
Abstract Flexible structures containing a large number of
modes can benefit from adaptive control techniques which are
well suited to applications that have unknown modeling
parameters and poorly known operating conditions. In this
paper, we focus on a direct adaptive control approach that has
been extended to handle adaptive rejection of persistent
disturbances. We extend our adaptive control theory to
accommodate troublesome modal subsystems of a plant that
might inhibit the adaptive controller.

In  some  cases  the  plant  does  not  satisfy  the  requirements  of
Almost  Strict  Positive  Realness.  Instead,  there  maybe  be  a
modal  subsystem  that  inhibits  this  property.  This  section  will
present  new  results  for  our  adaptive  control  theory.  We  will
modify the adaptive controller with a Residual Mode Filter
(RMF) to compensate for the troublesome modal subsystem, or
the Q modes. Here we present the theory for adaptive
controllers modified by RMFs, with attention to the issue of
disturbances propagating through the Q modes. We apply the
theoretical results to a flexible structure example to illustrate
the behavior with and without the residual mode filter.

I. INTRODUCTION

lexible structures containing a large number of modes
can benefit from adaptive control techniques which are

well suited to applications that have unknown modeling
parameters and poorly known operating conditions. Creating
an accurate model of the dynamic characteristics of a
structure can be extremely difficult, if not impossible. In this
paper, we focus on the direct adaptive control (DAC)
approach developed in [1-2]. This approach has been
extended to handle adaptive rejection of persistent
disturbances [3] and applied to wind turbines in [4].
In this paper, we extend our adaptive control theory to
accommodate modal subsystems of a plant that inhibit the
adaptive controller, in particular those residual modes that
interfere with the almost strict positive real condition.

A flexible structure Evolving System is a mechanical
dynamical system consisting of actively controlled flexible
structure components that are joined together by compliant
forces. A practical and well-accepted representation of
flexible structures is based on the finite element method
(FEM); see [9] for an extensive survey on flexible structures.
The FEM of the lumped model in physical coordinates q, for
a linearized actively controlled flexible structure with M
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control inputs, and P control outputs is given in matrix form
as
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This system can be put into a modal form with the
transformation
q 0 (2)

where
0
T M0 0 I

0
T K0 0 0 diag k
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Therefore, using the transformation (2), we obtain the
modal form of (1):
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This system can be put into a modal first-order form with

the states px .

Note that many kinds of systems have modal forms, and
the results we are developing here apply to any such system,
not just flexible structures.

II. DIRECT ADAPTIVE CONTROL WITH REJECTION OF
PERSISTENT DISTURBANCES

We give  relevant  details  of  this  theory  here.  The  plant  is
assumed to be well modeled by the linear, time-invariant,
finite-dimensional system:

0)0(; xxxCy
uuBxAx
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(4)

where the plant state, xp is  an  Np-dimensional vector, the
control input vector, up, is M-dimensional, and the sensor
output vector, yp, is P-dimensional. The disturbance input
vector, uD,  is  MD-dimensional and will be thought to come
from the Disturbance Generator:

0)0(; zzzFz
zu

DDD

DD (5)

where the disturbance state, zD,  is  ND-dimensional. All
matrices in (4)-(5) have the appropriate compatible
dimensions. Such descriptions of persistent disturbances
were first used in [5] to describe signals of known form but
unknown amplitude. Equation (5) can be rewritten in a form
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that is not a dynamical system, which is sometimes easier to
use:

uD zD

zD L D

(6)

where D  is a vector composed of the known basis
functions for the solution of uD zD , i.e., D  are  the
basis functions which make up the known form of the
disturbance, and L is a matrix of dimension ND by dim ( D) .
The method for rejecting persistent disturbances used in this
paper requires only the knowledge of the form of the
disturbance, the amplitude of the disturbance does not need
to be known, i.e. (L, )  can be unknown.

In much of the control literature, it is assumed that the
plant and disturbance generator parameter matrices
(A, B,C, , ,F) are known. This knowledge of the plant
and its disturbance generator allows the Separation Principle
of Linear Control Theory to be invoked to arrive at a State-
Estimator based, linear controller which can suppress the
persistent disturbances via feedback. In this paper, we will
not assume that the plant and disturbance generator
parameter matrices (A, B,C, , )  are known. But, we
will assume that we know the disturbance generator
parameter, F, from (5), i.e., the form of the disturbance
functions is known.  In many cases, knowledge of F is not a
severe restriction, since the disturbance function is often of
known form but unknown amplitude.

Our control objective will be to cause the output of the
plant, yp, to asymptotically track zero while accommodating
disturbances of the form given by the disturbance generator.
We define the output error vector as:
ey yp 0 (7)
To achieve the desired control objective, we want
ey t

0. (8)
Consider the plant given by (4) with the disturbance

generator given by (6). The control objective for this system
will be accomplished by an adaptive control law of the form:

DDye GeGu (9)

where Ge and GD are matrices of the appropriate compatible
dimensions, whose definitions will be given later. In [8], the
gain adaptation laws were developed to make asymptotic
output regulation possible.

Now we specify the adaptive gain laws, which produce
asymptotic tracking:
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The adaptive controller is specified by (9) with the above
adaptive gain laws (10). See [3] for the stability analysis of
this controller and proof that the adaptive gains, Ge and GD,
remain bounded and asymptotic tracking occurs, i.e.,
ey t

0.

