bord3(2,i)*x3(j,1)));

end
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%% Orthogonal Least Squares Estimation

borth1(:,i) = lsqnonlin(@(borth1)(sin((pi/2) - ...

atan(borth1(2)))/sin(pi/2))*(yobs_des1(1:6,i) - ...

borth1(1) - borth1(2)*x1(1:6,1)),bord1(:,i),[],[],options);

borth2(:,i) = lsqnonlin(@(borth2)(sin((pi/2) - ...

atan(borth2(2)))/sin(pi/2))*(yobs_des2(1:6,i) - ...

borth2(1) - borth2(2)*x2(1:6,1)),bord2(:,i),[],[],options);

borth3(:,i) = lsqnonlin(@(borth3)(sin((pi/2) - ...

atan(borth3(2)))/sin(pi/2))*(yobs_des3(1:6,i) - ...

borth3(1) - borth3(2)*x3(1:6,1)),bord3(:,i),[],[],options);

for j = 1:6

phi_orth1(j,i) = (pi/2) - atan(borth1(2,i));

phi_orth2(j,i) = (pi/2) - atan(borth2(2,i));

phi_orth3(j,i) = (pi/2) - atan(borth3(2,i));

alpha_orth1(j,i) = (pi/2) + (1-gamma)*atan(borth1(2,i));

alpha_orth2(j,i) = (pi/2) + (1-gamma)*atan(borth2(2,i));

alpha_orth3(j,i) = (pi/2) + (1-gamma)*atan(borth3(2,i));

dist_orth1(j,i) = ((sin(phi_orth1(j,i))/ ...

sin(alpha_orth1(j,i)))*(yobs_des1(j,i) - ...

borth1(1,i) - borth1(2,i)*x1(j,1)));

dist_orth2(j,i) = ((sin(phi_orth2(j,i))/ ...

sin(alpha_orth2(j,i)))*(yobs_des2(j,i) - ...

borth2(1,i) - borth2(2,i)*x2(j,1)));

dist_orth3(j,i) = ((sin(phi_orth3(j,i))/ ...

sin(alpha_orth3(j,i)))*(yobs_des3(j,i) - ...

borth3(1,i) - borth3(2,i)*x3(j,1)));

end

%% Modified Least Squares

bmod1(:,i) = lsqnonlin(@(bmod1)(sin((pi/2) - atan(bmod1(2)))/ ...

sin((pi/2) + (1-gamma)*atan(bmod1(2))))* ...

(yobs_des1(1:6,i) - bmod1(1) - bmod1(2)*x1(1:6,1)), ...

bord1(:,i),[],[],options);

bmod2(:,i) = lsqnonlin(@(bmod2)(sin((pi/2) - atan(bmod2(2)))/ ...

sin((pi/2) + (1-gamma)*atan(bmod2(2))))* ...

(yobs_des2(1:6,i) - bmod2(1) - bmod2(2)*x2(1:6,1)), ...

bord2(:,i),[],[],options);

bmod3(:,i) = lsqnonlin(@(bmod3)(sin((pi/2) - atan(bmod3(2)))/ ...
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sin((pi/2) + (1-gamma)*atan(bmod3(2))))* ...

(yobs_des3(1:6,i) - bmod3(1) - bmod3(2)*x3(1:6,1)), ...

bord3(:,i),[],[],options);

for j = 1:6

phi_mod1(j,i) = (pi/2) - atan(bmod1(2,i));

phi_mod2(j,i) = (pi/2) - atan(bmod2(2,i));

phi_mod3(j,i) = (pi/2) - atan(bmod3(2,i));

alpha_mod1(j,i) = (pi/2) + (1-gamma)*atan(bmod1(2,i));

alpha_mod2(j,i) = (pi/2) + (1-gamma)*atan(bmod2(2,i));

alpha_mod3(j,i) = (pi/2) + (1-gamma)*atan(bmod3(2,i));

dist_mod1(j,i) = ((sin(phi_mod1(j,i))/ ...

sin(alpha_mod1(j,i)))*(yobs_des1(j,i) - ...

bmod1(1,i) - bmod1(2,i)*x1(j,1)));

dist_mod2(j,i) = ((sin(phi_mod2(j,i))/ ...

sin(alpha_mod2(j,i)))*(yobs_des2(j,i) - ...

bmod2(1,i) - bmod2(2,i)*x2(j,1)));

dist_mod3(j,i) = ((sin(phi_mod3(j,i))/ ...

sin(alpha_mod3(j,i)))*(yobs_des3(j,i) - ...

bmod3(1,i) - bmod3(2,i)*x3(j,1)));

end

end

for j = 1:6

dist_ord1(j,n+1) = 0;

dist_ord2(j,n+1) = 0;

dist_ord3(j,n+1) = 0;

dist_mod1(j,n+1) = 0;

dist_mod2(j,n+1) = 0;

dist_mod3(j,n+1) = 0;

dist_orth1(j,n+1) = 0;

dist_orth2(j,n+1) = 0;

dist_orth3(j,n+1) = 0;

dist_ord1(j,n+2) = mean(dist_ord1(j,1:n));

dist_ord2(j,n+2) = mean(dist_ord2(j,1:n));

dist_ord3(j,n+2) = mean(dist_ord3(j,1:n));

dist_mod1(j,n+2) = mean(dist_mod1(j,1:n));
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dist_mod2(j,n+2) = mean(dist_mod2(j,1:n));

dist_mod3(j,n+2) = mean(dist_mod3(j,1:n));

dist_orth1(j,n+2) = mean(dist_orth1(j,1:n));

dist_orth2(j,n+2) = mean(dist_orth2(j,1:n));

dist_orth3(j,n+2) = mean(dist_orth3(j,1:n));

dist_ord1(j,n+3) = var(dist_ord1(j,1:n));

dist_ord2(j,n+3) = var(dist_ord2(j,1:n));

dist_ord3(j,n+3) = var(dist_ord3(j,1:n));

dist_mod1(j,n+3) = var(dist_mod1(j,1:n));

dist_mod2(j,n+3) = var(dist_mod2(j,1:n));

dist_mod3(j,n+3) = var(dist_mod3(j,1:n));

dist_orth1(j,n+3) = var(dist_orth1(j,1:n));

dist_orth2(j,n+3) = var(dist_orth2(j,1:n));

dist_orth3(j,n+3) = var(dist_orth3(j,1:n));

dist_ord1(j,n+4) = dist_ord1(j,n+2)^2 + dist_ord1(j,n+3);

dist_ord2(j,n+4) = dist_ord2(j,n+2)^2 + dist_ord2(j,n+3);

dist_ord3(j,n+4) = dist_ord3(j,n+2)^2 + dist_ord3(j,n+3);

dist_mod1(j,n+4) = dist_mod1(j,n+2)^2 + dist_mod1(j,n+3);

dist_mod2(j,n+4) = dist_mod2(j,n+2)^2 + dist_mod2(j,n+3);

dist_mod3(j,n+4) = dist_mod3(j,n+2)^2 + dist_mod3(j,n+3);

dist_orth1(j,n+4) = dist_orth1(j,n+2)^2 + dist_orth1(j,n+3);

dist_orth2(j,n+4) = dist_orth2(j,n+2)^2 + dist_orth2(j,n+3);

dist_orth3(j,n+4) = dist_orth3(j,n+2)^2 + dist_orth3(j,n+3);

end

dist1 = [dist_ord1(1:6,n+2:n+4); 0 0 0; ...

dist_mod1(1:6,n+2:n+4); 0 0 0; ...

dist_orth1(1:6,n+2:n+4)];

dist2 = [dist_ord2(1:6,n+2:n+4); 0 0 0; ...

dist_mod2(1:6,n+2:n+4); 0 0 0; ...

dist_orth2(1:6,n+2:n+4)];

dist3 = [dist_ord3(1:6,n+2:n+4); 0 0 0; ...

dist_mod3(1:6,n+2:n+4); 0 0 0; ...

dist_orth3(1:6,n+2:n+4)];

dist = [dist1 zeros(20,1) dist2 zeros(20,1) dist3];
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%% Confirmation Point Estimation

for i = 1:n

for k = 1:N

for j = 1:5

cal(i,k).conf(j,:) = ...

mvnrnd([xconf(j,1) yconf(j,1)], sigma);

yobs(i).conf(j,k) = cal(i,k).conf(j,2);

cdist(i).ord1(j,k) = ((sin(phi_ord1(j,i))/ ...

sin(alpha_ord1(j,i)))*(yobs(i).conf(j,k) - ...

bord1(1,i) - bord1(2,i)*xconf(j,1)));

cdist(i).ord2(j,k) = ((sin(phi_ord2(j,i))/ ...

sin(alpha_ord2(j,i)))*(yobs(i).conf(j,k) - ...

bord2(1,i) - bord2(2,i)*xconf(j,1)));

cdist(i).ord3(j,k) = ((sin(phi_ord3(j,i))/ ...

sin(alpha_ord3(j,i)))*(yobs(i).conf(j,k) - ...

bord3(1,i) - bord3(2,i)*xconf(j,1)));

cdist(i).mod1(j,k) = ((sin(phi_mod1(j,i))/ ...

sin(alpha_mod1(j,i)))*(yobs(i).conf(j,k) - ...

bmod1(1,i) - bmod1(2,i)*xconf(j,1)));

cdist(i).mod2(j,k) = ((sin(phi_mod2(j,i))/ ...

sin(alpha_mod2(j,i)))*(yobs(i).conf(j,k) - ...

bmod2(1,i) - bmod2(2,i)*xconf(j,1)));

cdist(i).mod3(j,k) = ((sin(phi_mod3(j,i))/ ...

sin(alpha_mod3(j,i)))*(yobs(i).conf(j,k) - ...

bmod3(1,i) - bmod3(2,i)*xconf(j,1)));

cdist(i).orth1(j,k) = ((sin(phi_orth1(j,i))/ ...

sin(alpha_orth1(j,i)))*(yobs(i).conf(j,k) - ...

borth1(1,i) - borth1(2,i)*xconf(j,1)));

cdist(i).orth2(j,k) = ((sin(phi_orth2(j,i))/ ...

sin(alpha_orth2(j,i)))*(yobs(i).conf(j,k) - ...

borth2(1,i) - borth2(2,i)*xconf(j,1)));

cdist(i).orth3(j,k) = ((sin(phi_orth3(j,i))/ ...

sin(alpha_orth3(j,i)))*(yobs(i).conf(j,k) - ...

