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It	is	now	recognized	that	prediction	of	radiative	heating	of	entering	space	craft	

requires	explicit	treatment	of	the	radiation	field	from	the	infrared	(IR)	to	the	

vacuum	ultra	violet	(VUV).	While	at	low	temperatures	and	longer	wavelengths,	

molecular	radiation	is	well	described	by	bound‐bound	transitions,	in	the	short	

wavelength,	high	temperature	regime,	bound‐free	transitions	can	play	an	important	

role.	In	this	work	we	describe	first	principles	calculations	we	have	carried	out	for	

bound‐bound	and	bound‐free	transitions	in	N2,	O2,	C2,	CO,	CN,	NO,	and	N2+.	

Compared	to	bound‐bound	transitions,	bound‐free	transitions	have	several	

particularities	that	make	them	different	to	deal	with.	These	include	more	

complicated	line	shapes	and	a	dependence	of	emission	intensity	on	both	bound	state	

diatomic	and	atomic	concentrations..	These	will	be	discussed	in	detail	below.	

The	general	procedure	we	used	was	the	same	for	all	species.	The	first	step	is	to	

generate	potential	energy	curves,	transition	moments,	and	coupling	matrix	elements	

by	carrying	out	ab	initio	electronic	structure	calculations.	These	calculations	are	

expensive,	and	thus	approximations	need	to	be	made	in	order	to	make	the	

calculations	tractable.	The	only	practical	method	we	have	to	carry	out	these	

calculations	is	the	internally	contracted	multi‐reference	configuration	interaction	

(icMRCI)	method	as	implemented	in	the	program	suite	Molpro.1	This	is	a	widely	

used	method	for	these	kinds	of	calculations,	and	is	capable	of	generating	very	

accurate	results.	With	this	method,	we	must	first	of	choose	which	electrons	to	

correlate,	the	one‐electron	basis	to	use,	and	then	how	to	generate	the	molecular	

orbitals.	



In	all	calculations,	we	only	correlate	the	valence	electrons,	i.e.	the	1s‐like	orbitals	are	

kept	doubly	occupied	in	all	configurations.	We	initially	considered	correlating	all	

electrons,	which	would	yield	more	accurate	results,	however	the	extra	expense	was	

deemed	un‐warranted,	given	the	difficulties	with	the	icMRCI	method	for	highly	

excited	states.	This	will	be	discussed	in	more	detail	later.	

For	all	calculations,	the	one‐electron	basis	set	used	was	based	on	the	Dunning2	cc‐

pVTZ	basis	set,	which	is	the	smallest	one‐electron	basis	set	capable	of	yielding	

reasonable	results.	We	also	used	the	second	order	Douglas‐Kroll‐Hess3	

approximation	to	treat	scalar	special	relativity.	To	help	describe	the	outer‐most	

electron	clouds,	the	cc‐pVTZ	basis	set	was	augmented	by	one	extra	diffuse	function	

for	each	shell	for	C	and	N,	and	two	extra	diffuse	functions	for	each	shell	for	O.	The	

extra	shells	on	O	are	required	due	to	the	importance	of	O‐	configurations.4	

Furthermore,	systems	expected	to	have	low‐lying	Rydberg	states	(the	neutrals,	but	

not	the	cations)	had	an	additional	diffuse	function	added	for	each	shell.		

The	molecular	orbitals	were	generated	using	the	following	composite	procedure.	

We	first	generated	valance	molecular	orbitals	by	carrying	out	a	series	of	complete	

active	space	(CAS)	calculations	starting	at	large	internuclear	separations	(100	ao	for	

neutrals	and	1000	ao	for	ions)	and	working	our	way	in	to	small	inter‐nuclear	

separations.	We	will	use	the	symbol	r	for	inter‐nuclear	separation.	About	50	



internuclear	separations	were	considered.	In	these	calculations,	the	O	2s‐like	

orbitals	were	kept	doubly	occupied	in	all	configurations.	In	the	CAS	calculations,	

several	roots	from	each	symmetry	were	optimized,	with	the	weight	for	each	root	

computed	from	the	energy	difference	as	described	by	Deskevich	et	al.5	We	based	our	

selection	of	roots	on	the	atomic	states	that	we	could	reliable	converge	to.	Thus	our	

orbitals	transform	as	C∞v	for	heternuclear	diatomics	and	D∞h	for	homonuclear	

diatomics,	and	furthermore	lead	to	the	proper	atomic	degeneracies	in	the	

asymptotic	region.		We	just	considered	a	single	overall	electron	spin:	doublets	for	

