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A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for cer-
tain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the
elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges
arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy
argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to effect a smooth
transition from one set of FEM eigenvectors to another with no requirement that the models be of similar
dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and con-
troversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates
that of the continuously varying system. The real-time computational burden is shown to be negligible due to
convenient features of the solution method. Simulation results are presented, and applications to staging and
other discontinuous mass changes are discussed.

I. Introduction

In integrated flight dynamics formulations for launch vehicles, the most common approach to modeling elasticity is
the superposition of a set of linear orthogonal elastic modes with the nonlinear rigid body dynamics. This type of model
yields many convenient benefits for control design and stability analysis1,2. The elastic modes are generated from a
finite element eigensolution and the corresponding rigid body modes are removed via partitioning. This technique can
yield a very high fidelity simulation if the nonlinear model elements and the elastic elements are carefully coupled
together using mathematically rigorous mechanisms. However, the generation of an eigensolution is fundamentally a
linear, time-invariant (LTI) concept and does not transfer seamlessly to modeling the elasticity of systems that have
time-varying mass and stiffness, as is common in launch vehicles.

Alternative methods of modeling require a different formulation and often highly increased computational com-
plexity. The method of assumed modes3 fits elasticity to a linear combination of a set of basis functions that are not
necessarily orthogonal to the rigid body, so the coupling between the elastic response and the rigid body motion has
to be explicitly applied4. Determination of the time-varying terms requires at least partial knowledge of the mass and
stiffness properties of the original FEM, and increases the computational burden significantly. However, the underly-
ing structural properties (mass and stiffness) can be interpolated, yielding a quasi-continuous elastic model that closely
resembles a time-varying physical system. This approach is well-suited to certain types of simulation environments,
but it is not particularly advantageous for GN&C flight dynamics simulations.

In a mature launch vehicle design environment, it is typical to have a separate finite element model corresponding
to a different vehicle mass at every ten to twenty seconds of flight time. At those mass configurations where the sim-
ulated (table-lookup) rigid body mass properties match the mass properties of the finite element model that generated
the eigensolution, the elastic motion is indeed orthogonal to rigid body motion. The exact degree of this error can be
computed given sufficient data from the FEM, but it is known to be negligibly small over the time scales typically con-
sidered in a launch vehicle dynamics model. When each new model is selected, some mechanism must be employed
to transition from integrating the states of the eigensolution at time t0 to the new eigensolution at time t1. For simple
vehicle configurations whose elastic dynamics closely resemble that of a beam, it is common to attempt to linearly
interpolate the mode eigenvectors. Unfortunately, there is no mathematical basis for doing so; the concept of mode
interpolation is based on the spatial concept of an eigenvector as a representation of the lateral elastic deformation
of a beam. Mode interpolation requires not only interpolation between similar eigenvectors but also the stiffness and
damping matrices that represent the elastic generalized coordinates, introducing several problems.

1. For continuity, the elastic models must be of the same dimension k at time t0 and t1.
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2. Interpolation between any pair of eigenvectors v0 and v1 requires that they are a similar pair; that is, representing
the same physical motion. This requires a mechanism to correlate modes with physical motion as the models
evolve forward in time. Automation of this process using MAC (Modal Assurance Criterion) and other tech-
niques has thus far been elusive, and is highly labor-intensive. This issue is exacerbated by the eigenvectors’
arbitrary rotation with respect to the structural coordinate frame. The process does not scale to multiple models
(such as dispersed model sets), since each model must be preprocessed extensively. For complex models with
three-dimensional, non-beam-like behavior, this process may not yield a tractable solution at all.

3. Interpolation of diagonal generalized stiffness and damping matrices is physically intuitive, but the integrated
model stiffness and damping may no longer be diagonal or symmetric when augmented with generalized forces
such as aeroelasticity5.

4. Interpolation of several multi-dimensional tables at every integration time step is computationally expensive.

5. The interpolated model, rigorously speaking, has no correlation to a physical system.

6. The interpolated model not only non-orthogonal to the rigid body, it is non-orthogonal to itself to an unknown
degree!