borth3(1,i) - borth3(2,i)*xconf(j,1)));

end

end
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for j = 1:5

cdist(i).ord1(j,N+1) = 0;

cdist(i).ord2(j,N+1) = 0;

cdist(i).ord3(j,N+1) = 0;

cdist(i).mod1(j,N+1) = 0;

cdist(i).mod2(j,N+1) = 0;

cdist(i).mod3(j,N+1) = 0;

cdist(i).orth1(j,N+1) = 0;

cdist(i).orth2(j,N+1) = 0;

cdist(i).orth3(j,N+1) = 0;

cdist(i).ord1(j,N+2) = mean(cdist(i).ord1(j,1:N));

cdist(i).ord2(j,N+2) = mean(cdist(i).ord2(j,1:N));

cdist(i).ord3(j,N+2) = mean(cdist(i).ord3(j,1:N));

cdist(i).mod1(j,N+2) = mean(cdist(i).mod1(j,1:N));

cdist(i).mod2(j,N+2) = mean(cdist(i).mod2(j,1:N));

cdist(i).mod3(j,N+2) = mean(cdist(i).mod3(j,1:N));

cdist(i).orth1(j,N+2) = mean(cdist(i).orth1(j,1:N));

cdist(i).orth2(j,N+2) = mean(cdist(i).orth2(j,1:N));

cdist(i).orth3(j,N+2) = mean(cdist(i).orth3(j,1:N));

end

for j = 1:5

ccdist_ord1(j,i) = cdist(i).ord1(j,N+2);

ccdist_ord2(j,i) = cdist(i).ord2(j,N+2);

ccdist_ord3(j,i) = cdist(i).ord3(j,N+2);

ccdist_mod1(j,i) = cdist(i).mod1(j,N+2);

ccdist_mod2(j,i) = cdist(i).mod2(j,N+2);

ccdist_mod3(j,i) = cdist(i).mod3(j,N+2);

ccdist_orth1(j,i) = cdist(i).orth1(j,N+2);

ccdist_orth2(j,i) = cdist(i).orth2(j,N+2);

ccdist_orth3(j,i) = cdist(i).orth3(j,N+2);

end

end

for j = 1:5
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ccdist_ord1(j,n+1) = 0;

ccdist_ord2(j,n+1) = 0;

ccdist_ord3(j,n+1) = 0;

ccdist_mod1(j,n+1) = 0;

ccdist_mod2(j,n+1) = 0;

ccdist_mod3(j,n+1) = 0;

ccdist_orth1(j,n+1) = 0;

ccdist_orth2(j,n+1) = 0;

ccdist_orth3(j,n+1) = 0;

ccdist_ord1(j,n+2) = mean(ccdist_ord1(j,1:n));

ccdist_ord2(j,n+2) = mean(ccdist_ord2(j,1:n));

ccdist_ord3(j,n+2) = mean(ccdist_ord3(j,1:n));

ccdist_mod1(j,n+2) = mean(ccdist_mod1(j,1:n));

ccdist_mod2(j,n+2) = mean(ccdist_mod2(j,1:n));

ccdist_mod3(j,n+2) = mean(ccdist_mod3(j,1:n));

ccdist_orth1(j,n+2) = mean(ccdist_orth1(j,1:n));

ccdist_orth2(j,n+2) = mean(ccdist_orth2(j,1:n));

ccdist_orth3(j,n+2) = mean(ccdist_orth3(j,1:n));

ccdist_ord1(j,n+3) = var(ccdist_ord1(j,1:n));

ccdist_ord2(j,n+3) = var(ccdist_ord2(j,1:n));

ccdist_ord3(j,n+3) = var(ccdist_ord3(j,1:n));

ccdist_mod1(j,n+3) = var(ccdist_mod1(j,1:n));

ccdist_mod2(j,n+3) = var(ccdist_mod2(j,1:n));

ccdist_mod3(j,n+3) = var(ccdist_mod3(j,1:n));

ccdist_orth1(j,n+3) = var(ccdist_orth1(j,1:n));

ccdist_orth2(j,n+3) = var(ccdist_orth2(j,1:n));

ccdist_orth3(j,n+3) = var(ccdist_orth3(j,1:n));

ccdist_ord1(j,n+4) = ccdist_ord1(j,n+2)^2 + ...

ccdist_ord1(j,n+3);

ccdist_ord2(j,n+4) = ccdist_ord2(j,n+2)^2 + ...

ccdist_ord2(j,n+3);

ccdist_ord3(j,n+4) = ccdist_ord3(j,n+2)^2 + ...

ccdist_ord3(j,n+3);

ccdist_mod1(j,n+4) = ccdist_mod1(j,n+2)^2 + ...
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ccdist_mod1(j,n+3);

ccdist_mod2(j,n+4) = ccdist_mod2(j,n+2)^2 + ...

ccdist_mod2(j,n+3);

ccdist_mod3(j,n+4) = ccdist_mod3(j,n+2)^2 + ...

ccdist_mod3(j,n+3);

ccdist_orth1(j,n+4) = ccdist_orth1(j,n+2)^2 + ...

ccdist_orth1(j,n+3);

ccdist_orth2(j,n+4) = ccdist_orth2(j,n+2)^2 + ...

ccdist_orth2(j,n+3);

ccdist_orth3(j,n+4) = ccdist_orth3(j,n+2)^2 + ...

ccdist_orth3(j,n+3);

end

ccdist1 = [ccdist_ord1(1:5,n+2:n+4); 0 0 0; ...

ccdist_mod1(1:5,n+2:n+4); 0 0 0; ...

ccdist_orth1(1:5,n+2:n+4)];

ccdist2 = [ccdist_ord2(1:5,n+2:n+4); 0 0 0; ...

ccdist_mod2(1:5,n+2:n+4); 0 0 0; ...

ccdist_orth2(1:5,n+2:n+4)];

ccdist3 = [ccdist_ord3(1:5,n+2:n+4); 0 0 0; ...

ccdist_mod3(1:5,n+2:n+4); 0 0 0; ...

ccdist_orth3(1:5,n+2:n+4)];

ccdist = [ccdist1 zeros(17,1) ccdist2 zeros(17,1) ccdist3];

%% Mean and Variance of Coefficients over n Calibrations for each

%% Estimator and Design

bmean = [mean(bord1(1,:)) mean(bmod1(1,:)) mean(borth1(1,:)) 0 ...

mean(bord2(1,:)) mean(bmod2(1,:)) mean(borth2(1,:)) 0 ...

mean(bord3(1,:)) mean(bmod3(1,:)) mean(borth3(1,:)); ...

mean(bord1(2,:)) mean(bmod1(2,:)) mean(borth1(2,:)) 0 ...

mean(bord2(2,:)) mean(bmod2(2,:)) mean(borth2(2,:)) 0 ...

mean(bord3(2,:)) mean(bmod3(2,:)) mean(borth3(2,:));];

bvar = [var(bord1(1,:)) var(bmod1(1,:)) var(borth1(1,:)) 0 ...

var(bord2(1,:)) var(bmod2(1,:)) var(borth2(1,:)) 0 ...

var(bord3(1,:)) var(bmod3(1,:)) var(borth3(1,:)); ...

var(bord1(2,:)) var(bmod1(2,:)) var(borth1(2,:)) 0 ...

var(bord2(2,:)) var(bmod2(2,:)) var(borth2(2,:)) 0 ...

var(bord3(2,:)) var(bmod3(2,:)) var(borth3(2,:));];

t = toc;

tmin = t/60;
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disp([’Elapsed time is ’, num2str(tmin), ’ minutes.’]);
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APPENDIX B

SIMPLE QUADRATIC SIMULATION CODE

function [dist, ccdist, bmean, bvar] = simpquadsim5(n,N,std,gamma)

% n: number of calibrations

% N: number of uses per calibration

% std: measurement system accuracy

% gamma: variance ratio (delta-to-epsilon)

warning off all;

options = optimset(’Algorithm’,’levenberg-marquardt’,...

’TolFun’,1e-12,’TolX’,1e-12,’Display’,’off’);

tic;

%% Design Points

x1 = [-1; -1; 0; 0; 1; 1];

x2 = [-1; 0; 0; 0; 0; 1];

x1m = [1 -1 1; 1 -1 1; 1 0 0; 1 0 0; 1 1 1; 1 1 1];

x2m = [1 -1 1; 1 0 0; 1 0 0; 1 0 0; 1 0 0; 1 1 1];

%% Confirmation Points

xconf = [-1; -0.5; 0; 0.5; 1];

%% True Model and Responses

% b0 = 0, b1 = 1, b11 = 0.2

y1 = x1 + 0.2*(x1.^2);

y2 = x2 + 0.2*(x2.^2);

yconf = xconf + 0.2*(xconf.^2);

%% Error in x and y --- Sampled from Bivariate Normal Distribution

sigma = [gamma*(std^2) 0; 0 (std^2)];
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for i = 1:n

for j = 1:6

cal(i).des1(j,:) = mvnrnd([x1(j,1) y1(j,1)],sigma);

yobs_des1(j,i) = cal(i).des1(j,2);

cal(i).des2(j,:) = mvnrnd([x2(j,1) y2(j,1)],sigma);

yobs_des2(j,i) = cal(i).des2(j,2);

end

%% Ordinary Least Squares Estimation

bord1(:,i) = regress(yobs_des1(:,i),x1m);

bord2(:,i) = regress(yobs_des2(:,i),x2m);

%% Ordinary Least Squares Distance

for j = 1:6

phi_ord1(j,i) = (pi/2) - atan(bord1(2,i));

phi_ord2(j,i) = (pi/2) - atan(bord2(2,i));

alpha_ord1(j,i) = (pi/2) + (1-gamma)*atan(bord1(2,i));

alpha_ord2(j,i) = (pi/2) + (1-gamma)*atan(bord2(2,i));

dist_ord1(j,i) = ((sin(phi_ord1(j,i))/...

sin(alpha_ord1(j,i)))*(yobs_des1(j,i) - bord1(1,i) - ...

bord1(2,i)*x1(j,1) - bord1(3,i)*x1(j,1)*x1(j,1)));

dist_ord2(j,i) = ((sin(phi_ord2(j,i))/...

sin(alpha_ord2(j,i)))*(yobs_des2(j,i) - bord2(1,i) - ...

bord2(2,i)*x2(j,1) - bord2(3,i)*x2(j,1)*x2(j,1)));

end

%% Orthogonal Least Squares Estimation

borth1(:,i) = lsqnonlin(@(borth1)(sin((pi/2) - ...

atan(borth1(2)))/sin(pi/2))*(yobs_des1(1:6,i) - ...

borth1(1) - borth1(2)*x1(1:6,1) - borth1(3)*...

x1(1:6,1).^2),bord1(:,i),[],[],options);

borth2(:,i) = lsqnonlin(@(borth2)(sin((pi/2) - ...

atan(borth2(2)))/sin(pi/2))*(yobs_des2(1:6,i) - ...

borth2(1) - borth2(2)*x2(1:6,1) - borth2(3)*...

x2(1:6,1).^2),bord2(:,i),[],[],options);
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for j = 1:6

phi_orth1(j,i) = (pi/2) - atan(borth1(2,i));

phi_orth2(j,i) = (pi/2) - atan(borth2(2,i));

alpha_orth1(j,i) = (pi/2) + (1-gamma)*atan(borth1(2,i));

alpha_orth2(j,i) = (pi/2) + (1-gamma)*atan(borth2(2,i));

dist_orth1(j,i) = ((sin(phi_orth1(j,i))/...

sin(alpha_orth1(j,i)))*(yobs_des1(j,i) - borth1(1,i) - ...

borth1(2,i)*x1(j,1) - borth1(3)*x1(j,1)^2));

dist_orth2(j,i) = ((sin(phi_orth2(j,i))/...

sin(alpha_orth2(j,i)))*(yobs_des2(j,i) - borth2(1,i) - ...

borth2(2,i)*x2(j,1) - borth2(3)*x2(j,1)^2));

end

dist_orth1(7,i) = 0;

dist_orth2(7,i) = 0;

dist_orth1(8,i) = sum(dist_orth1(1:6,i));

dist_orth2(8,i) = sum(dist_orth2(1:6,i));

%% Modified Least Squares

bmod1(:,i) = lsqnonlin(@(bmod1)(sin((pi/2) - ...

atan(bmod1(2)))/sin((pi/2) + (1-gamma)*atan(bmod1(2))))*...

