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1 INTRODUCTION 

ABSTRACT 

Using the results of a previous X-ray photo-ionization modelling of blue-shifted 
Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM
Newton, in this letter we estimate the location and energetics of the associated ultra
fast outflows (UFOs). Due to significant uIlcertainties, we are essentially able to place 
only lower/upper limits. On average, their location is in the interval -O.OOO3-{).03pc 
(~102-IO·r.) from the central black hole, consistent with what is expected for ac
cretion disk winds/outflows. The mass outflow rates are constrained between ...... 0.01-
I M0 yr-1 , corresponding to ~5-10% of the accretion rates. The average lower-upper 
limits on the mechanical power are logEK~42.6-44.6 erg S-1. However, the minimum 
possible value of the ratio between the mechanical power and bolometric luminosity is 
constrained to be comparable or higher than the minimum required by simulations of 
feedb"".k induced by winds/outflows. Therefore, this work demonstrates that UFOs are 
indeed capable to provide a significant contribution to the AGN r.osmological feedback, 
in agreement with theoretical expectations and the recent observation of interactions 
between AGN outflows and the interstellar medium in several Seyferts galaxies . 

Key words: accretion, accretion discs - black hole physics - galaxies: active - X-rays: 
galaxies. 

BlueshiftOO Fe K-shell absorption lines have been detected in 
recent years in the X-ray spectra of several radio-quiet AGNs 
(ChaxtaB et al. 2002, 2003; Pounds et al. 2003; Markowitz 
et al. 2006; Braito et al. 2007; Cappi et a1. 2009; Reeves et 
al. 2009; Giustini et aI. 2011). These findings are important 
because they suggest the presence of massive and highly 
ionized absorbers out8owing from their nuclei with mildly
relativistic velocities. They are possibly connected with ac
cretion disc winds/outflows (King & Pounds 2003; Proga & 
Kallman 2004; Ob.uga et .1. 2009; Sim et al. 2010) or the 
base of a possible weak iet (e.g., Ghisellini et al. 2004). In 
particular, a uniform and systematic search for blueshifted 
Fe K abscrption lines in a sample of 42 local (z~O.l) radi~ 
quiet AGNs ob.erved with XMM-Newtcn was performed by 
Tombesi et al. (20108, hereafter paper I) . This allowed the 

authors to assess t heir global significance and derive a de
tection fraction of ~40%. In order to have eo clear distinction 
with the classical soft X·ray warm absorbers, in paper I we 
defined Ultr ... fast Outflows (UFOs) as those highly ionized 
Fe K absorbers with blueshifted velocity ~lO,OOO km/s. In 
fact, the warm absorbers are usually less ionized, have out
flow velocities in the range ",lDO-IOClO km/s and may p0s

sibly ha.ve a different physical origin (Blustin et aI. 2005; 
McKernan et aI. 2007). In the following we refer to the Fe 
K absorbers with outflov: velocity <10,000 km/s as non
UFOs. Then, Tombesi et al. (2011a, hereafter paper II) per
formed a photo-ionization modelling and derived the dis
tribution of the main physical parameters. The outflow v~ 
locity is mildly-relativistic, in the range ..... 0.03-0.3c, with 
a peak and mean value at ...... 0. 14c. The ionization is very 
high, in the range log{ ...... 3-6 erg S-1 em, with a mean value 
of ...... 4.2 erg s -1 c:n. The column densities are also large, 
in the interval N~rv1022_1024 cm- 'l , with a mean value 
of ,...",1023 cm- 2

• It is important to note that Tombesi et 
'" E-mail: ftombesi,f'~astro.umd.edu 
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Table 1. Location and energetics of the Fe K absorbers. 

30urce logMBH XMMObs logL° logr .... in logrm03: !ogM~~n logM~r= losEKin logEj(a;c 

(M0) (erg s-l) (em) (em) (g,- l) (g.-1) (erg ,-1) (erg ,-1) 