CN,	N2+,	CO+,	triplets	for	N2,	O2,	C2,	CO,	and	quartets	for	NO.	For	N2,	C2,	CO	and	NO.	

This	choice	of	spin	is	not	the	same	as	the	ground	electronic	state,	but	this	choice	

gives	better	coverage	of	possible	atomic	states,	thus	it	gives	better	overall	results	for	

all	spins	in	the	icMRCI	calculations.	The	results	from	one	internuclear	separation	

were	used	as	initial	guess	for	the	next	smaller	internuclear	separation,	and	the	diab	

procedure	in	Molpro	was	used	to	make	the	molecular	orbitals,	both	active	and	

virtual,	look	as	similar	as	possible	as	the	internuclear	separation	changed.	



Once	the	valence	molecular	orbitals	were	determined,	we	determined	low‐lying	

Rydberg	orbitals	for	the	neutrals.	For	these	calculations	we	started	at	the	smallest	

inter‐nuclear	separations	and	worked	our	way		to	larger	r	values.	The	valence	

molecular	orbitals	were	kept	frozen	at	their	previously	determined	values,	and	in	

the	CAS	calculations	we	restricted	the	configurations	so	that	exactly	one	electron	

	



was	kept	in	the	Rydberg	orbital	of	interest.	For	N2,	O2,	C2,	and	CO,	we	used	the	

lowest	lying	Rydberg	singlet	states,	while	for	CN	and	NO	we	used	the	lowest	lying	

Rydberg	doublet	states.	In	a	sequential	manner,	we	generated	two		Rydberg	

orbitals	and	both	components	of	the		Rydberg	orbital.	As	with	the	valence	orbitals,	

we	used	the	diab	procedure	in	Molpro	to	ensure	that	the	Rydberg	orbitals	smoothly	

changed	with	inter‐nuclear	distance.	

Now	we	turn	to	evaluating	the	energies	and	coupling	matrix	elements.	We	carried	



out	icMRCI	calculations	for	using	an	active	space	that	consisted	of	all	valence	

orbitals	and	all	Rydberg	orbitals:	however	O	2s	valence	orbitals	where	kept	doubly	

occupied	in	the	reference	configurations	and	a	maximum	of	one	electron	was	

allowed	on	the	Rydberg	orbitals.	For	these	calculations,	we	used	a	modified	version	

of	Molpro	that	allowed	the	selection	of		for	the	state	of	interest.	Thus,		states	were	

computed	from	separate	icMRCI	calculations	then		states,	etc.	Nonetheless,	it	is	

necessary	to	extract	multiple	roots	from	the	icMRCI	calculations.	These	calculations	

can	be	carried	out	in	two	ways:	the	coupled	state	method,	in	which	all	roots	are	

computed	together	and	The	projected	state	method,	in	which	all	roots	are	computed	

sequentially.	The	first	approach	is	the	default	procedure	in	Molpro	and	has	the	

advantages	that	the	computed	wave	functions	are	orthogonal	and	have	lower	

energies,	and	hence	are	more	accurate,	than	the	projected	state	energies.	It	has	the	

disadvantage	that	the	cost	of	calculation	grows	significantly	as	the	number	of	states	

increases		Much	more	troublesome,	however,	is	the	fact	that	changes	in	the	

character	of	higher	states	can	lead	to	discontinuous	changes	in	lower	state	energies.	