(yobs_des1(1:6,i) - bmod1(1) - bmod1(2)*x1(1:6,1) - ...

bmod1(3)*x1(1:6,1).^2),bord1(:,i),[],[],options);

bmod2(:,i) = lsqnonlin(@(bmod2)(sin((pi/2) - ...

atan(bmod2(2)))/sin((pi/2) + (1-gamma)*atan(bmod2(2))))*...

(yobs_des2(1:6,i) - bmod2(1) - bmod2(2)*x2(1:6,1) - ...

bmod2(3)*x2(1:6,1).^2),bord2(:,i),[],[],options);

for j = 1:6

phi_mod1(j,i) = (pi/2) - atan(bmod1(2,i));

phi_mod2(j,i) = (pi/2) - atan(bmod2(2,i));

alpha_mod1(j,i) = (pi/2) + (1-gamma)*atan(bmod1(2,i));

alpha_mod2(j,i) = (pi/2) + (1-gamma)*atan(bmod2(2,i));

dist_mod1(j,i) = ((sin(phi_mod1(j,i))/...

sin(alpha_mod1(j,i)))*(yobs_des1(j,i) - bmod1(1,i) - ...

bmod1(2,i)*x1(j,1) - bmod1(3)*x1(j,1)^2));

dist_mod2(j,i) = ((sin(phi_mod2(j,i))/...
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sin(alpha_mod2(j,i)))*(yobs_des2(j,i) - bmod2(1,i) - ...

bmod2(2,i)*x2(j,1) - bmod2(3)*x2(j,1)^2));

end

end

for j = 1:6

dist_ord1(j,n+1) = 0;

dist_ord2(j,n+1) = 0;

dist_mod1(j,n+1) = 0;

dist_mod2(j,n+1) = 0;

dist_orth1(j,n+1) = 0;

dist_orth2(j,n+1) = 0;

dist_ord1(j,n+2) = mean(dist_ord1(j,1:n));

dist_ord2(j,n+2) = mean(dist_ord2(j,1:n));

dist_mod1(j,n+2) = mean(dist_mod1(j,1:n));

dist_mod2(j,n+2) = mean(dist_mod2(j,1:n));

dist_orth1(j,n+2) = mean(dist_orth1(j,1:n));

dist_orth2(j,n+2) = mean(dist_orth2(j,1:n));

dist_ord1(j,n+3) = var(dist_ord1(j,1:n));

dist_ord2(j,n+3) = var(dist_ord2(j,1:n));

dist_mod1(j,n+3) = var(dist_mod1(j,1:n));

dist_mod2(j,n+3) = var(dist_mod2(j,1:n));

dist_orth1(j,n+3) = var(dist_orth1(j,1:n));

dist_orth2(j,n+3) = var(dist_orth2(j,1:n));

dist_ord1(j,n+4) = dist_ord1(j,n+2)^2 + dist_ord1(j,n+3);

dist_ord2(j,n+4) = dist_ord2(j,n+2)^2 + dist_ord2(j,n+3);

dist_mod1(j,n+4) = dist_mod1(j,n+2)^2 + dist_mod1(j,n+3);

dist_mod2(j,n+4) = dist_mod2(j,n+2)^2 + dist_mod2(j,n+3);

dist_orth1(j,n+4) = dist_orth1(j,n+2)^2 + dist_orth1(j,n+3);

dist_orth2(j,n+4) = dist_orth2(j,n+2)^2 + dist_orth2(j,n+3);

end
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dist1 = [dist_ord1(1:6,n+2:n+4); 0 0 0; ...

dist_mod1(1:6,n+2:n+4); 0 0 0; ...

dist_orth1(1:6,n+2:n+4)];

dist2 = [dist_ord2(1:6,n+2:n+4); 0 0 0; ...

dist_mod2(1:6,n+2:n+4); 0 0 0; ...

dist_orth2(1:6,n+2:n+4)];

dist = [dist1 zeros(20,1) dist2];

for i = 1:n

for k = 1:N

for j = 1:5

cal(i,k).conf(j,:) = ...

mvnrnd([xconf(j,1) yconf(j,1)], sigma);

yobs(i).conf(j,k) = cal(i,k).conf(j,2);

cdist(i).ord1(j,k) = ((sin(phi_ord1(j,i))/...

sin(alpha_ord1(j,i)))*(yobs(i).conf(j,k) - ...

bord1(1,i) - bord1(2,i)*xconf(j,1) - ...

bord1(3,i)*xconf(j,1)^2));

cdist(i).ord2(j,k) = ((sin(phi_ord2(j,i))/...

sin(alpha_ord2(j,i)))*(yobs(i).conf(j,k) - ...

bord2(1,i) - bord2(2,i)*xconf(j,1) - ...

bord2(3,i)*xconf(j,1)^2));

cdist(i).mod1(j,k) = ((sin(phi_mod1(j,i))/...

sin(alpha_mod1(j,i)))*(yobs(i).conf(j,k) - ...

bmod1(1,i) - bmod1(2,i)*xconf(j,1) - ...

bmod1(3,i)*xconf(j,1)^2));

cdist(i).mod2(j,k) = ((sin(phi_mod2(j,i))/...

sin(alpha_mod2(j,i)))*(yobs(i).conf(j,k) - ...

bmod2(1,i) - bmod2(2,i)*xconf(j,1) - ...

bmod2(3,i)*xconf(j,1)^2));

cdist(i).orth1(j,k) = ((sin(phi_orth1(j,i))/...

sin(alpha_orth1(j,i)))*(yobs(i).conf(j,k) - ...

borth1(1,i) - borth1(2,i)*xconf(j,1) - ...

borth1(3,i)*xconf(j,1)^2));

cdist(i).orth2(j,k) = ((sin(phi_orth2(j,i))/...

sin(alpha_orth2(j,i)))*(yobs(i).conf(j,k) - ...

borth2(1,i) - borth2(2,i)*xconf(j,1) - ...

borth2(3,i)*xconf(j,1)^2));
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end

end

for j = 1:5

cdist(i).ord1(j,N+1) = 0;

cdist(i).ord2(j,N+1) = 0;

cdist(i).mod1(j,N+1) = 0;

cdist(i).mod2(j,N+1) = 0;

cdist(i).orth1(j,N+1) = 0;

cdist(i).orth2(j,N+1) = 0;

cdist(i).ord1(j,N+2) = mean(cdist(i).ord1(j,1:N));

cdist(i).ord2(j,N+2) = mean(cdist(i).ord2(j,1:N));

cdist(i).mod1(j,N+2) = mean(cdist(i).mod1(j,1:N));

cdist(i).mod2(j,N+2) = mean(cdist(i).mod2(j,1:N));

cdist(i).orth1(j,N+2) = mean(cdist(i).orth1(j,1:N));

cdist(i).orth2(j,N+2) = mean(cdist(i).orth2(j,1:N));

cdist(i).ord1(j,N+3) = var(cdist(i).ord1(j,1:N));

cdist(i).ord2(j,N+3) = var(cdist(i).ord2(j,1:N));

cdist(i).mod1(j,N+3) = var(cdist(i).mod1(j,1:N));

cdist(i).mod2(j,N+3) = var(cdist(i).mod2(j,1:N));

cdist(i).orth1(j,N+3) = var(cdist(i).orth1(j,1:N));

cdist(i).orth2(j,N+3) = var(cdist(i).orth2(j,1:N));

end

for j = 1:5

ccdist_ord1(j,i) = cdist(i).ord1(j,N+2);

ccdist_ord2(j,i) = cdist(i).ord2(j,N+2);

ccdist_mod1(j,i) = cdist(i).mod1(j,N+2);

ccdist_mod2(j,i) = cdist(i).mod2(j,N+2);

ccdist_orth1(j,i) = cdist(i).orth1(j,N+2);

ccdist_orth2(j,i) = cdist(i).orth2(j,N+2);

end
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end

for j = 1:5

ccdist_ord1(j,n+1) = 0;

ccdist_ord2(j,n+1) = 0;

ccdist_mod1(j,n+1) = 0;

ccdist_mod2(j,n+1) = 0;

ccdist_orth1(j,n+1) = 0;

ccdist_orth2(j,n+1) = 0;

ccdist_ord1(j,n+2) = mean(ccdist_ord1(j,1:n));

ccdist_ord2(j,n+2) = mean(ccdist_ord2(j,1:n));

ccdist_mod1(j,n+2) = mean(ccdist_mod1(j,1:n));

ccdist_mod2(j,n+2) = mean(ccdist_mod2(j,1:n));

ccdist_orth1(j,n+2) = mean(ccdist_orth1(j,1:n));

ccdist_orth2(j,n+2) = mean(ccdist_orth2(j,1:n));

ccdist_ord1(j,n+3) = var(ccdist_ord1(j,1:n));

ccdist_ord2(j,n+3) = var(ccdist_ord2(j,1:n));

ccdist_mod1(j,n+3) = var(ccdist_mod1(j,1:n));

ccdist_mod2(j,n+3) = var(ccdist_mod2(j,1:n));

ccdist_orth1(j,n+3) = var(ccdist_orth1(j,1:n));

ccdist_orth2(j,n+3) = var(ccdist_orth2(j,1:n));

ccdist_ord1(j,n+4) = ccdist_ord1(j,n+2)^2 + ccdist_ord1(j,n+3);

ccdist_ord2(j,n+4) = ccdist_ord2(j,n+2)^2 + ccdist_ord2(j,n+3);

ccdist_mod1(j,n+4) = ccdist_mod1(j,n+2)^2 + ccdist_mod1(j,n+3);

ccdist_mod2(j,n+4) = ccdist_mod2(j,n+2)^2 + ccdist_mod2(j,n+3);

ccdist_orth1(j,n+4) = ccdist_orth1(j,n+2)^2 + ccdist_orth1(j,n+3);

ccdist_orth2(j,n+4) = ccdist_orth2(j,n+2)^2 + ccdist_orth2(j,n+3);

end

ccdist1 = [ccdist_ord1(1:5,n+2:n+4); 0 0 0; ...