UFOs 

1 NGC 4151 7.1 ± 0.21 0402660201 42.5/42.9 14.6 ± 0.2 < 15.8 > 23.2 24.4 ± 0.5 > 41.9 43.1 ± 0.5 
2 lC4329A 8.1 ± 0.22 0147440101 43.7/44.1 15.6 ± 0.2 < 16.5 > 24.2 25.0 ± 0.9 > 42.8 43.6 ± 0.9 
3 Mrk 509 B.l±O.11 0130720101 43.9/44.2 15.1 ± 0.1 < 16.3 > 24.4 25.7± 0.6 > 43.5 44.8± 0.6 
4 0306090201 44.0/44.4 15.3 ± 0.1 < 16.6 > 24.5 25.8± 1.0 > 43.4 44.7 ± 1.0 
5 0306090401 44.0/44.4 14.9 ± 0.1 < 18.1 > 23.5 26.8 ± 1.5 > 42.8 46.1 ± 1.5 
6 Ark 120 8.2±0.11 0147190101 44.0/44.5 14.8 ± 0.1 < 17.9 > 23.5 26.7± 1.3 > 43.1 46.2 ± 1.3 
7 Mr:c. 79 7.7 ±O.11 0400070201 43.4/43.9 15.3 ± 0.1 16.5 ± 0.4 24.7 ± 0.3 26.0 ± 0.2 43.3 ±0.3 44.6 ±0.2 
8 )IGC 4051 6.3 ± 0.44 0109141401 41.5/42.3 14.7±0.7 < 15.9 > 22.5 23.8 ± 1.6 > 40.3 41.6 ± 1.7 
9 0157560101 41.0/42.0 13.2 ± 0.2 16.2 ± 0.2 22.5 ±0.2 25.5 ± 0.2 41.8 ± 0.2 44.8 ± 0.2 

10 Mrk 766 6.1 ± 0.44 0304030301 42.6/ 43.2 13.8± 0.4 17.2 ± 0.5 22.3 ± 0.4 25.7±0.5 4O.8± 0.4 44.2 ±0.5 
11 0304030501 42.8/43.4 13.7 ±0.4 16.1 ±0.2 22.9 ±0.4 25.3 ± 0.1 41.4 ± 0.4 43.8 ±O.I 

' 12 Mrk 841 7.8 ± 0.5' 0205340401 43.5/43.9 15.8 ± 0.6 < 18.0 > 23.8 26.0 ± 1.2 > 41.9 44.1 ± 1.2 
13 IHD419-577 8.6 ± 0.53 0148000201 44.3/44.6 16.3 ± 0.5 17.9±0.7 25.5 ± 0.7 27.1 ± 0.5 43.9±0.7 45.5 ± 0.5 
14 Mrk 290 7.7±O.S5 0400360601 43.2/43.6 14.8 ± 0.5 16.7±1.3 24.3 ± 0.9 26.2 ± 1.2 43.4 ±0.9 45.3 ± 1.2 
15 Mrk 205 8.6 ± 1.06 0124110101 43.8/44.2 16.1 ± 1.0 < 16.2 > 25.6 25.6 ± 0.6 > 44.1 44.3±0.6 
16 PG 1211+143 8.2 ± 0.2 1 0112610101 43.7/44.3 15.3 ± 0.2 18.5 ± 0.1 24.7 ± 0.2 27.9 ± 0.1 43.7±0.2 46.9 ± 0.1 
17 MCG-&-23-16 7.6 ± 1.0' 0302850201 43.1/43.5 15.0± 1.0 16.6 ± 0.1 23.9 ± 1.0 25.5 ± 0 .1 42.7 ± 1.0 44.3±0.2 
18 NGC 4507 6.4 ± 0.55 0006220201 43.1/43.4 13.3±0.5 < 16.9 > 21.9 25.4 ± 1.1 > 41.2 44.6 ± 1.1 
19 :/GC 7582 7.1 ± 1.0' 0112310201 41.6/42.0 13.7 ± 1.0 15.2 ± 0.3 23.8 ± 1.0 25.3 ± 0.1 43.4 ± 1.1 44.9 ± 0.1 