The	advantage	of	the	projected	state	calculations	is	that	the	cost	is	linear	in	the	

number	of	roots,	and	state	energies	are	continuous	as	the	internuclear	separation	

changes.	The	disadvantages	of	the	projected	state	calculations	are	the	electronic	

wave	functions	are	no	longer	orthogonal	and,	if	one	is	unlucky,	a	state	flipping	can	

occur	that	causes	the	calculations	to	fail.	Thus	neither	method	will	always	give	

reliable	results.	For	the	most	part,	we	use	the	projected	state	method,	with	the	

coupled	state	method	used	selectively	for	O2	and	CO+.	The	unpleasant	features	that	

occasionally	occur	in	high	lying	roots	in	the	figures	shown	is	mainly	due	to	this	

problem.	



	

Using	these	electronic	wave	functions,	we	computed	the	energies,	the	overlaps,	the	

dipole	moment,	the	quadrapole	moment,	the	magnetic	dipole	moment,	and	spin‐

orbit	matrix	elements	for	all	possible	couplings.	Furthermore,	to	ascertain	the	

relative	phases	of	matrix	elements	and	to	transform	from	the	adiabatic	to	a	diabatic	

basis,	we	computed	the	overlaps	of	the	wave	functions	from	adjacent	inter‐nuclear	

separations.	

Now	let	make	a	slight	digression.	The	energies	computed	as	described	above	are	

known	as	adiabatic	energies,	for	the	nuclei	are	"clamped"	to	fixed	positions	in	the	

calculations	of	the	electronic	energies.	However,	for	accurate	calculations,	it	is	



important	to	consider	the	effect	of	unclamping	the	nuclei	on	the	electronic	

properties.	This	is	most	readily	shown	in	the	2	manifold	of	NO:	in	the	figure	the	

symbols	are	the	adiabatic	energies,	and	the	lines	are	Molecular	diabatic	energies.	

The	adiabatic	energies	show	numerous	avoided	crossings	as	the	Rydberg	state	

comes	down	in	energy.	At	these	crossings,	the	electronic	wave	function	changes	

rapidly	from	one	side	to	the	other,	and	thus	the	coupling	between	the	internuclear	

coordinate	and	the	electronic	wave	functions	will	be	very	large.		Even	though	this	

coupling	can	be	included	in	the	calculations	in	a	fairly	straightforward	manner,	

other	complications	with	using	the	adiabatic	electronic	functions	remain.	Namely	

the	matrix	elements	of	other	operators,	such	as	the	dipole	moment,	have	very	

complex	behavior	in	the	vicinity	of	an	avoided	crossing,	which	makes	reliable	

interpolation	difficult.	It	is	thus	advantageous	to	transform	to	a	different	electronic	

basis	that	does	not	have	these	problems	because	the	character	of	the	electronic	

wave	functions	has	been	forced	to	vary	slowly	and	smoothly.	This	type	of	basis	is	

called	a	diabatic	basis.	Several	different	choices	for	the	diabatic	basis	are	possible,	

and	the	particular	basis	we	use	we	call	the	Molecular	diabatic	basis.	This	diabatic	

basis	is	formed	recursively	requiring	that	the	adiabatic	and	diabatic	basis	be	the	

same	at	the	inter‐nuclear	separation	where	the	adiabatic	potential	energy	curve	has	

its	deepest	minimum.		In	practice,	we	start	with	the	internuclear	separation	at	the	

lowest	minimum,	then	propagate	both	forward	and	backwards	in	r.	The	propagation	

involves	a	series	of	Jacobi‐type	rotations,	applied	to	the	overlap	between	the	

electronic	functions	at	neighboring	geometries	to	make	it	as	diagonal	as	possible.	

The	Jacobi	rotations	are	only	applied	to	one	side	of	the	overlap	matrix,	and	each	

individual	rotation	angle	is	chosen	to	minimize	the	off	diagonal	overlap	of	each	pair	

of	states.	Sweeps	through	the	matrix	are	carried	out	until	the	off	diagonals	of	the	

matrix	stop	decreasing.	In	the	diabatic	basis,	off‐diagonal	coupling	due	to	electronic	

energy	is	non‐zero,	but	all	curves	are	smooth	and	easy	to	interpolate.	The	

disadvantage	of	this	basis	is	that	convergence	to	the	adiabatic	atomic	energies	is	

rather	slow	in	the	asymptotic	region.	However	this	is	not	expected	to	be	a	critical	

part	of	predicting	accurate	molecular	spectra.	