ccdist_mod1(1:5,n+2:n+4); 0 0 0; ...

ccdist_orth1(1:5,n+2:n+4)];
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ccdist2 = [ccdist_ord2(1:5,n+2:n+4); 0 0 0; ...

ccdist_mod2(1:5,n+2:n+4); 0 0 0; ...

ccdist_orth2(1:5,n+2:n+4)];

ccdist = [ccdist1 zeros(17,1) ccdist2];

%% Mean and Variance of Coefficients over n Calibrations for

%% each Estimator and Design

bmean = [mean(bord1(1,:)) mean(bmod1(1,:)) mean(borth1(1,:)) 0 ...

mean(bord2(1,:)) mean(bmod2(1,:)) mean(borth2(1,:)); ...

mean(bord1(2,:)) mean(bmod1(2,:)) mean(borth1(2,:)) 0 ...

mean(bord2(2,:)) mean(bmod2(2,:)) mean(borth2(2,:));];

bvar = [var(bord1(1,:)) var(bmod1(1,:)) var(borth1(1,:)) 0 ...

var(bord2(1,:)) var(bmod2(1,:)) var(borth2(1,:)); ...

var(bord1(2,:)) var(bmod1(2,:)) var(borth1(2,:)) 0 ...

var(bord2(2,:)) var(bmod2(2,:)) var(borth2(2,:));];

t = toc;

tmin = t/60;

disp([’Elapsed time is ’, num2str(tmin), ’ minutes.’]);
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APPENDIX C

6-COMPONENT FORCE-BALANCE SIMULATION

CODE

function [dist, ccdist, bmean, bvar] = multsim5(n,N,std,gamma)

% n: number of calibrations

% N: number of uses per calibration

% std: measurement system accuracy

% gamma: variance ratio (delta-to-epsilon)

warning off all;

options = optimset(’Algorithm’,’levenberg-marquardt’,...

’TolFun’,1e-12,’TolX’,1e-12,’Display’,’off’);

tic;

%% Design Points - Central Composite Design

x1 = [-0.639 -0.639 -0.639 -0.639 -0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 -0.639 0.639 0.639 0.639 0.639; ...

0.000 -1.00 0.000 0.000 0.000 0.000; ...

0.639 0.639 0.639 -0.639 -0.639 0.639; ...

-0.639 0.639 -0.639 0.639 0.639 0.639; ...

0.639 0.639 0.639 0.639 0.639 0.639; ...

0.639 -0.639 -0.639 0.639 -0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 1.00; ...

-0.639 -0.639 0.639 0.639 -0.639 -0.639; ...

0.639 -0.639 0.639 -0.639 -0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

1.00 0.000 0.000 0.000 0.000 0.000; ...

0.639 0.639 -0.639 -0.639 0.639 0.639; ...

0.639 -0.639 -0.639 -0.639 -0.639 0.639; ...

0.639 -0.639 0.639 0.639 -0.639 0.639; ...

0.000 0.000 0.000 0.000 0.000 -1.00; ...

-0.639 0.639 0.639 0.639 0.639 -0.639; ...
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-1.00 0.000 0.000 0.000 0.000 0.000; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 -0.639 -0.639 0.639 -0.639 0.639; ...

0.639 0.639 -0.639 -0.639 -0.639 -0.639; ...

0.639 0.639 0.639 -0.639 0.639 -0.639; ...

-0.639 0.639 0.639 0.639 -0.639 0.639; ...

-0.639 0.639 -0.639 0.639 -0.639 -0.639; ...

0.000 0.000 0.000 -1.00 0.000 0.000; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 0.639 0.639 -0.639 -0.639 -0.639; ...

0.639 -0.639 -0.639 -0.639 0.639 -0.639; ...

0.000 1.00 0.000 0.000 0.000 0.000; ...

-0.639 -0.639 -0.639 -0.639 0.639 0.639; ...

0.639 0.639 -0.639 0.639 0.639 -0.639; ...

0.639 -0.639 0.639 0.639 0.639 -0.639; ...

0.639 0.639 -0.639 0.639 -0.639 0.639; ...

0.639 -0.639 0.639 -0.639 0.639 0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 -0.639 0.639 -0.639 0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

0.000 0.000 0.000 0.000 1.00 0.000; ...

0.000 0.000 0.000 1.00 0.000 0.000; ...

0.639 -0.639 -0.639 0.639 0.639 0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

0.000 0.000 0.000 0.000 -1.00 0.000; ...

-0.639 0.639 0.639 -0.639 0.639 0.639; ...

0.639 0.639 0.639 0.639 -0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 0.639 -0.639 -0.639 0.639 -0.639; ...

0.000 0.000 1.00 0.000 0.000 0.000; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 -0.639 0.639 -0.639 -0.639 0.639; ...

-0.639 -0.639 -0.639 0.639 0.639 -0.639; ...

0.000 0.000 0.000 0.000 0.000 0.000; ...

-0.639 0.639 -0.639 -0.639 -0.639 0.639; ...

0.000 0.000 -1.00 0.000 0.000 0.000];

x1m = x2fx(x1,’quadratic’);

%% Confirmation Points

xconf = [-0.138 -0.600 -0.414 0.264 -0.138 -0.600; ...

-0.600 -0.600 -0.600 0.600 0.600 0.366; ...

-0.600 -0.600 0.372 -0.600 -0.600 -0.600; ...
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-0.126 0.600 -0.0960 -0.600 -0.228 -0.270; ...

-0.126 0.600 -0.0960 -0.600 -0.228 -0.270; ...

-0.600 -0.600 0.600 0.600 0.600 -0.600; ...

-0.600 0.600 0.600 -0.600 -0.600 0.600; ...

-0.528 0.600 -0.348 0.288 -0.00600 0.600; ...

0.600 -0.600 -0.600 -0.600 -0.258 0.600; ...

-0.600 0.600 -0.600 0.600 -0.600 -0.600; ...

0.600 0.228 -0.552 0.600 0.600 0.600; ...

-0.540 -0.408 0.0720 -0.474 0.462 0.600; ...

-0.450 -0.120 -0.600 -0.288 -0.600 0.168; ...

-0.600 -0.124 0.150 0.600 -0.264 -0.0480; ...

-0.186 0.174 0.600 0.000 -0.306 -0.600; ...

-0.600 -0.124 0.150 0.600 -0.264 -0.0480; ...

0.504 -0.558 -0.0942 -0.0780 0.600 -0.0840; ...

0.600 0.600 0.600 -0.600 0.600 -0.600; ...

0.600 -0.120 -0.600 -0.600 -0.600 -0.600; ...

0.600 0.528 -0.600 0.234 0.0809 -0.216; ...

0.600 0.600 0.162 0.600 -0.227 -0.600; ...

0.0308 0.252 -0.0715 0.600 0.600 -0.510; ...

0.180 -0.270 0.600 -0.600 0.102 0.0360; ...

-0.126 -0.600 0.600 0.239 -0.600 0.600; ...

0.600 0.216 0.178 -0.228 -0.600 0.456; ...

0.180 -0.270 0.600 -0.600 0.102 0.0360; ...

0.288 0.540 -0.600 -0.600 0.600 0.600; ...

0.600 -0.600 -0.324 0.0420 -0.600 -0.0180; ...

0.504 -0.558 -0.0942 -0.0780 0.600 -0.0840; ...

0.600 -0.600 0.600 0.600 -0.600 -0.534; ...

0.366 -0.180 -0.600 0.600 -0.600 0.600; ...

-0.186 0.174 0.600 0.000 -0.306 -0.600; ...

-0.576 0.600 0.582 -0.0660 0.600 0.0720; ...

0.240 0.600 0.600 0.600 -0.600 0.240; ...

-0.600 0.540 -0.600 -0.466 0.114 0.250; ...

-0.600 0.0420 -0.600 -0.600 0.600 -0.600; ...

0.600 0.600 0.126 -0.0900 0.336 0.341; ...

0.600 -0.0360 0.600 0.600 0.402 0.600];

xconfm = x2fx(xconf,’quadratic’);

%% True Model and Responses

% Beta’s Based on NTF-113C Calibration - Axial Force Component

beta = [0 0.1334 1 -0.0095 0.0257 -0.0029 0.0006 0.0321 ...

0.0934 0.0014 -0.0027 0.0023 -0.0025 0 -0.0003 0.0009 0 ...

-0.0013 -0.0001 -0.0683 -0.0105 0.0306 -0.1015 0.0007 0.0387 ...
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0.0624 -0.0025 -0.0299]’;

y1 = x1m*beta;

yconf = xconfm*beta;

%% Error in x and y --- Sampled from Multi-variate

%% Normal Distribution

sigma = [gamma*(std^2) 0 0 0 0 0 0; 0 gamma*(std^2) 0 0 0 0 0; ...

0 0 gamma*(std^2) 0 0 0 0; 0 0 0 gamma*(std^2) 0 0 0; ...

0 0 0 0 gamma*(std^2) 0 0; 0 0 0 0 0 gamma*(std^2) 0; ...

0 0 0 0 0 0 std^2];

for i = 1:n

for j = 1:length(x1(:,1))

cal(i).des1(j,:) = mvnrnd([x1(j,1) x1(j,2) x1(j,3) ...

x1(j,4) x1(j,5) x1(j,6) y1(j,1)],sigma);

yobs_des1(j,i) = cal(i).des1(j,7);

end

%% Ordinary Least Squares Estimation

bord1(:,i) = regress(yobs_des1(:,i),x1m);

%% Ordinary Least Squares Distance

for j = 1:length(x1(:,1))

phi_ord1(j,i) = (pi/2) - atan(sqrt( ...