non-UFOs 

20 NGC 3783 7.5 ± 0.11 0112210101 43.1/43.6 17.0 ± 0.4 19.1 ± 0.2 24.7 ± 0.4 26.7± 0.2 41.3 ± 0.5 43.4 ± 0.4 
21 0112210201 43.0/43.4 > 17.3 18.1 ± 0.1 > 24.8 < 25.7 > 41.1 < 42.0 
22 OU2210501 43.1/43.5 > 17.3 18.1 ± 0.1 > 24.8 < 25.6 > 41.1 < 42.0 
23 iiGC 3516 7.2 ± 0.27 0401210401 43.0/43.8 17.1±0.3 17.1 ± 0.2 24.8 ± 0.4 24.8 ± 0.2 41.0 ± 0.5 41.0 ± 0.3 
24 0401210501 43.0/43.7 16.8 ± 0.3 16.6 ± 0.1 24.9 ± 0.3 24.8 ± 0.1 41.3 ± 0.4 41.3 ± 0.2 
25 0401210601 42.9/43.6 16.6 ± 0.2 16.7 ± 0.2 24.7 ± 0.3 24.9 ± 0.1 41.4 ± 0.3 41.6 ± 0.2 
26 0401211001 43.0/43.7 16.4 ± 0.3 16.7 ± 0.2 24.6 ± 0.4 24.9 ± 0.1 41.4 ± 0.4 41.8 ± 0.2 
27 Mrk 279 7.5 ± 0.21 0302480501 43.7/44.1 > 17.3 17.9 ± 0.7 > 24.9 < 25.5 > 41.2 < 41.8 
28 ESO 323-G77 7.4 ± 0.55 0300240501 43.0/ 44.0 16.7 ± 0.6 17.0± 0.5 25.3 ± 0.7 25.6 ± 0.4 42.1 ±0.7 42.4±0.5 

• 2- 10 keY luminosity L.l-1O over ionizing luminosity Licm; 1 Peterson et 801. (2004); 2 Markowitz et al. (2009); 3 Bian & Zhao 
(2003); • Bentz et aI. (2009); 5 Wang & Zhang (2007); • Wandel & 11ushotzky (1986) ; 7 Onken et aI. (2003) . 

al. (2010b, 2011b) detected the presence of UFOs also in a 
small sample of radio-loud AGNs observed with Suzairu. 

compact a.bsorbers we obtain r ~ Tmoz = Lion/f.NH. in
stead, an estimate of the minimum distance can be derived 
from the radius at which the observed velocity corresponds 
to the escape velocitJoi r ~ r',lin = 2GMsH /v~'Ut. The de
rived values and errors are reported in Table 1 and Fig. 1. 
The average location of UFOs and non~ UFOs is between 
~0.()()()3-0.03pc (~l(J"-lO·r., r.=2GMBH/C') and ~O.O3-
O.3pc (~104-1o'r.) , respectively. Both of these ranges are 
within, or comparable to, the typical location of the soft 
X-ray warm absorbers, a.t ....... pc scales (Blustin et aI. 2005; 
McKernan et aI. 2007). Therefore, this strongl~r sugge~ts a 
direct identification with accretion disc winds/outflows. It is 
also important to note that there is a continuity between the 
two intervals, with the "UFOs systematically closer in. The 
observed spectral variability, even on time-scalps of ...... days 
in some cases (e,g., Braito et al, 2007; Cappi et al. 2009; 
Tombesi et a1. 2011bj paper I), is also consistent with the as
sumption of compact absorbers and the location being close 
to the SUBH. This also suggests that they are probably 
intermittent and/or clumpy. 

In this letter we wiU constrain the distance of UFOs 
from the central super-m&s8ive black hole (SMBH) and we 
wiil also quantify their energetics and mass content, which 
are crucial for the understanding of their contribution to the 
overall energetic bud,get of AGNs and possible feedback im
pact on the surrounding Cllvironment. The analysis of the 
possible correlatioIlB among the parameters and a compar
ison with the soft X-ray warm absorbers is postponed to a. 
successive pa.per IV of this series. 

2 LOCATION AND ENERGETICS 

We base our estimates using the outflow velocity, ioniza.
tion parameter and column density of the Fe K absorbers 
reported in Table 3 of paper II. The sources and relative 
XMM-Newwn observations are reported in Table 1. There, 
we also liEt the estimated 5MBH masses and the absorption 
corrected X-ray luminosities calculated in the 2-10 keY and 
1-1000 Ryd (1 Ryd=13.6 eV; see column 5). 