Another	thing	to	note	about	this	figure	is	the	diabatization	procedure	not	only	turns	

the	sharply	avoided	crossings	into	real	crossings,	but	also	changes	the	large	r‐

dependence	of	the	ground	state	potential.	In	the	large	r	region,	the	ground	state	

potential	does	not	exhibit	any	obvious	avoided	crossings,	so	that	the	diabatic	curve	

differs	from	the	adiabatic	curve	in	this	region	might	be	surprising.	However	some	

consideration	of	the	situation	makes	the	situation	more	reasonable.	In	the	large	r	

region,	the	potential	energy	curves	can	be	labeled	by	atomic	quantum	numbers,	e.g.	

the	lowest	adiabatic	potential	curve	has	the	asymptote	of	3P	O	+	4S	N.	In	the	vicinity	

of	the	minimum,	near	r=2	ao,	the	wave	function	will	reflect	a	mixture	of	atomic	

states.	For	example,	due	to	the	higher	electro‐negativity	of	O	over	N,	there	will	be	

significant	O‐	N+	character	in	the	wave	function.	In	the	Molecular	diabatic	states,	the	

fractional	character	of	the	wave	function	is	more	or	less	frozen	at	its	value	at	the	

minimum,	thus	the	energy	at	the	asymptote	will	be	larger	than	the	lowest	adiabatic	

curve.	This	is	exactly	what	we	see.	What	happen	to	the	3P	O	+	4S	N	state	in	the	

molecular	diabatic	basis?	After	all,	even	in	the	vicinity	of	the	minimum,	the	molecule	

is	not	purely	O‐N+.	The	O	+	N	component	should	still	be	present.	The	NO	figure	

appears	to	show	a	deficiency	in	the	molecular	diabatic	basis.	The	loss	of	the	3P	O	+	4S	

N	state	would	mean	that	one	cannot	use	this	basis	for	dissociation.	



It	is	interesting	to	compare	the	computed	potential	energy	curves	with	experimental	

data.	In	the	figures,	we	have	placed	labels	of	electronic	states	at	the	value	of	Te	and	

re	taken	from	Huber	and	Herzberg.6	For	the	most	part,	the	agreement	is	extremely	

good,	graphically.	The	table	above	with	the	comparisons	between	the	computed	Te	

and	those	given	by	Huber	and	Herzberg	in	wave	numbers.	While	the	differences	are	

a	small	fraction	of	Te,	the	absolute	errors	are	sizable	enough	to	be	observed	in	say	a	

spectrum	from	the	EAST	facility.	Thus	we	shifted	the	curves	for	which	data	was	

available	by	the	negative	of	the	amount	listed	in	the	calc‐obs	columns.	A	more	

accurate	procedure	would	be	to	use	T00,	which	is	a	more	directly	measured	quantity,	

but	the	other	approximations	in	the	present	work	make	this	level	of	refinement	

superfluous.	

Now	it	should	be	noted	that	this	comparison	and	correction	is	not	exact,	for	the	

values	of	Te	computed	are	just	the	differences	in	minimum	energies	in	the	Molecular	

diabatic	curves,	while	the	Te	from	Huber	and	Herzberg	is	either	the	Y00	parameter	in	

the	Dunham	expansion	of	the	experimental	energy	levels	for	simple	cases,	or	a	

parameter	in	a	complicated	effective	Hamiltonian	for	more	complex	cases.	Thus	we	



are	comparing	apples	to	oranges.	Nonetheless	it	is	expected	that	this	correction	will	

be	reliable	enough	to	yield	useful	results.	