(bord1(2,i) + bord1(8,i)*x1(j,2) + ...

bord1(9,i)*x1(j,3) + bord1(10,i)*x1(j,4) + ...

bord1(11,i)*x1(j,5) + bord1(12,i)*x1(j,6) + ...

2*bord1(23,i)*x1(j,1))^2 + (bord1(3,i) + ...

bord1(8,i)*x1(j,1) + bord1(13,i)*x1(j,3) + ...

bord1(14,i)*x1(j,4) + bord1(15,i)*x1(j,5) + ...

bord1(16,i)*x1(j,6) + 2*bord1(24,i)*x1(j,2))^2 + ...

(bord1(4,i) + bord1(9,i)*x1(j,1) + ...

bord1(13,i)*x1(j,2) + bord1(17,i)*x1(j,4) + ...

bord1(18,i)*x1(j,5) + bord1(19,i)*x1(j,6) + ...

2*bord1(25,i)*x1(j,3))^2 + (bord1(5,i) + ...

bord1(10,i)*x1(j,1) + bord1(14,i)*x1(j,2) + ...

bord1(17,i)*x1(j,3) + bord1(20,i)*x1(j,5) + ...
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bord1(21,i)*x1(j,6) + 2*bord1(26,i)*x1(j,4))^2 + ...

(bord1(6,i) + bord1(11,i)*x1(j,1) + ...

bord1(15,i)*x1(j,2) + bord1(18,i)*x1(j,3) + ...

bord1(20,i)*x1(j,4) + bord1(22,i)*x1(j,6) + ...

2*bord1(27,i)*x1(j,5))^2 + (bord1(7,i) + ...

ord1(12,i)*x1(j,1) + bord1(16,i)*x1(j,2) + ...

bord1(19,i)*x1(j,3) + bord1(21,i)*x1(j,4) + ...

bord1(22,i)*x1(j,5) + 2*bord1(28,i)*x1(j,6))^2));

alpha_ord1(j,i) = (pi/2) + (1-gamma)*atan(sqrt( ...

(bord1(2,i) + bord1(8,i)*x1(j,2) + ...

bord1(9,i)*x1(j,3) + bord1(10,i)*x1(j,4) + ...

bord1(11,i)*x1(j,5) + bord1(12,i)*x1(j,6) + ...

2*bord1(23,i)*x1(j,1))^2 + (bord1(3,i) + ...

bord1(8,i)*x1(j,1) + bord1(13,i)*x1(j,3) + ...

bord1(14,i)*x1(j,4) + bord1(15,i)*x1(j,5) + ...

bord1(16,i)*x1(j,6) + 2*bord1(24,i)*x1(j,2))^2 + ...

(bord1(4,i) + bord1(9,i)*x1(j,1) + ...

bord1(13,i)*x1(j,2) + bord1(17,i)*x1(j,4) + ...

bord1(18,i)*x1(j,5) + bord1(19,i)*x1(j,6) + ...

2*bord1(25,i)*x1(j,3))^2 + (bord1(5,i) + ...

bord1(10,i)*x1(j,1) + bord1(14,i)*x1(j,2) + ...

bord1(17,i)*x1(j,3) + bord1(20,i)*x1(j,5) + ...

bord1(21,i)*x1(j,6) + 2*bord1(26,i)*x1(j,4))^2 + ...

(bord1(6,i) + bord1(11,i)*x1(j,1) + ...

bord1(15,i)*x1(j,2) + bord1(18,i)*x1(j,3) + ...

bord1(20,i)*x1(j,4) + bord1(22,i)*x1(j,6) + ...

2*bord1(27,i)*x1(j,5))^2 + (bord1(7,i) + ...

bord1(12,i)*x1(j,1) + bord1(16,i)*x1(j,2) + ...

bord1(19,i)*x1(j,3) + bord1(21,i)*x1(j,4) + ...

bord1(22,i)*x1(j,5) + 2*bord1(28,i)*x1(j,6))^2));

ratio_ord1(j,i) = sin(phi_ord1(j,i))/sin(alpha_ord1(j,i));

end

res_ord1(1:j,i) = (yobs_des1(:,i) - x1m*bord1(:,i));

for j = 1:length(x1(:,1))

dist_ord1(j,i) = ratio_ord1(j,i)*res_ord1(j,i);

end
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%% Orthogonal Least Squares Estimation

borth1(:,i) = lsqnonlin(@(borth1)(sin((pi/2) - atan(sqrt( ...

(borth1(2) + borth1(8)*x1(1:j,2) + borth1(9)*x1(1:j,3) + ...

borth1(10)*x1(1:j,4) + borth1(11)*x1(1:j,5) + ...

borth1(12)*x1(1:j,6) + 2*borth1(23)*x1(1:j,1)).^2 + ...

(borth1(3) + borth1(8)*x1(1:j,1) + borth1(13)*x1(1:j,3) + ...

borth1(14)*x1(1:j,4) + borth1(15)*x1(1:j,5) + ...

borth1(16)*x1(1:j,6) + 2*borth1(24)*x1(1:j,2)).^2 + ...

(borth1(4) + borth1(9)*x1(1:j,1) + borth1(13)*x1(1:j,2) + ...

borth1(17)*x1(1:j,4) + borth1(18)*x1(1:j,5) + ...

borth1(19)*x1(1:j,6) + 2*borth1(25)*x1(1:j,3)).^2 + ...

(borth1(5) + borth1(10)*x1(1:j,1) + borth1(14)*x1(1:j,2) + ...

borth1(17)*x1(1:j,3) + borth1(20)*x1(1:j,5) + ...

borth1(21)*x1(1:j,6) + 2*borth1(26)*x1(1:j,4)).^2 + ...

(borth1(6) + borth1(11)*x1(1:j,1) + borth1(15)*x1(1:j,2) + ...

borth1(18)*x1(1:j,3) + borth1(20)*x1(1:j,4) + ...

borth1(22)*x1(1:j,6) + 2*borth1(27)*x1(1:j,5)).^2 + ...

(borth1(7) + borth1(12)*x1(1:j,1) + borth1(16)*x1(1:j,2) + ...

borth1(19)*x1(1:j,3) + borth1(21)*x1(1:j,4) + ...

borth1(22)*x1(1:j,5) + 2*borth1(28)*x1(1:j,6)).^2)))./...

sin(pi/2)).*(yobs_des1(1:j,i) - x1m*borth1(1:28)),...

bord1(:,i),[],[],options);

for j = 1:length(x1(:,1))

phi_orth1(j,i) = (pi/2) - atan(sqrt( ...

(borth1(2,i) + borth1(8,i)*x1(j,2) + ...

borth1(9,i)*x1(j,3) + borth1(10,i)*x1(j,4) + ...

borth1(11,i)*x1(j,5) + borth1(12,i)*x1(j,6) + ...

2*borth1(23,i)*x1(j,1))^2 + (borth1(3,i) + ...

borth1(8,i)*x1(j,1) + borth1(13,i)*x1(j,3) + ...

borth1(14,i)*x1(j,4) + borth1(15,i)*x1(j,5) + ...

borth1(16,i)*x1(j,6) + 2*borth1(24,i)*x1(j,2))^2 + ...

(borth1(4,i) + borth1(9,i)*x1(j,1) + ...

borth1(13,i)*x1(j,2) + borth1(17,i)*x1(j,4) + ...

borth1(18,i)*x1(j,5) + borth1(19,i)*x1(j,6) + ...

2*borth1(25,i)*x1(j,3))^2 + (borth1(5,i) + ...

borth1(10,i)*x1(j,1) + borth1(14,i)*x1(j,2) + ...

borth1(17,i)*x1(j,3) + borth1(20,i)*x1(j,5) + ...

borth1(21,i)*x1(j,6) + 2*borth1(26,i)*x1(j,4))^2 + ...

(borth1(6,i) + borth1(11,i)*x1(j,1) + ...

borth1(15,i)*x1(j,2) + borth1(18,i)*x1(j,3) + ...

borth1(20,i)*x1(j,4) + borth1(22,i)*x1(j,6) + ...

2*borth1(27,i)*x1(j,5))^2 + (borth1(7,i) + ...
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borth1(12,i)*x1(j,1) + borth1(16,i)*x1(j,2) + ...

borth1(19,i)*x1(j,3) + borth1(21,i)*x1(j,4) + ...

borth1(22,i)*x1(j,5) + 2*borth1(28,i)*x1(j,6))^2));

alpha_orth1(j,i) = (pi/2) + (1-gamma)*atan(sqrt( ...

(borth1(2,i) + borth1(8,i)*x1(j,2) + ...

borth1(9,i)*x1(j,3) + borth1(10,i)*x1(j,4) + ...

borth1(11,i)*x1(j,5) + borth1(12,i)*x1(j,6) + ...

2*borth1(23,i)*x1(j,1))^2 + (borth1(3,i) + ...

borth1(8,i)*x1(j,1) + borth1(13,i)*x1(j,3) + ...

borth1(14,i)*x1(j,4) + borth1(15,i)*x1(j,5) + ...

borth1(16,i)*x1(j,6) + 2*borth1(24,i)*x1(j,2))^2 + ...

(borth1(4,i) + borth1(9,i)*x1(j,1) + ...

borth1(13,i)*x1(j,2) + borth1(17,i)*x1(j,4) + ...

borth1(18,i)*x1(j,5) + borth1(19,i)*x1(j,6) + ...

2*borth1(25,i)*x1(j,3))^2 + (borth1(5,i) + ...

borth1(10,i)*x1(j,1) + borth1(14,i)*x1(j,2) + ...

borth1(17,i)*x1(j,3) + borth1(20,i)*x1(j,5) + ...

borth1(21,i)*x1(j,6) + 2*borth1(26,i)*x1(j,4))^2 + ...

(borth1(6,i) + borth1(11,i)*x1(j,1) + ...

borth1(15,i)*x1(j,2) + borth1(18,i)*x1(j,3) + ...

borth1(20,i)*x1(j,4) + borth1(22,i)*x1(j,6) + ...

2*borth1(27,i)*x1(j,5))^2 + (borth1(7,i) + ...

borth1(12,i)*x1(j,1) + borth1(16,i)*x1(j,2) + ...

borth1(19,i)*x1(j,3) + borth1(21,i)*x1(j,4) + ...

borth1(22,i)*x1(j,5) + 2*borth1(28,i)*x1(j,6))^2));

ratio_orth1(j,i) = sin(phi_orth1(j,i))/...

sin(alpha_orth1(j,i));

end

res_orth1(1:j,i) = (yobs_des1(:,i) - x1m*borth1(:,i));

for j = 1:length(x1(:,1))

dist_orth1(j,i) = ratio_orth1(j,i)*res_orth1(j,i);

end

%% Modified Least Squares

bmod1(:,i) = lsqnonlin(@(bmod1)(sin((pi/2) - atan(sqrt( ...