An estimate of the maximum distance from the cen
tral source can be derived from the definition of the ion
ization puameter { = Lion / nr2 (Tarter et aI. 1969), For 

We use the expression for the mass outflow rate derived 
by Krongold et aI. (2007), which is more appropriate for 
a biconical wind-like geometry instead of a simple spheri
cal one: MO'Ut = 0.87fmpNHvo'Utr 1(6, cjJ). f(a, cP) is a function 
that depends on the angle between the line of sight to the 
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Figure 1. Lower (filled circles) and upper limits (crosses) on 
the distance of the Fe K a.bsorbers from the central 5MBH. The 
vertical Ihe separa.tes the UFOs (left) and non-UFOs (right). 

central source and the accretion disc plane, 6, and the angle 
fonned by the wind with the accretion disc, 4> (see Fig. 12 of 
Krongolci et aI. 2007). For a ,ertical disc wind (</>=,,/2) and 
ar.. average line-af-sight angle 0'=30° for the Seyferts consid
ered here, J(O, ¢)':::!1.5. This mass outflow rate formula has 
aJso the important advanta.ge of not relying on the estimate 
of the covering and filling factors. This is due to the fact that 
it takes into account only the net observed thickness of the 
gas, allowing for clumping in the a,ow. Thus, there is not the 
need to include a linear (or volume) filling factor, since we 
are interested in estimating the net flow of mass, starting 
from the observed column density and velocity. Moreover, 
the covering factor is implicitly taken into account by the 
function [(0,9» when calculating the area filled by the gas, 
constrair.ed between the inner and outer conical surfaces. 
The assU::nptiOIlB are that the thickness of the wind between 
the two conical surfaces is constant l":ith 0 and that this is 
much sm;iller than the distance to the source. Full details on 
the derivation of this fonnula can be found in the Appendix 
2 of Krongold et ai. (2007). However, it is important to note 
that we obtain equivalent results including a dumpiness fac
tor of ~R/ R along the line of sight in the spherical approxi
mation case (Tombesi et aI. 201Ob, 2011b) and using a cover
ing fraction C",,0.21(6, </»",,0.4, which is consistent with the 
value derived observationally from the detection fraction of 
UFOs in :;>aper I and II. Using the lower/upper limits on the 
distance "?Ie can thus estimate the lower/ upper limits on the 
mass outflow rate and relative errors, see Thble 1 and Fig. 2. 
The average values are in the range ....... 0.01- 1 Me yr- 1 for 
the UFOs and ....... 0.1-0.5 M0 yr-l for the non·UFOs, respec
tively. TLey are consistent with each other. 

The kinetic or mechanical power of the outflows can 
be estimated as EK = tMol.ltv;l.It. The lower/ upper limits 
and relative errors are reported in Thble 1 and Fig. 3. The 
average values for UFOs and non-UFOs are 10gEK~42.6-
44.6 erg S-1 and logEK ::::41.3--42 erg S- 1, respectively. This 
is comparable to the X·ray ionizing luminosity Lion and, 
again, there is a continuity between the two intervals, with 
UFOs ha'.ring systema.tically higher values. Theoretical mod
els and simulations show that the mechanical power needed 
by accretion disc winds/outflows in order to have a signif
icant feedback impact on the surrounding environment is 
typically about ....... 5% of the bolometric luminosity (Di Mat-
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Figure 2. Lower (filled circles) and upper limits (crosses) on 
the mass outflow ra.te of the Fe K a.bsorbers. The vertical line 
separa.tes the UFOs (left) and. non-UFOs (right). 

teo et aI. 2005; King 2010; Ostriker et al. 2010; DeBuhr 
et aI . 2011). However, a recent work by Hopkins 8c. Elvis 
(2010) demonstrated that the minimum ratio required is so
tually only ....... 0.5%. Using the lower limits on the mechanical 
power and the apper limit on the bolometric correction of 
K2~10 <100 (see §3), we can derive an average lower limit 
of EK/Lbo!>0.3% f<?r the UFOs. We stress that this is the 
minimum possible value. In fact, given the uncertainty on 
the bolometric correction and using the average upper limits 
on EK I we obtain a maximum value that can potentially be 
comparable to L bol • Therefore, despite the significant uncer
tainties, we find that this ratio is comparable or higher than 
the minimum value required to imprint a significant feed
back. The relative value for the non-UFOs is instead lower, 
EK/Lbo!"'0.02--D.8%, but still possibly capable to generate 
at least a weak feedback. 

As previously derived , the mass outflow rate ca.n be 
significant, even of the order of - 1 M0 yr -1 or higher . It 
is titen mteresting to know how this oompares to the ac
cretion rate, Macc=Lbol/f1C2. To quantify this we need to 
know the radiative efficiency fl. As discussed in §3, this is 
not well determined for each source and the uncertainties 
on Mace; can be significant. Therefore, considering an upper 
limit K~_10<100 and a lower limit TJ~o;05, we estimate that 
MlXI.t/ MlJ.cc~5-lO% for both UFOs and non-UFOs. However, 
given the significant uncertainties, the mass outflow rate 
could potentially exceed t he accretion fate in ·some cases. 
Finally, due to the large uncertainties on the parameters in 
Table 1, we can not significantly constrain any variability 
of the outflow properties for the five sources with multiple 
observations. 