III. RESIDUAL MODE FILTER AUGMENTATION OF ADAPTIVE
CONTROLLER

In some cases the plant in (4) does not satisfy the
requirements of ASPR. Instead, there may be a modal
subsystem that inhibits this property. This section will
present new results for our adaptive control theory. We will
modify the adaptive controller with a Residual Mode Filter
(RMF) to compensate for the troublesome modal subsystem,
or the Q modes, as was done in [6] for fixed gain non-
adaptive controllers. Here we present the theory for adaptive
controllers modified by RMFs. In a previous paper, we
examined the RMF with adaptive control, but assumed that
there was no leakage of the disturbance into the Q modes [7].
Here we will deal with the issue of disturbances propagating
through these modes.

Let us assume that (4) can be partitioned into the
following modal form:
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Define xp
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;Ap
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DD
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or zD L D as before in (5)-(6).

The Output Tracking Error and control objective remain as
in (7)-(8), i.e. ey yp t

0.
However, now we will only assume that the subsystem

A,B,C  is Almost Strictly Positive Real (ASPR), rather

than the full un-partitioned plant Ap ,Bp ,Cp , and the modal

subsystem (AQ ,BQ ,CQ ) will be known. Also note that this
subsystem is directly affected by the disturbance input.
Recall that ASPR means CB 0 and P(s) C(sI A) 1B
is  minimum phase.  So,  in  summary,  the  actual  plant  has  an
ASPR subsystem and a known modal subsystem that is stable
but inhibits the property of ASPR for the full plant. Hence,
this modal subsystem must be compensated or filtered away.

We define the Residual Mode Filter (RMF) with a simple
Disturbance Estimator:
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And the compensated tracking error:
ey yp yQ (13)
Note that the Disturbance Estimator only needs to know

),(F for the disturbance waveform but nothing about the
plant ),,( CBA . Now we let

DDDQQQ zzexxe and and obtain:
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Consequently,
ey y p yQ Cx CQ xQ [CQ xQ CQeQ ]

Cx CQeQ

(15)

As in [1]-[2], we define the Ideal Trajectories:
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This is equivalent to the Matching Conditions:
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which are known to be uniquely solvable when CBBC
is nonsingular. However, we do not need to know the actual
solutions for our adaptive control approach.

Let
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because, from (16), 0*y . Let

e
x
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be rewritten:
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Now we have the following:
Lemma: CBA ,, ASPR if and only if
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is minimum phase and the result is proved #
From this Lemma, there exists Ge

* such that
(AC A B Ge

*C ,B,C ) is Strictly Positive Real (SPR).
Consequently, as is well known from the Kalman-Yacubovic
Theorem:

P ,Q 0
AC

T P PAC Q

PB C T
(20)

We now use the Adaptive Control Law with RMF and
Disturbance Estimator:
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with the adaptive gains:
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Finally, we have the following stability result:
Theorem: In (11), assume
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The proof of this result appears in the Appendix.

From this result,
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IV. SIMULATION RESULTS WITH RMF
In this section we will apply the above theoretical results

to a simple flexible structure example to illustrate the
behavior with and without the residual mode filter. The
structure has a rigid body mode and two flexible modes:

P(s) 1 s
s2

3
s2 s 1

1
s2 s 2

s5 s4 3s3 0s2 3s 1
s6 2s5 4s4 3s3 2s2

This plant has non-minimum phase zeros at 0.422 0.9543i,
and thus does not meet the ASPR condition.

 However, when the middle mode PQ (s)
s

s2 s 1
is removed, the plant becomes:

P(s) 1 s
s2

1
s2 s 2

s3 3s2 3s 2
s4 s3 2s2

which is minimum phase and has a state space realization:
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 The RMF generated by PQ (s)
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 The adaptive controller (21)-(22) is implemented with
100,10 De . The disturbance is a step of size 10.

Setting 1, we obtain Figures 1 and 2 from a
MatLab/Simulink simulation. The output trace is shown to
converge in fig. 1 with a bias of 4. The adaptive gains also
converge in fig. 2. This illustrates the behavior of the
adaptive controller plus the second order RMF. Without the
RMF, the plant and adaptive controller are unstable in
closed-loop.

V. CONCLUSION

We have proposed a modified adaptive controller with a
residual mode filter and a simple disturbance estimator that
needs no information about (A, B, C). The RMF is used to
accommodate troublesome modes in the system that might
otherwise inhibit the adaptive controller, in particular the
ASPR condition. This new theory accounts for leakage of the
disturbance term into the Q modes. However, it requires a
new minimum phase condition on )()( sPsH rather than

just on )(sP   alone.  A simple three-mode example shows
that the RMF can restore stability to an otherwise unstable
adaptively controlled system. This is done without modifying
the adaptive controller design, but only adding the RMF and
disturbance Estimator to the original adaptive controller.
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Fig. 1. Non-dimensional output response with adaptive controller
augmented with RMF.
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Fig. 2. Adaptive gains, Ge=error gain, Gd=disturbance gain.

APPENDIX: Proof of Theorem
From (21),

DDye GeGu ~ . So
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Finally, GGG *  and G is bounded, which makes

De GGG bounded. This ends the proof.