(bmod1(2) + bmod1(8)*x1(1:j,2) + bmod1(9)*x1(1:j,3) + ...
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bmod1(10)*x1(1:j,4) + bmod1(11)*x1(1:j,5) + ...

bmod1(12)*x1(1:j,6) + 2*bmod1(23)*x1(1:j,1)).^2 + ...

(bmod1(3) + bmod1(8)*x1(1:j,1) + bmod1(13)*x1(1:j,3) + ...

bmod1(14)*x1(1:j,4) + bmod1(15)*x1(1:j,5) + ...

bmod1(16)*x1(1:j,6) + 2*bmod1(24)*x1(1:j,2)).^2 + ...

(bmod1(4) + bmod1(9)*x1(1:j,1) + bmod1(13)*x1(1:j,2) + ...

bmod1(17)*x1(1:j,4) + bmod1(18)*x1(1:j,5) + ...

bmod1(19)*x1(1:j,6) + 2*bmod1(25)*x1(1:j,3)).^2 + ...

(bmod1(5) + bmod1(10)*x1(1:j,1) + bmod1(14)*x1(1:j,2) + ...

bmod1(17)*x1(1:j,3) + bmod1(20)*x1(1:j,5) + ...

bmod1(21)*x1(1:j,6) + 2*bmod1(26)*x1(1:j,4)).^2 + ...

(bmod1(6) + bmod1(11)*x1(1:j,1) + bmod1(15)*x1(1:j,2) + ...

bmod1(18)*x1(1:j,3) + bmod1(20)*x1(1:j,4) + ...

bmod1(22)*x1(1:j,6) + 2*bmod1(27)*x1(1:j,5)).^2 + ...

(bmod1(7) + bmod1(12)*x1(1:j,1) + bmod1(16)*x1(1:j,2) + ...

bmod1(19)*x1(1:j,3) + bmod1(21)*x1(1:j,4) + ...

bmod1(22)*x1(1:j,5) + 2*bmod1(28)*x1(1:j,6)).^2 ...

)))./sin((pi/2) + (1-gamma)*atan(sqrt( ...

(bmod1(2) + bmod1(8)*x1(1:j,2) + bmod1(9)*x1(1:j,3) + ...

bmod1(10)*x1(1:j,4) + bmod1(11)*x1(1:j,5) + ...

bmod1(12)*x1(1:j,6) + 2*bmod1(23)*x1(1:j,1)).^2 + ...

(bmod1(3) + bmod1(8)*x1(1:j,1) + bmod1(13)*x1(1:j,3) + ...

bmod1(14)*x1(1:j,4) + bmod1(15)*x1(1:j,5) + ...

bmod1(16)*x1(1:j,6) + 2*bmod1(24)*x1(1:j,2)).^2 + ...

(bmod1(4) + bmod1(9)*x1(1:j,1) + bmod1(13)*x1(1:j,2) + ...

bmod1(17)*x1(1:j,4) + bmod1(18)*x1(1:j,5) + ...

bmod1(19)*x1(1:j,6) + 2*bmod1(25)*x1(1:j,3)).^2 + ...

(bmod1(5) + bmod1(10)*x1(1:j,1) + bmod1(14)*x1(1:j,2) + ...

bmod1(17)*x1(1:j,3) + bmod1(20)*x1(1:j,5) + ...

bmod1(21)*x1(1:j,6) + 2*bmod1(26)*x1(1:j,4)).^2 + ...

(bmod1(6) + bmod1(11)*x1(1:j,1) + bmod1(15)*x1(1:j,2) + ...

bmod1(18)*x1(1:j,3) + bmod1(20)*x1(1:j,4) + ...

bmod1(22)*x1(1:j,6) + 2*bmod1(27)*x1(1:j,5)).^2 + ...

(bmod1(7) + bmod1(12)*x1(1:j,1) + bmod1(16)*x1(1:j,2) + ...

bmod1(19)*x1(1:j,3) + bmod1(21)*x1(1:j,4) + ...

bmod1(22)*x1(1:j,5) + 2*bmod1(28)*x1(1:j,6)).^2 ...

)))).*(yobs_des1(1:j,i) - x1m*bmod1(1:28)),...

bord1(:,i),[],[],options);

for j = 1:length(x1(:,1))

phi_mod1(j,i) = (pi/2) - atan(sqrt( ...

(bmod1(2,i) + bmod1(8,i)*x1(j,2) + ...

bmod1(9,i)*x1(j,3) + bmod1(10,i)*x1(j,4) + ...

bmod1(11,i)*x1(j,5) + bmod1(12,i)*x1(j,6) + ...
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2*bmod1(23,i)*x1(j,1))^2 + (bmod1(3,i) + ...

bmod1(8,i)*x1(j,1) + bmod1(13,i)*x1(j,3) + ...

bmod1(14,i)*x1(j,4) + bmod1(15,i)*x1(j,5) + ...

bmod1(16,i)*x1(j,6) + 2*bmod1(24,i)*x1(j,2))^2 + ...

(bmod1(4,i) + bmod1(9,i)*x1(j,1) + ...

bmod1(13,i)*x1(j,2) + bmod1(17,i)*x1(j,4) + ...

bmod1(18,i)*x1(j,5) + bmod1(19,i)*x1(j,6) + ...

2*bmod1(25,i)*x1(j,3))^2 + (bmod1(5,i) + ...

bmod1(10,i)*x1(j,1) + bmod1(14,i)*x1(j,2) + ...

bmod1(17,i)*x1(j,3) + bmod1(20,i)*x1(j,5) + ...

bmod1(21,i)*x1(j,6) + 2*bmod1(26,i)*x1(j,4))^2 + ...

(bmod1(6,i) + bmod1(11,i)*x1(j,1) + ...

bmod1(15,i)*x1(j,2) + bmod1(18,i)*x1(j,3) + ...

bmod1(20,i)*x1(j,4) + bmod1(22,i)*x1(j,6) + ...

2*bmod1(27,i)*x1(j,5))^2 + (bmod1(7,i) + ...

bmod1(12,i)*x1(j,1) + bmod1(16,i)*x1(j,2) + ...

bmod1(19,i)*x1(j,3) + bmod1(21,i)*x1(j,4) + ...

bmod1(22,i)*x1(j,5) + 2*bmod1(28,i)*x1(j,6))^2));

alpha_mod1(j,i) = (pi/2) + (1-gamma)*atan(sqrt( ...

(bmod1(2,i) + bmod1(8,i)*x1(j,2) + ...

bmod1(9,i)*x1(j,3) + bmod1(10,i)*x1(j,4) + ...

bmod1(11,i)*x1(j,5) + bmod1(12,i)*x1(j,6) + ...

2*bmod1(23,i)*x1(j,1))^2 + (bmod1(3,i) + ...

bmod1(8,i)*x1(j,1) + bmod1(13,i)*x1(j,3) + ...

bmod1(14,i)*x1(j,4) + bmod1(15,i)*x1(j,5) + ...

bmod1(16,i)*x1(j,6) + 2*bmod1(24,i)*x1(j,2))^2 + ...

(bmod1(4,i) + bmod1(9,i)*x1(j,1) + ...

bmod1(13,i)*x1(j,2) + bmod1(17,i)*x1(j,4) + ...

bmod1(18,i)*x1(j,5) + bmod1(19,i)*x1(j,6) + ...

2*bmod1(25,i)*x1(j,3))^2 + (bmod1(5,i) + ...

bmod1(10,i)*x1(j,1) + bmod1(14,i)*x1(j,2) + ...

bmod1(17,i)*x1(j,3) + bmod1(20,i)*x1(j,5) + ...

bmod1(21,i)*x1(j,6) + 2*bmod1(26,i)*x1(j,4))^2 + ...

(bmod1(6,i) + bmod1(11,i)*x1(j,1) + ...

bmod1(15,i)*x1(j,2) + bmod1(18,i)*x1(j,3) + ...

bmod1(20,i)*x1(j,4) + bmod1(22,i)*x1(j,6) + ...

2*bmod1(27,i)*x1(j,5))^2 + (bmod1(7,i) + ...

bmod1(12,i)*x1(j,1) + bmod1(16,i)*x1(j,2) + ...

bmod1(19,i)*x1(j,3) + bmod1(21,i)*x1(j,4) + ...

bmod1(22,i)*x1(j,5) + 2*bmod1(28,i)*x1(j,6))^2));

ratio_mod1(j,i) = sin(phi_mod1(j,i))/sin(alpha_mod1(j,i));
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end

res_mod1(1:j,i) = (yobs_des1(:,i) - x1m*bmod1(:,i));

for j = 1:length(x1(:,1))

dist_mod1(j,i) = ratio_mod1(j,i)*res_mod1(j,i);

end

end

for j = 1:length(x1(:,1))

dist_ord1(j,n+1) = 0;

dist_mod1(j,n+1) = 0;

dist_orth1(j,n+1) = 0;

dist_ord1(j,n+2) = mean(dist_ord1(j,1:n));

dist_mod1(j,n+2) = mean(dist_mod1(j,1:n));

dist_orth1(j,n+2) = mean(dist_orth1(j,1:n));

dist_ord1(j,n+3) = var(dist_ord1(j,1:n));

dist_mod1(j,n+3) = var(dist_mod1(j,1:n));

dist_orth1(j,n+3) = var(dist_orth1(j,1:n));

dist_ord1(j,n+4) = dist_ord1(j,n+2)^2 + dist_ord1(j,n+3);

dist_mod1(j,n+4) = dist_mod1(j,n+2)^2 + dist_mod1(j,n+3);

dist_orth1(j,n+4) = dist_orth1(j,n+2)^2 + dist_orth1(j,n+3);

end

dist1 = [dist_ord1(1:j,n+2:n+4); 0 0 0; ...

dist_mod1(1:j,n+2:n+4); 0 0 0; ...

dist_orth1(1:j,n+2:n+4)];

dist = [dist1];
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for i = 1:n

for k = 1:N

for j = 1:length(xconf(:,1))

cal(i,k).conf(j,:) = ...

mvnrnd([xconf(j,1) xconf(j,2) xconf(j,3) xconf(j,4) ...

xconf(j,5) xconf(j,6) yconf(j,1)], sigma);

yobs(i).conf(j,k) = cal(i,k).conf(j,7);

cphi_ord1(j,i) = (pi/2) - atan(sqrt( ...

(bord1(2,i) + bord1(8,i)*xconf(j,2) + ...

bord1(9,i)*xconf(j,3) + bord1(10,i)*xconf(j,4) + ...

bord1(11,i)*xconf(j,5) + bord1(12,i)*xconf(j,6) + ...