Even when using modal interpolation with limited success, the problem still remains as to how to transition to a new
elastic model when the dimension of the model changes, or the model changes in a way that does not lend itself
to interpolation. Such events include staging or other significant losses of mass that drastically change the modal
solution. Transfer of the terminal conditions at the last integration time step to the initial conditions of the new model
is obviously problematic - excepting dimension changes, the new model configuration is represented by an entirely
new basis, so the old eigenstates are physically meaningless. Continuing the integration often results in a severe,
physically unrealistic “twang” as the lightly-damped structural modes respond to a large, arbitrary initial condition.

One obvious solution is to re-initialize the initial conditions of the generalized coordinates to zero. This fails to
capture dynamically significant events resulting from the release of stored energy in the loaded structure, and can be
considered underconservative. Other techniques have been proposed to effect a transfer of the initial conditions of
one model to another, including least squares or pseudoinverse solutions. The problem to be solved is thus: given
a known set of physical bending displacements and velocities at time t0, what set of new generalized coordinates
optimally approximates the physical coordinates using a new basis (the new set of eigenvectors) at t1? The problem
can be solved quite accurately using a sufficient number of eigenvector components (gridpoints) so that the elastic
displacements and velocities very closely match on either side of the transition.

However, as will be shown, this solution creates significant problems due to the lack of continuity of energy - a
least-squares or weighted least-squares solution is insufficient to ensure a physically meaningful transition. A special
form of least squares, called regularized least squares or least squares with quadratic inequality constraints (LSQI),
can be employed instead.

II. Concept Review

Consider the linear, second-order structural dynamics model

Mq̈ +Kq = Q (1)

where q ∈ Rn is a vector of displacements (including small rotations) in physical coordinates, and Q ∈ Rn is a vector
of excitation forces and torques.

Without loss of generality, assume that the system (1) can be partitioned such that[
M

J

] [
ẍ
θ̈

]
+

[
K1

K2

] [
x
θ

]
=

[
f
τ

]
(2)

where x are the translational displacements and θ are the angular displacements, M is the mass matrix, J is the inertia
matrix, and K1,K2 are the translational and angular stiffness matrices, respectively. For this second order system (2)
with M, J, Ki real and symmetric, there exists a similarity transformation

q = S η =

[
Φ

Ψ

] [
ξ
σ

]
(3)
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that diagonalizes the system. The transformation S is orthonormal and S −1 = S T . Letting x = Φξ and θ = Ψσ and
premultiplying by S , we have[

ΦT MΦ

ΨT JΨ

] [
ξ̈
σ̈

]
+

[
ΦT K1Φ

ΨT K2Ψ

] [
ξ
σ

]
=

[
ΦT f
ΨTτ

]
. (4)

Typically, Φ, Ψ are chosen such that the generalized mass matrix is normalized, and

µ =

[
ΦT MΦ

ΨT JΨ

]
= I (5)

K =

[
ΦT K1Φ

ΨT K2Ψ

]
. (6)

A fixed viscous damping is usually assumed, leading to a diagonal damping matrix D. The modal elastic model is
written as

µη̈ +Dη̇ + Kη = S T Q. (7)

The columns of the transformation S are the eigenvectors of the linear transformation that diagonalizes the system;
the eigenvalues appear on the diagonal of K and are equal to the square of the natural frequencies of the elastic modes.

The kinetic and potential energies of this class of dynamic system are invariant under coordinate transformations.
It follows, therefore, that the kinetic energy of the system

T = q̇TMq̇ = η̇T η̇. (8)

Likewise, the potential, or elastic strain energy, is given by

V = qTKq = ηT
Kη. (9)

III. Model Transition Using Least Squares

Consider two finite element models (1) in modal form (7) at times t0 and t1. Given any complete eigenstate η0, η̇0
at time t0, the physical elastic displacement and velocity of the model are given by

q0 = S 0η0 (10)
q̇0 = S 0η̇0

Recall that at t1, q1 = S 1η1 and likewise for the velocities. We seek a solution for the new eigenstate η1, η̇1 at
time t1 that closely approximates the physical displacement q0 such that ‖S 1η1 − q0‖2, the norm error of the approxi-
mation, is minimized. This is a standard estimation problem and a solution is readily found using the Moore-Penrose
pseudoinverse given by