 

We	next	carried	out	coupled	ro‐vibrational‐spin‐electronic	level	calculations.	To	

proceed	we	build	up	basis	functions	for	all	coordinates	except	the	inter‐nuclear	

separation:	

	

with	 ,	 	and	0	when	=0.	Here	 	is	the	spin‐electronic	function,	

with		labeling	particular	electronic	states,	S	is	the	total	electronic	spin	quantum	

number,		is	the	absolute	value	of	quantum	number	specifying	the	projection	of	the	

total	electronic	angular	momentum	on	the	inter‐nuclear	bond	axis,		is	the	quantum	

number	specifying	the	projection	of	the	total	electronic	spin	angular	momentum	on	

the	inter‐nuclear	bond	axis,	and	 	specify	spin‐electronic	coordinates	in	the	frame	

of	reference	having	the	body	fixed	z	axis	along	the	inter‐nuclear	bond,	J	and	M	are	

the	quantum	numbers	for	the	total	angular	momentum	and	the	projection	of	the	

total	angular	momentum	on	the	space	fixed	z	axis.	The	body	fixed	and	space	fixed	

axis	are	related	by	the	rotation	by	the	Euler	angles	0,	P	is	the	parity	and	=Ne/2,	

where	Ne	is	the	number	of	electrons.	The	factor		is	‐1	for	‐	states,	and	+1	

otherwise.	The	W 	are	the	Wigner	rotation	matrix	elements	as	defined	by	Edmonds.7	

In	this	basis,	the	full	relativistic	Hamiltonian	operator	is	diagonal	in	JMP.	The	non‐

relativistic	part	of	the	Hamiltonian	is	also	diagonal	in	S.	If	all	off	diagonal	coupling	

matrix	elements	are	neglected,	then	this	would	be	what	is	called	the	Hund's	case	a	

basis.	However,	we	do	not	make	this	approximation,	and	rather	include	all	coupling	

terms.	Thus	we	can	accurately	treat	all	possible	Hund's	cases	as	well	as	all	

intermediate	cases.	

The	matrix	elements	of	the	nuclear	rotational	angular	momentum	contribution	

R(R+1)	to	the	kinetic	energy	is	given	by	
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In	this	expression,	we	only	neglect	the	 	term,	for	it	is	currently	difficult	to	

calculate,	and	furthermore	only	varies	by	a	few	cm‐1	across	the	potential	energy	

curve.	

Besides	the	customary	electric	dipole	transition	moment,	we	will	consider	higher	

order	moments.	This	is	because	the	LBH	aX	N2	transition	is	dipole	forbidden.	The	

next	order	moments	are	the	electric	quadrapole	moment	and	the	magnetic	dipole	

moment.	In	general,	the	transition	matrix	elements	in	this	basis	are	given	by	
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where	 	is	a	3‐j	symbol.	Now	this	factorizes	into	a	term	that	contains	all	the	M	

dependence	and	the	rest:	

	

	

Now	our	final	wave	‐functions	will	consist	of	linear	combinations	of	the	 	with	

fixed	JMP,	but	this	will	not	effect	this	factorization,	but	will	change	from	the	labels	

	to	.	Then	the	rate	of	stimulated	emission	(aka	Einstein	A	coefficient)	from	

electric	dipole	radiation	is	

	

the	rate	of	stimulated	emission	from	magnetic	dipole	radiation	is	
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and	the	rate	of	stimulated	emission	from	electric	quadrapole	radiation	is	

	

We	see	the	following	selection	rules:	for	electric	dipole	radiation	(e1),	 	and	

,	while	for	both	magnetic	dipole	(m1)	and	electric	quadrapole	(e2)	

radiation	we	have	 ,	and	additionally	for	e2,	 	is	possible.	With	all	

other	things	being	approximately	equal	in	atomic	units,	m1	is	down	from	dipole	

allowed	transitions	by	a	factor	of	1/c2,	or	about	10‐4.	Compared	to	m1,	e2	is	down	

about	by	2,	which	about	another	10‐4	in	the	infra‐red	region,	but	nearing	unity	in	

the	VUV.	