2*bord1(23,i)*xconf(j,1))^2 + (bord1(3,i) + ...

bord1(8,i)*xconf(j,1) + bord1(13,i)*xconf(j,3) + ...

bord1(14,i)*xconf(j,4) + bord1(15,i)*xconf(j,5) + ...

bord1(16,i)*xconf(j,6) + ...

2*bord1(24,i)*xconf(j,2))^2 + (bord1(4,i) + ...

bord1(9,i)*xconf(j,1) + bord1(13,i)*xconf(j,2) + ...

bord1(17,i)*xconf(j,4) + bord1(18,i)*xconf(j,5) + ...

bord1(19,i)*xconf(j,6) + ...

2*bord1(25,i)*xconf(j,3))^2 + (bord1(5,i) + ...

bord1(10,i)*xconf(j,1) + bord1(14,i)*xconf(j,2) + ...

bord1(17,i)*xconf(j,3) + bord1(20,i)*xconf(j,5) + ...

bord1(21,i)*xconf(j,6) + ...

2*bord1(26,i)*xconf(j,4))^2 + (bord1(6,i) + ...

bord1(11,i)*xconf(j,1) + bord1(15,i)*xconf(j,2) + ...

bord1(18,i)*xconf(j,3) + bord1(20,i)*xconf(j,4) + ...

bord1(22,i)*xconf(j,6) + ...

2*bord1(27,i)*xconf(j,5))^2 + (bord1(7,i) + ...

bord1(12,i)*xconf(j,1) + bord1(16,i)*xconf(j,2) + ...

bord1(19,i)*xconf(j,3) + bord1(21,i)*xconf(j,4) + ...

bord1(22,i)*xconf(j,5) + 2*bord1(28,i)*xconf(j,6))^2));

cphi_orth1(j,i) = (pi/2) - atan(sqrt( ...

(borth1(2,i) + borth1(8,i)*xconf(j,2) + ...

borth1(9,i)*xconf(j,3) + borth1(10,i)*xconf(j,4) + ...

borth1(11,i)*xconf(j,5) + borth1(12,i)*xconf(j,6) + ...

2*borth1(23,i)*xconf(j,1))^2 + (borth1(3,i) + ...

borth1(8,i)*xconf(j,1) + borth1(13,i)*xconf(j,3) + ...

borth1(14,i)*xconf(j,4) + borth1(15,i)*xconf(j,5) + ...

borth1(16,i)*xconf(j,6) + ...

2*borth1(24,i)*xconf(j,2))^2 + (borth1(4,i) + ...
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borth1(9,i)*xconf(j,1) + borth1(13,i)*xconf(j,2) + ...

borth1(17,i)*xconf(j,4) + borth1(18,i)*xconf(j,5) + ...

borth1(19,i)*xconf(j,6) + ...

2*borth1(25,i)*xconf(j,3))^2 + (borth1(5,i) + ...

borth1(10,i)*xconf(j,1) + borth1(14,i)*xconf(j,2) + ...

borth1(17,i)*xconf(j,3) + borth1(20,i)*xconf(j,5) + ...

borth1(21,i)*xconf(j,6) + ...

2*borth1(26,i)*xconf(j,4))^2 + (borth1(6,i) + ...

borth1(11,i)*xconf(j,1) + borth1(15,i)*xconf(j,2) + ...

borth1(18,i)*xconf(j,3) + borth1(20,i)*xconf(j,4) + ...

borth1(22,i)*xconf(j,6) + ...

2*borth1(27,i)*xconf(j,5))^2 + (borth1(7,i) + ...

borth1(12,i)*xconf(j,1) + borth1(16,i)*xconf(j,2) + ...

borth1(19,i)*xconf(j,3) + borth1(21,i)*xconf(j,4) + ...

borth1(22,i)*xconf(j,5) + ...

2*borth1(28,i)*xconf(j,6))^2));

cphi_mod1(j,i) = (pi/2) - atan(sqrt( ...

(bmod1(2,i) + bmod1(8,i)*xconf(j,2) + ...

bmod1(9,i)*xconf(j,3) + bmod1(10,i)*xconf(j,4) + ...

bmod1(11,i)*xconf(j,5) + bmod1(12,i)*xconf(j,6) + ...

2*bmod1(23,i)*xconf(j,1))^2 + (bmod1(3,i) + ...

bmod1(8,i)*xconf(j,1) + bmod1(13,i)*xconf(j,3) + ...

bmod1(14,i)*xconf(j,4) + bmod1(15,i)*xconf(j,5) + ...

bmod1(16,i)*xconf(j,6) + ...

2*bmod1(24,i)*xconf(j,2))^2 + (bmod1(4,i) + ...

bmod1(9,i)*xconf(j,1) + bmod1(13,i)*xconf(j,2) + ...

bmod1(17,i)*xconf(j,4) + bmod1(18,i)*xconf(j,5) + ...

bmod1(19,i)*xconf(j,6) + ...

2*bmod1(25,i)*xconf(j,3))^2 + (bmod1(5,i) + ...

bmod1(10,i)*xconf(j,1) + bmod1(14,i)*xconf(j,2) + ...

bmod1(17,i)*xconf(j,3) + bmod1(20,i)*xconf(j,5) + ...

bmod1(21,i)*xconf(j,6) + ...

2*bmod1(26,i)*xconf(j,4))^2 + (bmod1(6,i) + ...

bmod1(11,i)*xconf(j,1) + bmod1(15,i)*xconf(j,2) + ...

bmod1(18,i)*xconf(j,3) + bmod1(20,i)*xconf(j,4) + ...

bmod1(22,i)*xconf(j,6) + ...

2*bmod1(27,i)*xconf(j,5))^2 + (bmod1(7,i) + ...

bmod1(12,i)*xconf(j,1) + bmod1(16,i)*xconf(j,2) + ...

bmod1(19,i)*xconf(j,3) + bmod1(21,i)*xconf(j,4) + ...

bmod1(22,i)*xconf(j,5) + ...

2*bmod1(28,i)*xconf(j,6))^2));

calpha_ord1(j,i) = (pi/2) - (gamma-1)*(atan(sqrt( ...
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(bord1(2,i) + bord1(8,i)*xconf(j,2) + ...

bord1(9,i)*xconf(j,3) + bord1(10,i)*xconf(j,4) + ...

bord1(11,i)*xconf(j,5) + bord1(12,i)*xconf(j,6) + ...

2*bord1(23,i)*xconf(j,1))^2 + (bord1(3,i) + ...

bord1(8,i)*xconf(j,1) + bord1(13,i)*xconf(j,3) + ...

bord1(14,i)*xconf(j,4) + bord1(15,i)*xconf(j,5) + ...

bord1(16,i)*xconf(j,6) + ...

2*bord1(24,i)*xconf(j,2))^2 + (bord1(4,i) + ...

bord1(9,i)*xconf(j,1) + bord1(13,i)*xconf(j,2) + ...

bord1(17,i)*xconf(j,4) + bord1(18,i)*xconf(j,5) + ...

bord1(19,i)*xconf(j,6) + ...

2*bord1(25,i)*xconf(j,3))^2 + (bord1(5,i) + ...

bord1(10,i)*xconf(j,1) + bord1(14,i)*xconf(j,2) + ...

bord1(17,i)*xconf(j,3) + bord1(20,i)*xconf(j,5) + ...

bord1(21,i)*xconf(j,6) + ...

2*bord1(26,i)*xconf(j,4))^2 + (bord1(6,i) + ...

bord1(11,i)*xconf(j,1) + bord1(15,i)*xconf(j,2) + ...

bord1(18,i)*xconf(j,3) + bord1(20,i)*xconf(j,4) + ...

bord1(22,i)*xconf(j,6) + ...

2*bord1(27,i)*xconf(j,5))^2 + (bord1(7,i) + ...

bord1(12,i)*xconf(j,1) + bord1(16,i)*xconf(j,2) + ...

bord1(19,i)*xconf(j,3) + bord1(21,i)*xconf(j,4) + ...

bord1(22,i)*xconf(j,5) + ...

2*bord1(28,i)*xconf(j,6))^2)));

calpha_mod1(j,i) = (pi/2) - (gamma-1)*(atan(sqrt( ...

(bmod1(2,i) + bmod1(8,i)*xconf(j,2) + ...

bmod1(9,i)*xconf(j,3) + bmod1(10,i)*xconf(j,4) + ...

bmod1(11,i)*xconf(j,5) + bmod1(12,i)*xconf(j,6) + ...

2*bmod1(23,i)*xconf(j,1))^2 + (bmod1(3,i) + ...

bmod1(8,i)*xconf(j,1) + bmod1(13,i)*xconf(j,3) + ...

bmod1(14,i)*xconf(j,4) + ...

bmod1(15,i)*xconf(j,5) + bmod1(16,i)*xconf(j,6) + ...

2*bmod1(24,i)*xconf(j,2))^2 + (bmod1(4,i) + ...

bmod1(9,i)*xconf(j,1) + bmod1(13,i)*xconf(j,2) + ...

bmod1(17,i)*xconf(j,4) + bmod1(18,i)*xconf(j,5) + ...

bmod1(19,i)*xconf(j,6) + ...

2*bmod1(25,i)*xconf(j,3))^2 + (bmod1(5,i) + ...

bmod1(10,i)*xconf(j,1) + bmod1(14,i)*xconf(j,2) + ...

bmod1(17,i)*xconf(j,3) + bmod1(20,i)*xconf(j,5) + ...

bmod1(21,i)*xconf(j,6) + ...

2*bmod1(26,i)*xconf(j,4))^2 + (bmod1(6,i) + ...

bmod1(11,i)*xconf(j,1) + bmod1(15,i)*xconf(j,2) + ...

bmod1(18,i)*xconf(j,3) + bmod1(20,i)*xconf(j,4) + ...
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bmod1(22,i)*xconf(j,6) + ...

2*bmod1(27,i)*xconf(j,5))^2 + (bmod1(7,i) + ...

bmod1(12,i)*xconf(j,1) + bmod1(16,i)*xconf(j,2) + ...

bmod1(19,i)*xconf(j,3) + bmod1(21,i)*xconf(j,4) + ...

bmod1(22,i)*xconf(j,5) + ...

2*bmod1(28,i)*xconf(j,6))^2)));

calpha_orth1(j,i) = (pi/2) - (gamma-1)*(atan(sqrt( ...

(borth1(2,i) + borth1(8,i)*xconf(j,2) + ...

borth1(9,i)*xconf(j,3) + borth1(10,i)*xconf(j,4) + ...

borth1(11,i)*xconf(j,5) + borth1(12,i)*xconf(j,6) + ...