η1 = S †1q0 (11)

η̇1 = S †1q̇0

where
S †1 =

(
S T

1 S 1

)−1
S T

1 (12)

which is guaranteed to exist since S 1 is full rank.†

Although the pseudoinverse solution ensures the minimum square error of the physical approximation, it does so
with arbitrary η, η̇. If it were the case that the model (7) contained the full set of modes corresponding to all of the
modeled mass in the original FEM, the matched displacement and velocity would provide approximately the same
strain energy and kinetic energy, respectively, at time t1. However, the FEM (7) is often significantly truncated, so the
physical solution is an approximation, S i are not square, and energy continuity is not guaranteed and is in fact grossly
in error.
†The matrix S T

1 S 1 can be very ill-conditioned; direct use of (12) may yield errors. More numerically robust methods for computation of the
pseudoinverse are common; for example, see MATLAB’s “\” and pinv() functions, which employ QR decomposition 6.
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A. Solution Via Regularized Least Squares

A least squares problem is said to be regularized when the model parameter estimate x ∈ Rn that achieves

min ‖Ax − b‖2 (13)

is subject to lie within a hyperellipsoid in Rn, which can be defined as the norm inequality

‖B (x − x0)‖2 ≤ α. (14)

The regularized problem is useful in certain estimation applications, for example, where a nonlinear process is
linearized at x0 and a model parameter estimate is refined via iteration. At each step, the new least-squares estimate
for the parameters is constrained to lie within a trust region around the current linearization.

There exist algorithms6,7 that readily solve the regularized least squares problem (13,14), relying on a generalized
singular value decomposition (GSVD) which diagonalizes the problem into a set of scalar objectives and constraints.
The method requires the determination of a Lagrange multiplier via Newton-Rhapson iteration.

Note the equivalence of the quadratic inequality constraint

(x − x0)T Q (x − x0) ≤ α2 (15)

where Q = BT B, a symmetric, positive definite matrix. Given any symmetric, positive-definite (and therefore diago-
nalizable) Q, we can always find a B and write the inequality in the form of (14). The quadratic form in (15) can be
used to express the potential and kinetic energies (8) and (9). We reformulate the two least squares problems as

min ‖S 1η1 − q0‖2 subject to
∥∥∥∥K 1

2 η1

∥∥∥∥
2
≤

√
V0 (16)

which determines the generalized displacements such that the new potential energy V1 ≤ V0. For the velocities, we
find

min ‖S 1η̇1 − q̇0‖2 subject to ‖η̇1‖2 ≤
√

T0 (17)

such that the new kinetic energy T1 ≤ T0. Note that as a consequence of the aforementioned diagonalization, V0 =

ηT
0Kη0 and T0 = η̇T

0 η̇0. Furthermore, the square root of the matrix required in (16) is trivial since K is diagonal.

B. Numerical Implementation

Numerical implementation of the LSQI constrained least squares problem (16,17) is straightforward using MATLAB’s
built-in SVD and matrix routines along with the open source (BSD license) package regtools8, which can be readily
adapted to the present application. Of the three distinct constraint cases occurring in the LSQI problem, we find that
the numerical solution invariably lies on the boundary of the feasible set6; that is, the best-fit solution for the physical
displacements and velocities is the maximum-energy solution.

In practical implementation, it may not be necessary to include the entire set of eigenvectors S i but only the
translational degrees of freedom associated with a suitable number of gridpoints distributed throughout the structure
such that global elastic behavior is well-represented. The number of required gridpoints should equal or exceed
the number of generalized degrees of freedom, but varies depending on the degree of model truncation. Adequate
fitment with only low-frequency global bending modes can be accomplished with only a few dozen gridpoints. The
elastic displacement and velocity of the gridpoints used for initialization need only be computed when executing the
algorithm. There is no requirement that the models at t0 and t1 be of the same dimension.

More importantly, the numerically intensive generalized singular value decomposition (GSVD) can be computed
offline based on the modal data; the result is not dependent on the current states. Therefore, the initialization technique
is well-suited to simulation implementation since the GSVD matrices associated with each model can be stored in a
lookup table.

