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@/ Background SRW
Last Year’s AHS Forum (V22 TRAM Rotor)”

*Demonstrated improved prediction of figure of merit (FM)
< Improved blade grid resolution with high-order spatial differences
< Spalart-Allmaras turbulence mode with the DES length scale
*Demonstrated Cartesian off-body (OB) adaptive mesh refinement (AMR)
< No affect on FM and blade loads
< Resolved vortex wake rich in turbulent flow physics

< Vortex worms: Entrainment of shear layers by vortices
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*Chaderjian, N. M. and Buning, P. G., “High Resolution Navier-Stokes Simulation
of Rotor Wakes, AHS 67™ Annual Forum, Virginia Beach, VA, May 3-5, 2011.
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@ Objectives >R

*Demonstrate on the UH-60 flexible rotor in forward flight and hover

< OVERFLOW'’s high-order spatial differencing, AMR process, and SA-
DES turbulence model
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> Convergence of the dual-time algorithm
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> Convergence of loose coupling process with CAMRAD-II and AMR
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> Explore details of the rotor wake in forward flight and hover
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1S Numerical Approach For This Study ;
OVERFLOW Version 2.2

*Time-dependent Navier-Stokes equations solved everywhere (body & off-body)
*Overset body-fitted curvilinear grids rotate through fixed off-body Cartesian grids

«2"d-order time accuracy using dual time-stepping (pseudo-time with sub-
iterations)

< Approximately factored Pulliam-Chaussee diagonal algorithm
5th-order convective differences, 2"d-order grid metrics/viscous terms
*Dynamic adaptive mesh refinement (AMR) for the off-body (OB) Cartesian grids
*OVERFLOW is loosely coupled with CAMRAD-II every % revolution (4-bladed rotor)
< CFD delta-loads replace CAMRAD-II’s simplified aerodynamics model
< CAMRAD-II provides OVERFLOW with blade deflections and trim conditions

*Many other options and features



@/ Spalart-Allmaras Turbulence Model SRW
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-

Production Dissipation Diffusion

“d” is the distance to the nearest wall

* It should represent the largest turbulent eddy size gtem

* It'stoo large in the wake, so TEV is too large

< Production, but no dissipation (out of balance)

* Inthe wake it has simply become a geometric i

parameter
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SRW

Spalart-Allmaras Detached Eddy Simulation
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—:Cblv(9+ﬁfv2j—cwlfw(g) +E[Vo((v+v)Vv)+Cb2(Vv)2]J

Production Dissipation Diffusion

DES provides a more realistic turbulent length scale
d =min(d,C,A)
A = max (Ax,Ay,Az)

Rational way to reduce the TEV, even when using RANS grid spacing
Viewed as a hybrid model
< RANS in boundary layer
< LES outside of boundary layer
Turbulent structures are resolved if the mesh is refined
< Unique application of DES to rotorcraft wakes
< Vortices are not diffused
< Blade flow separation still determined by RANS model
Use delayed detached eddy simulation (DDES) as a precaution



Overset Grid System - UH-60 Rotor SRW

Inboard Blade Tip
Outboard Blade Tip

- (Y*<1)
N 23 million .
/ body grid points Trim Tab

solbadll  Component | Dimensions | _Grid Points _

Shank

Rotor Blade 241x291x63 4,418,253

Inboard Tip 137x69%x63 595,539

Outboard Tip 122x49x63 376,614
One Blade Total 5,390,406
Hub Body 93x301x54 1,511,622

Hub Top 21x21x54 23,814

Hub Top 21x21x54 23,814

Hub Total 1,559,250



@ High-Speed Level Flight ==
Low BVI

Flight Parameters: C8534

— r/R  Flight-Test Measurements M., 0.236
0.4 0.675 0.865 s p=M_/M,, 037
Shaft Angle -7.31°

Sideslip Angle 1.28°

Re4ip/inch 3.3x10°
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Establishing Dual Time-Step Asymptotic Range $
2"d-Order Accuracy: C8534

Convergence with Subiteration
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*RMS difference formed from highly converged result
*Asymptotic range begins at N.=35, At=)4"

< Typical choice: N=15, At=Y"
*Differences are quantitatively larger than they appear
*Chose N.=40, At=Y%’

< 2.6-order sub-iteration drop is larger than the
2-order rule-of-thumb

Convergence with Timestep
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AMR Grid Systems: C8534

 AMR efficiently captures wake without grid refinement
< 80 million grid points with uniform 10% c,, grid
* AMR allows for efficient/automatic grid refinement

AMRO: A=10% c,;,, 960 grids, 61 million grid points

2] AMR2: A=10%, 5%, and 2.5% Cip» 18,500 grids, 754 million grid points

Low

SRW



OVERFLOW/CAMRAD-II Loose Coupling Convergence ===

Control Angle Convergence

Run for 4.5 revs
°*AMR2: Run for 5.0 revs (Started from AMRO, 3 revs)