So	far	we	have	just	discussed	our	treatment	of	the	angular‐electronic	degrees	of	

freedom.	The	radial	degree	of	freedom,	r,	is	treated	using	the	finite	difference	

boundary	value	method	including	full	coupling.	We	perform	calculations	of	each	

value	of	J	and	P	(the	radial	wave	functions	are	independent	of	the	M	quantum	

number)	and	we	explicitly	integrate	the	transition	moments	over	the	radial	

functions,	thus	we	do	note	need	Hönl‐London	factors	or	the	r‐centroid	

approximation.	Furthermore,	by	fully	including	all	coupling	terms,	we	explicitly	

obtain	nonzero	lambda	doubling	splittings,	spin‐forbidden	transitions,	and	all	

perturbations.	

When	solving	for	the	radial	functions,	we	have	two	situations	to	consider.	In	the	

first,	for	bound	levels,	the	boundary	conditions	are	homogenous	as	 	and	as	

.	In	the	second,	the	total	energy	is	above	the	lowest	dissociation	limit,	thus	the	

large	r	boundary	conditions	are	inhomogenous.	This	complicates	things	

considerably.	

P   P 

J  J 1

P  P J  J  2



For	bound	levels,	the	homogeneous	boundary	conditions	make	the	solution	of	the	

radial	functions	a	banded	eigen‐value	problem.	Thus	the	energies	are	fixed	by	the	

boundary	conditions.		

On	the	other	hand,	for	un‐bound,	or	free	levels,	the	energy	is	a	free	parameter,	and	

we	must	employ	scattering	theory	to	determine	the	wavefunction.	Then	large	r	

boundary	conditions	take	the	form	

	

where		labels	channels	(channels	are	the	various	asymptotically	diagonal	basis	

functions),	 ,	where		is	the	reduced	mass	for	radial	motion,	E	is	the	

kinetic	energy	of	the	relative	motion	of	the	free	particles,		is	the	threshold	energy	

for	channel	,	and	S	is	the	scattering	matrix,	which	is	a	complex	symmetric	matrix.	

For	notational	simplicity,	we	have	suppressed	the	energy	label	from	the	radial	

function	f	and	the	scattering	matrix.	Now	we	do	not	know	a	priori	the	values	of	the	

scattering	matrix,	so	in	practical	calculations	we	solve	for	the	functions	 	subject	

to	the	boundary	conditions	 .	We	then	analyze	the	large	r	behavior	of	

the	numerical	results,	and	form	linear	combinations	to	satisfy	the	desired	boundary	

conditions.	It	should	be	noted	that	the	above	expressions	are	only	valid	when	k	is	

real,	i.e.	E>.	For	other	channels,	the	radial	functions	decay	exponentially	at	large	r.	

Now	for	free	states,	how	should	we	sample	E?	The	obvious	answer	is	to	use	a	

density	of	energies	so	that	the	scattering	matrix	can	be	reliably	interpolated	over.	

This	requires	knowledge	of	the	formal	behavior	of	the	scattering	matrix.	There	are	

poles	in	the	scattering	matrix	at	discrete	complex	energies	 ,	where	n	

is	a	counting	index.	While	complex	energies	are	not	physically	obtainable,	these	

poles	have	important	consequences	on	the	real	energy	axis.	Specifically,	at	energies	

"far"	from	 ,	i.e.	greater	than	about	n	away,	the	phase	of	the	determinant	of	S	

decreases	monatonically	with	increasing	E,	but	near	 ,	the	phase	abruptly	

f  r  ~ k
 1
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increases	by	2	like	 .	Physically,	these	poles	correspond	to	

"almost"	bound	states	with	decay	life	time	/n.	Thus	we	need	to	concentrate	our	E	

sampling	near	the	 .	But	once	again,	we	do	not	a	priori	know	the	 .	

We	obtain	estimates	of	the	 	by	enclosing	the	system	in	a	finite	box,	which	turns	

all	free	states	into	bound	states.	Then	we	can	determine	energy	eigen	values,	and	

the	 	will	be	nearby	some	of	these	eigen	values.	By	evaluating	the	energy	

derivative	of	the	phase	of	the	scattering	matrix,	we	can	isolate	the	 ,	and	then	do	a	

refinement	to	determine	better	estimates	of	 	and	n.	