IV. Simulation

The present initialization technique has been applied to a high fidelity, linear time-varying (LTV) planar perturba-
tion simulation of the Ares I launch vehicle derived from the FRACTAL9 modeling toolchain. In order to adequately
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model elasticity effects on control system performance, the model can be initialized to propagate approximately 16-30
modes; global bending behavior can be captured sufficiently with 8-10 modes.

In the present case, 16 lateral bending modes have been down-selected from the elastic model using a modal gain
sensitivity metric10. The initialization routine uses 53 centerline gridpoints along the vehicle core load path. No
frequency interpolation is used. Since a consistent model dimension is used, the number of modes at each transition
is the same. The transition algorithm is implemented in MATLAB using a modified version of regtools. Under these
conditions, the transition algorithm typically converges in about 2 ms on a 3.0 GHz Intel E8400 PC platform and
therefore has no impact to overall simulation performance.

The test cases considered are a nominal ascent simulation with multiple flex model transitions; the first occurs at
t = 5 seconds and the second occurs at t = 15 seconds. The second transition is analyzed to demonstrate the efficacy of
various transition methods. The blended rate output sensed by the control system (consisting of sensor measurements
from both forward and aft rate gyro assemblies) yields a qualitative measure of the amount of flexibility affecting
the autopilot. In addition, the elastic potential V(t) is computed. In the following plots, the elastic potential has been
forward-reverse processed with a 4th order Butterworth low-pass filter ( fc = 2 Hz). The simulation integration interval
is 0.01 seconds using an RK4 algorithm.

Three test cases are considered. First, the transition to a new set of eigenvectors is allowed to occur without a
change in the generalized coordinates (no initialization). The second test case initializes the new generalized coordi-
nates to minimize the weighted square error of the physical displacement and velocity, as in (11). Finally, the third
test case uses the LSQI energy-based method (16,17). The method of resetting the generalized coordinates to zero is
not shown; the results are obvious.

In Figures (1) and (2), the transition is allowed to occur without initialization. No significant increase in bending
response at the sensor can be detected, and energy continuity is approximately maintained. Since the generalized
coordinates do not change, the kinetic energies are equal and the potential energy is nearly the same. However, as
can be seen in Fig. 2, the physical configuration after the transition is in no way related to the physical configuration
before.
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Figure 1. Elastic angular response and potential energy, no state initialization
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Figure 2. Mode shape and velocity continuity, no state initialization

A standard pseudoinverse initialization using the minimum square error of the displacement and velocity is shown
in Figures (3) and (4). Due to the ability of the new basis to accurately model the preceding physical configuration,
the model fit in physical coordinates is very good. However, the problem with the unconstrained solution becomes
apparent – the bending potential discontinuously increases by several orders of magnitude, creating a large elastic
transient that rapidly drives the numerical simulation to instability.
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Figure 3. Elastic angular response and potential energy, pseudoinverse initialization
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Figure 4. Mode shape and velocity continuity, pseudoinverse initialization

Finally, the proposed LSQI technique is illustrated in Figures (5) and (6). Kinetic and potential energy continuity
is maintained across the transition, and a constrained solution exists that very accurately approximates the physical
configuration of the system before the change of basis vectors. No unrealistic transient is introduced into the system.
The simulated elastic behavior through the transition closely matches the expected physical elastic response.
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Figure 5. Elastic angular response and potential energy, LSQI initialization

7
American Institute of Aeronautics and Astronautics



0 10 20 30 40 50 60 70
−0.01

0

0.01

0.02

0.03
Flex init at T=14.990

node number

d
is

p
la

c
e

m
e

n
t 

(f
t)

t−

t+

0 10 20 30 40 50 60 70
−0.4

−0.2

0

0.2

0.4

node number

v
e

lo
c
it
y
 (

ft
/s

e
c
)

t−

t+

Figure 6. Mode shape and velocity continuity, LSQI initialization

V. Conclusions and Forward Work

The proposed LSQI initialization technique has been shown to provide physically accurate simulation continuity
for differing elastic models without the requirement that the models be of the same dimension or have similar sets
of eigenvectors. This algorithm may yield sufficient reductions in computational and manual preprocessing overhead
to allow the use of multiple sets of dispersed modal solutions, since manual or automated inspection of mode shape
correlation can be eliminated. More importantly, the speed and fidelity of GN&C flight dynamics simulations can be
increased by eliminating unnecessary table interpolation steps and improving the physical realism of model transitions
while retaining the simplicity of the orthogonal modes approach.