*Both AMRO and AMR?2 are converged at coupling iteration 12
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OVERFLOW/CAMRAD-II Loose Coupling Convergence

RMS, Normal Force and Pitching Moment Coefficients

*RMS difference between successive iterations (AN,

*Both AMRO and AMR2 RMS values are converged at cycle 12

*Both AMRO and AMR2 loads show little change past 12t cycle
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Convergence of Normal Force
and Pitching Moment Coefficients
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OVERFLOW/CAMRAD-II Pitching Moment Coefficient
Flight Counter C8534, Mean Removed

e AMRO and AMR2 results virtually identical
< This result is expected due to the lack of BVI
* Good agreement of RMS differences with flight-test data™ (to 2.5%)
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*Gloria K. Yamauchi and Larry A. Young, “A Status of NASA
Rotorcraft Research,” NASA/TP—2009-215369, September, 2009.



OVERFLOW/CAMRAD-Il Normal Force Coefficient s —
Flight Counter C8534, Mean Removed

* AMRO and AMR2 results virtually identical
< This result is expected due to the lack of BVI
* Good agreement of RMS differences with flight-test data (to 2.1%)
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@ Flow Visualization Using the Q-criterion ﬁww
AMR2: A=10%, 5% and 2.5% c;,

. Flight Counter C8534
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Flow Visualization Showing AMR Tracking Vortices

Rendered on Horizontal and Vertical Planes
AMR2: A=10%, 5% and 2.5% c,;,




Time-Dependent Surface Flow
Texture Mapping Colored by Pressure

AMR2: A=10%, 5% and 2.5% Ciip
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OVERFLOW/CAMRAD-II UH-60 Rotor in Hover ==

AMRO: A=10% c;,
1,800 grids, 78 million grid points

AMR1: A=10% and 5% c;,
7,700 grids, 302 million grid points
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OVERFLOW/CAMRAD-II UH-60 Rotor in Hover

AMRO and AMR1 FM in close agreement with each other
< 2% difference from UTRC test

< Experimental uncertainty unknown

e AMRO and AMR1 sectional thrust coefficient in good
agreement with UTRC test

 CFD accuracy has improved

Further validation requires test data uncertainties
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Flow Visualization Showing AMR Tracking Vortices SRW
AMR1: A=10% and 5% c,
7,700 grids, 302 million grid points
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Cut-Away View of Vortices and Worms
AMR1: A=10% and 5% c,
7,700 grids, 302 million grid points
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@/ Pressure Iso-surface for the UH-60 in Hover ﬁsaw
AMR1: A=10% and 5% c,
7,700 grids, 302 million grid points

*Pressure iso-surface similar to viewing natural condensation of tip vortices
< You can not see any worms (Typically 0.5%-1% of tip vortex strength)

< Worms are evident by bands of vorticity on the iso-surfaces
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@/ Computer Run Times _%*Fs

*OVERFLOW was executed on NASA’s Pleiades supercomputer system using
Intel 2.93GHz Westmere nodes and MPI

*Each Westmere node has 12 cores and 24GB of memory

*Wall clock timings are not optimal, but reflect what is possible given
computer resources and deadlines

Grid Points | Number of Wall Clock PI::(I:::Is‘;Eg
illi C Ti h

(millions) ores ime (hrs/rev) Rate
C8534
AMRO 61 1,536 5.4 0.13
C8534
AMR? 754 3,072 23.8 0.71
Hover
AMRO 78 1,536 5.8 0.15
Hover 302 4,608 10.1 1.00

AMR1

22



. \ ° ‘g‘SﬂRW
Conclusions

 Time-dependent Navier-Stokes simulations have been carried out by loosely coupling
OVERFLOW with CAMRAD-II.

 Time accuracy of the Navier-Stokes equations was established within the asymptotic
range, but required more sub-iterations/convergence than normally employed.

* OVERFLOW/CAMRAD-II loose coupling rapidly converged, even with AMR.

* AMR can be used to find vortex wakes without an apriori knowledge of the wake
shape or location, allowing solutions with fewer grid points.

< Useful for baseline or highly resolved wake simulation.

* Computed RMS differences of M2C and M?C,, for forward flight agreed with flight
test data™ to 2.1% and 2.5% respectively.

e Computed FM agreed with experiment to 2%
< More experimental uncertainty data is needed for further CFD validation.

 Complex turbulent wakes interacting with vortices formed vortical worms, similar to
last year’s V-22 simulations.

* AMR had little affect on the rotor loads for forward flight due to weak BVI.

*Gloria K. Yamauchi and Larry A. Young, “A Status of NASA
Rotorcraft Research,” NASA/TP—2009-215369, September, 2009.



This Research Was Supported by NASA’s ==
Subsonic Rotary Wing (SRW) Project
UH-60 rotor/hub in hover

AMR1: A=10% and 5% c;,
7,700 grids, 302 million grid points
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