It	would	seem	that	knowing	 	and	n	and	the	 ,	we	would	be	in	a	position	to	

compute	bound‐free	transitions	just	like	bound‐bound	transitions,	but	further	

reflection	reveals	additional	details	that	must	be	addressed.	First	of	all,	how	should	

the	 	be	"normalized"?	This	is	not	well	determined,	since	they	are	not	square	

integrable	functions.	Secondly,	which	of	the	'	should	we	chose	to	compute	

transition	matrix	elements?	Another	way	to	look	at	this	last	problem	is	 	

represents	incoming	flux	in	channel	'	and	outgoing	flux	in	all	open	channels.	But	

the	physical	situation	should	have	no	incoming	flux,	since	all	the	population	would	

be	generated	by	photon	absorption.	

The	proper	solution	of	this	problem	is	to	directly	couple	the	radiation	field	to	the	

nuclear	problem	using	Green's	functions.	This	leads	to	a	driving	term	in	the	

differential	equations	for	the	radial	functions,	and	a	solution	that	looks	like	

	

with	l	indexing	the	particular	bound	state	for	the	transition.	The	amplitude	 	is	

complex	and	depends	on	energy.	Note	that	these	differential	equations	are	no	more	

difficult	to	solve	than	the	scattering	equations.	Then	one	finds	that	if 	corresponds	
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to	a	very	nearly	bound	state,	then	in	the	limit	of	the	coupling	of	the	true	bound	state	

to	the	continuum	becomes	zero,	then	if	E	is	near	 ,	

	 	 .	

That	is,	the	emissivity	looks	like	an	Einstein	A	modulated	by	a	Lorentzian,	and	that	

the	Einstein	A	can	be	computed	via	

.	

However	this	simple	result	is	not	true	in	general.	This	is	because	the	 	are	complex	

numbers,	and	thus	various	poles	can	cause	constructive	and	destructive	

interference.	See	the	following	figure	for	an	example:	

In	this	figure,	the	red	is	 ,	which	clearly	shows	first	derivative	like	features	

rather	than	Lorentzian	features.	The	green	is	the	result	of	convolution	with	the	

Doppler	broadening.	One	sees	that	the	broadening	for	these	sharp	features	can	

result	in	much	of	the	positive	portion	of	the	feature	being	eliminated.	In	our	

calculations,	we	find	that	this	sort	of	situation	is	the	rule	rather	than	the	exception.	

Thus	it	is	not	sufficient	to	just	evaluate	the	amplitude	 	at	the	 ,	but	rather	it	is	

important	to	have	more	energies	in	order	to	nail	down	the	energy	dependence	of	

the	amplitude	in	order	to	perform	the	Doppler	broadening	calculation.	These	
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calculations	are	in	progress,	but	have	not	yet	been	completed.	

An	additional	complication	is	that	in	addition	to	emission	from	an	almost	bound	

state,	there	will	be	collision‐induced	emission	at	that	energy.	The	emission	from	the	

almost	bound	state	will	be	the	product	of	the	almost	bound	state	population	times	

.	In	contrast,	the	collision‐induced	emission	will	be	the	product	of	the	

atomic	populations	for	channel	'	times	the	factor	 .	See	below	for	an	

example.	The	red	lines	are	for	molecular	emission	while	the	other	colors	are	for	

collision‐induced	emission.		

Thus	we	only	consider	bound‐bound	transitions	in	this	document.	In	the	following	

figures,	we	show	the	optically	thin	absorption	spectra	of	the	diatomics	computed	at	

T=10,000K,	which	is	roughly	appropriate	for	Earth	entry.	

We	see	that	in	all	cases	except	for	N2,	the	dipole	transitions	dominate	the	spectrum.	

We	also	see	significant	filling	in	of	the	spectra	between	peaks	due	to	weak	

transitions,	including	spin‐forbidden	transitions.	
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