2*borth1(23,i)*xconf(j,1))^2 + (borth1(3,i) + ...

borth1(8,i)*xconf(j,1) + borth1(13,i)*xconf(j,3) + ...

borth1(14,i)*xconf(j,4) + borth1(15,i)*xconf(j,5) + ...

borth1(16,i)*xconf(j,6) + ...

2*borth1(24,i)*xconf(j,2))^2 + (borth1(4,i) + ...

borth1(9,i)*xconf(j,1) + borth1(13,i)*xconf(j,2) + ...

borth1(17,i)*xconf(j,4) + borth1(18,i)*xconf(j,5) + ...

borth1(19,i)*xconf(j,6) + ...

2*borth1(25,i)*xconf(j,3))^2 + (borth1(5,i) + ...

borth1(10,i)*xconf(j,1) + borth1(14,i)*xconf(j,2) + ...

borth1(17,i)*xconf(j,3) + borth1(20,i)*xconf(j,5) + ...

borth1(21,i)*xconf(j,6) + ...

2*borth1(26,i)*xconf(j,4))^2 + (borth1(6,i) + ...

borth1(11,i)*xconf(j,1) + borth1(15,i)*xconf(j,2) + ...

borth1(18,i)*xconf(j,3) + borth1(20,i)*xconf(j,4) + ...

borth1(22,i)*xconf(j,6) + ...

2*borth1(27,i)*xconf(j,5))^2 + (borth1(7,i) + ...

borth1(12,i)*xconf(j,1) + borth1(16,i)*xconf(j,2) + ...

borth1(19,i)*xconf(j,3) + borth1(21,i)*xconf(j,4) + ...

borth1(22,i)*xconf(j,5) + ...

2*borth1(28,i)*xconf(j,6))^2)));

cratio_ord1(j,k) = sin(cphi_ord1(j,i))/...

sin(calpha_ord1(j,i));

cratio_mod1(j,k) = sin(cphi_mod1(j,i))/...

sin(calpha_mod1(j,i));

cratio_orth1(j,k) = sin(cphi_orth1(j,i))/...

sin(calpha_orth1(j,i));

end
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cres(i).ord1(1:j,k) = (yobs(i).conf(:,k) - ...

xconfm*bord1(:,i));

cres(i).mod1(1:j,k) = (yobs(i).conf(:,k) - ...

xconfm*bmod1(:,i));

cres(i).orth1(1:j,k) = (yobs(i).conf(:,k) - ...

xconfm*borth1(:,i));

for j = 1:length(xconf(:,1))

cdist(i).ord1(j,i) = ...

ratio_ord1(j,i)*cres(i).ord1(j,k);

cdist(i).mod1(j,i) = ...

ratio_mod1(j,i)*cres(i).mod1(j,k);

cdist(i).orth1(j,i) = ...

ratio_orth1(j,i)*cres(i).orth1(j,k);

end

end

for j = 1:38

cdist(i).ord1(j,N+1) = 0;

cdist(i).mod1(j,N+1) = 0;

cdist(i).orth1(j,N+1) = 0;

cdist(i).ord1(j,N+2) = mean(cdist(i).ord1(j,1:N));

cdist(i).mod1(j,N+2) = mean(cdist(i).mod1(j,1:N));

cdist(i).orth1(j,N+2) = mean(cdist(i).orth1(j,1:N));

cdist(i).ord1(j,N+3) = var(cdist(i).ord1(j,1:N));

cdist(i).mod1(j,N+3) = var(cdist(i).mod1(j,1:N));

cdist(i).orth1(j,N+3) = var(cdist(i).orth1(j,1:N));

end
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for j = 1:38

ccdist_ord1(j,i) = cdist(i).ord1(j,N+2);

ccdist_mod1(j,i) = cdist(i).mod1(j,N+2);

ccdist_orth1(j,i) = cdist(i).orth1(j,N+2);

end

end

for j = 1:38

ccdist_ord1(j,n+1) = 0;

ccdist_mod1(j,n+1) = 0;

ccdist_orth1(j,n+1) = 0;

ccdist_ord1(j,n+2) = mean(ccdist_ord1(j,1:n));

ccdist_mod1(j,n+2) = mean(ccdist_mod1(j,1:n));

ccdist_orth1(j,n+2) = mean(ccdist_orth1(j,1:n));

ccdist_ord1(j,n+3) = var(ccdist_ord1(j,1:n));

ccdist_mod1(j,n+3) = var(ccdist_mod1(j,1:n));

ccdist_orth1(j,n+3) = var(ccdist_orth1(j,1:n));

ccdist_ord1(j,n+4) = ccdist_ord1(j,n+2)^2 + ccdist_ord1(j,n+3);

ccdist_mod1(j,n+4) = ccdist_mod1(j,n+2)^2 + ccdist_mod1(j,n+3);

ccdist_orth1(j,n+4) = ccdist_orth1(j,n+2)^2 + ccdist_orth1(j,n+3);

end

ccdist1 = [ccdist_ord1(1:j,n+2:n+4); 0 0 0; ...

ccdist_mod1(1:j,n+2:n+4); 0 0 0; ...

ccdist_orth1(1:j,n+2:n+4)];

ccdist = [ccdist1];

%% Mean and Variance of Coefficients over n Calibrations for
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%% each Estimator and Design

bmean = [mean(bord1(1,:)) mean(bmod1(1,:)) mean(borth1(1,:)); ...

mean(bord1(2,:)) mean(bmod1(2,:)) mean(borth1(2,:)); ...

mean(bord1(3,:)) mean(bmod1(3,:)) mean(borth1(3,:)); ...

mean(bord1(4,:)) mean(bmod1(4,:)) mean(borth1(4,:)); ...

mean(bord1(5,:)) mean(bmod1(5,:)) mean(borth1(5,:)); ...

mean(bord1(6,:)) mean(bmod1(6,:)) mean(borth1(6,:)); ...

mean(bord1(7,:)) mean(bmod1(7,:)) mean(borth1(7,:)); ...

mean(bord1(8,:)) mean(bmod1(8,:)) mean(borth1(8,:)); ...

mean(bord1(9,:)) mean(bmod1(9,:)) mean(borth1(9,:)); ...

mean(bord1(10,:)) mean(bmod1(10,:)) mean(borth1(10,:)); ...

mean(bord1(11,:)) mean(bmod1(11,:)) mean(borth1(11,:)); ...

mean(bord1(12,:)) mean(bmod1(12,:)) mean(borth1(12,:)); ...

mean(bord1(13,:)) mean(bmod1(13,:)) mean(borth1(13,:)); ...

mean(bord1(14,:)) mean(bmod1(14,:)) mean(borth1(14,:)); ...

mean(bord1(15,:)) mean(bmod1(15,:)) mean(borth1(15,:)); ...

mean(bord1(16,:)) mean(bmod1(16,:)) mean(borth1(16,:)); ...

mean(bord1(17,:)) mean(bmod1(17,:)) mean(borth1(17,:)); ...

mean(bord1(18,:)) mean(bmod1(18,:)) mean(borth1(18,:)); ...

mean(bord1(19,:)) mean(bmod1(19,:)) mean(borth1(19,:)); ...

mean(bord1(20,:)) mean(bmod1(20,:)) mean(borth1(20,:)); ...

mean(bord1(21,:)) mean(bmod1(21,:)) mean(borth1(21,:)); ...

mean(bord1(22,:)) mean(bmod1(22,:)) mean(borth1(22,:)); ...

mean(bord1(23,:)) mean(bmod1(23,:)) mean(borth1(23,:)); ...

mean(bord1(24,:)) mean(bmod1(24,:)) mean(borth1(24,:)); ...

mean(bord1(25,:)) mean(bmod1(25,:)) mean(borth1(25,:)); ...

mean(bord1(26,:)) mean(bmod1(26,:)) mean(borth1(26,:)); ...

mean(bord1(27,:)) mean(bmod1(27,:)) mean(borth1(27,:)); ...

mean(bord1(28,:)) mean(bmod1(28,:)) mean(borth1(28,:))];

bvar = [var(bord1(1,:)) var(bmod1(1,:)) var(borth1(1,:)); ...

var(bord1(2,:)) var(bmod1(2,:)) var(borth1(2,:)); ...

var(bord1(3,:)) var(bmod1(3,:)) var(borth1(3,:)); ...

var(bord1(4,:)) var(bmod1(4,:)) var(borth1(4,:)); ...

var(bord1(5,:)) var(bmod1(5,:)) var(borth1(5,:)); ...

var(bord1(6,:)) var(bmod1(6,:)) var(borth1(6,:)); ...

var(bord1(7,:)) var(bmod1(7,:)) var(borth1(7,:)); ...

var(bord1(8,:)) var(bmod1(8,:)) var(borth1(8,:)); ...

var(bord1(9,:)) var(bmod1(9,:)) var(borth1(9,:)); ...

var(bord1(10,:)) var(bmod1(10,:)) var(borth1(10,:)); ...

var(bord1(11,:)) var(bmod1(11,:)) var(borth1(11,:)); ...

var(bord1(12,:)) var(bmod1(12,:)) var(borth1(12,:)); ...

var(bord1(13,:)) var(bmod1(13,:)) var(borth1(13,:)); ...



143

var(bord1(14,:)) var(bmod1(14,:)) var(borth1(14,:)); ...

var(bord1(15,:)) var(bmod1(15,:)) var(borth1(15,:)); ...

var(bord1(16,:)) var(bmod1(16,:)) var(borth1(16,:)); ...

var(bord1(17,:)) var(bmod1(17,:)) var(borth1(17,:)); ...

var(bord1(18,:)) var(bmod1(18,:)) var(borth1(18,:)); ...

var(bord1(19,:)) var(bmod1(19,:)) var(borth1(19,:)); ...

var(bord1(20,:)) var(bmod1(20,:)) var(borth1(20,:)); ...

var(bord1(21,:)) var(bmod1(21,:)) var(borth1(21,:)); ...

var(bord1(22,:)) var(bmod1(22,:)) var(borth1(22,:)); ...

var(bord1(23,:)) var(bmod1(23,:)) var(borth1(23,:)); ...

var(bord1(24,:)) var(bmod1(24,:)) var(borth1(24,:)); ...

var(bord1(25,:)) var(bmod1(25,:)) var(borth1(25,:)); ...

var(bord1(26,:)) var(bmod1(26,:)) var(borth1(26,:)); ...

var(bord1(27,:)) var(bmod1(27,:)) var(borth1(27,:)); ...

var(bord1(28,:)) var(bmod1(28,:)) var(borth1(28,:))];

t = toc;

tmin = t/60;

disp([’Elapsed time is ’, num2str(tmin), ’ minutes.’]);
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