The sensitivity to the number of modes and the number of gridpoints used in the transition algorithm remains to be
shown. Convergence of the embedded iterative root finding step is not guaranteed, and it may be possible to improve
convergence properties by including the rotational degrees of freedom in the transition algorithm. Convergence might
also be improved in a second pass by re-initializing the LSQI solver using a random guess for the new eigenstate that
lies on the boundary of the constraint ellipsoid.

One particularly intriguing applications area is enforcement of continuity during discontinuous changes in the
vehicle mass or configuration, such as a panel jettison or staging event. This requires knowledge of the fraction of
kinetic and potential energy that is retained after the transition so that the remaining structure to be propagated forward
is properly initialized.
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Many 6+ DoF dynamics formulations are based on superposition of linear 

orthogonal elastic modes with nonlinear rigid body dynamics 

A FEM eigensolution (set of modes) is fundamentally an LTI concept 

The vehicle dynamics are not LTI; system has time-varying mass/stiffness 

Superposition of the orthogonal modes is still the most attractive modeling 

approach 

Does not require knowledge of mass integrals; coupling between rigid and elastic DoF 

found in assumed modes techniques 

In a mature modeling environment, FEMs are expected at closely spaced 

intervals 

Models are only orthogonal to rigid body at these distinct mass property configurations 

Error is small over these time scales using fixed modal solution 

How do we transition from one model to the next? 

 

 

 

Overview 

2 



Mode interpolation has been used in the community for some time 

Mode interpolation is physically intuitive for simple beam systems 

For general structural dynamics solutions, mode interpolation does not yield a physically 

meaningful answer 

1. For continuity in integration, model dimension must not change 

2. Interpolation between eigenvectors requires that they be a similar pair 

Introduces significant preprocessing overhead (MAC, human analyst) 

Eigenvectors can be arbitrarily rotated w.r.t. structural frame (“sign flipping”) 

Does not scale to sets of dispersed models 

3. Inclusion of aeroelastic & force follower effects makes stiffness/damping non-diagonal 

4. Multi-dimensional table interpolation is computationally expensive 

5. Interpolated model, strictly speaking, is not correlated to any physical system 

6. The interpolated model is non-orthogonal to itself 

 

 

 

Mode Interpolation 
(OR, WHY IT’S SUCH A BAD IDEA) 
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Elastic model transitions at discontinuous events 

Discontinuous events require propagation of a new elastic model with possibly no dynamic 

similarity to previous model 

Consider loss of mass (staging), panel separation, LAS jettison, etc. 

Dimension of the model may change 

Existing solutions are either unrealistic or underconservative 

1. Transfer initial conditions (or subset of them) to the new model 

No physical correlation to the real system; represented by an arbitrary new basis 

Analogous to expressing a physical 3-vector in the wrong coordinate frame 

2. Transfer initial conditions and artificially increase modal damping to absorb twang 

Not physically realistic; fixes a modeling problem 

3. Set initial conditions to zero 

Underconservative; ignores or resets loaded structure 

 

 

 

Further Complications 
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Example (Ares I FRACTAL LTV, 16+ modes) 
Direct transfer of initial conditions to new model at T=15 sec 

No significant increase in energy (kinetic energies equal; small ΔV due to Δω) 

No physical correlation between old and new system representation 

Example 
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No physical continuity 



Linear, 2nd-order structural dynamics model 

 

 
Assume we can partition this model as 

 

 

 

 

Under certain conditions, there exists a similarity transformation 

 

 

 

We have 

Concept Review 
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Modal Form 

Generalized Mass Matrix Generalized Stiffness Matrix 

Displacement 

Rotation 



We write the structural model in a modal form 

 

 
The kinetic energy is invariant w.r.t coordinate transformations – 

 

 

 

As is the potential (elastic strain energy) 

 

 

 

Note that in modal space, the energy can be expressed as a quadratic form of a vector and a 

diagonal (or identity) matrix 

Concept Review (II) 
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How do we effect a smooth model transition? 
Given a known elastic displacement using model “A” (set of basis functions [eigenvectors]), how do 

we find a new set of generalized coordinates that make “B” displacement match “A”? 

 

Consider two finite element models in modal form at      and    
Elastic displacement and velocity given by 

 

 

 

 

Minimize                          : 

 

 

 

 

 

This is a least-squares model fit; a Moore-Penrose pseudoinverse:  

 

 

Attractive and intuitive solution; but it doesn’t work!  No energy continuity. 

Physical displacement and velocities match very well, but only at time of transition. 

This is partially due to the truncated model; modal mass in each model is not the same. 

 

 

Model Transition Using Least Squares 
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Example (Ares I LTV, 16+ modes) 

Model Transition Using Least Squares 
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Excellent matching of  

displacement and velocity, but… 



Example (Ares I FRACTAL LTV, 16+ modes) 
 

Unstable numerical response after transition due to large increase in elastic potential 

Model Transition Using Least Squares 
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No energy continuity 



Consider the previous problem as a regularized least squares problem  
In estimation theory, we regularize a least squares problem to confine the new estimate to be close 

to the old estimate, for example in successive estimation of a nonlinear process 

The least squares procedure minimizes 

 

 

Subject to  

 

 

B (its square, actually) defines a hyperellipsoid in  

If B=I,     must lie in a unit ball around  

 

There are existing algorithms that solve this nonlinear problem efficiently. 

 

Note the equivalence of the quadratic inequality constraint 

 

 
and our forms for the kinetic and potential energies, 

Model Transition Using LSQI 
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We now solve the quadratic inequality constrained least squares (LSQI) problem 

 

 

 

 

 

 

 

Since modal form is diagonal, quantities are easy to compute: 

 

 

Numerical implementation of LSQI is available in an open-source MATLAB package, 

regtools, modified slightly for this application 
Only a small number of centerline gridpoints need be computed, only at the model transition 

The GSVD (generalized singular value decomposition) calls are not a function of the current states: 

all complex matrix math can be computed offline 

Numerical routine requires a root-finding step to determine a Lagrange multiplier 

Considerably less computationally complex than interpolation 

 

 

Model Transition Using LSQI (Cont’d) 

12 

Match displacement subject to potential energy constraint 

Match velocity subject to kinetic energy constraint 



Flex initialization routine implemented in Ares I FRACTAL LTV, 16+ modes 
53 centerline (load path) gridpoints used for displacement/velocity matching 

 200 Hz continuous-time integration rate on analyst PC (3.0 GHz Intel E8400) 

Full aeroelastics, thrust, and slosh coupling models 

Typical execution time (including GSVD) < 2 ms! 

Eliminates twang in a physically realistic way 

Simulation 
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Excellent matching of  

displacement and velocity 

Energy continuity 



LSQI algorithm can provide physically accurate simulation continuity without modal 

interpolation 
Only losses of fidelity are (1) modal truncation (2) loss of orthogonality w.r.t. rigid body 

Ability to match displacement and velocity of gridpoints at separation events to simulate pre-load 

induced twang effects 

Could also be used to transition from fixed-free to free-free stack model at liftoff 

If mass loss occurs, knowledge of remaining mass/stiffness distribution in each “piece” can be 

used to determine new energy constraints for separate free-free bodies 

 

Potential to significantly reduce preprocessing overhead and computational burden 
Table lookup of interpolated modal data is very expensive 

Manual preprocessing of large, complex three-dimensional structural models is nearly intractable 

Allows automated use of dispersed (realistic) modal models in GN&C simulations 

 

Forward work 
There is an embedded root-finding problem whose convergence properties must be explored 

Analysis of sensitivity to number of modes and accuracy of model fitment must be explored 

Inclusion of rotational degrees of freedom may add fidelity 

Verification of accuracy of discretized solution against continuously varying analytical solutions 

 

 

 

 

 

Conclusions / Forward Work 
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