3 ERROR ANALYSIS 

In the calculation of the parameters reported in Table 1 we 
took into account the propagation of errors on the ioniza,.
tion parameter, column density, outflow velocity and S?\'IBH 
mass. Here we discuss in more detail the possible sources of 
systematic uncertainty. 

In order to limit the uncertainty on the slope of the 
ionization continuum, in paper II we estimated that the av
erage SED of the sources corresponds to a r::!:2 power-law 
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Figure S. Lower (filled circles) and upper limits (crosses) on 
the mechanical power of the Fe K abf;orbers. The 7erticaJ line 
separates the UFOs (left) and non-UFOs (right). 

with high energy cut-off at E~100 keY in the input energy 
range for the photo-ionization code XSTAR. Observationally, 
this is in agreement with the result of a systematic spectral 
analysis of Seyfert Is observed with BeppoSAX in the 2-
100 keY performed by Dadina (2008), who derived an aver
age r ~ 1.9 and cut-off at E"'-'200 keY. Even if we limited our 
analysis in the 4-10 ke V, from paper I we can estimate an 
average rrv1.8 and a scatter of ",0.2. This is consistent with 
Dadina (2008) and the slightly flatter r is probably due to 
an emerging weak reflection component. If we consider this 
typical scatter, we derive that the possible uncertainty on 
the slope of the ionizing continuum may induce a maximum 
systematic error of 0.4 dex on the ionization parameter. 

We note that Standard Solar abundances from Asplund 
et al. (2009) were assumed in paper II. If the iron abun
dance is allowed to be ±2 times Solar, the resultant values 
are still consistent within the 10" errors, with a typical dif
ference ;50.2 dex. We point out that when performing the 
photoion~zation modelling of the absorption lines in paper 
II, it was not possible to clearly distinguish their identi
fication as due predominantly to Fe XXV or Fe XXVI in 
6/28 observations. In these cases we obtained two solutions 
with similar reduced X2 but different values of the ioniza
tion parc..meter, column density and velocity. However, this 
uncertainty was taken into account when calculating the rel
ative errors on the parameters reported in Table 3 of paper 
II. Regarding the 5MBH masses, the possible s:rstematic 
uncertainty for those derived using reverberation mapping 
techniques is <0.5 dex (e.g., Peterson et al. 2004). We note 
that the expression for the mass outflow rate used in §2 has 
a possible systematic source of uncertainty from the factor 
/(6, <P). For all reasonable angles (6)20' and qI>45') this is 
of the order of unity, with a maximum variation of ",,0.3 dex 
(see Krongold et al. 2007). 

The estimate of the bolometric luminosity and radia
tive effid ency for each source would require a detailed. mod
elling of the SEDs, which is beyond the scope of the present 
letter. One way to overcome this is using the 2-10 ke V 
luminosity as a proxy and apply a bolometric correction, 
Lbo!=K2-lOL2-10 erg S-I. From the SEDs of the sources 
analysed ir.. paper II we deriye a rough average estimate 
of K2-10 ........ 30. However, it has been reported that there 
could be a significant scatter of this value in the maximum 

range of K2_10~10-100 (Vasudevan & Fabian 2009; Lusso 
et al. 2010; Nemmen & Brotherton 2010). Thus, this trans
lates in a maximum error of ;51.4 dex in EK / Lbo!. The ra
diative efficiency 7J is also not well known for each source. 
Theoretically, this is in the range ""0.05--0.3, for a non- or 
maximally rotating black hole (Novikov & Thorne 1973) . 
Observationally, its average is typically derived using the 
integrated background luminosity of AGNs and the Soltan 
argument, obtaining a value of 7J~0.1 (Soltan 1982; Elvis et 
al. 2002). Few attempts have been made applying also a de
tailed source by source analysis. For instance, Davis & Laor 
(2011) obtained an average value of logq=-1.05±0.52. Con
sidering this, we expect a maximum error on the accretion 
rate of ....... l dex and ",,1.5 dex on the ratio Moud Mace. 

4 DISCUSSION AND CONCLUSIONS 

In this letter we estimate the location, mass outflow rate 
and mechanical power of highly ionized Fe K absorbers de
tected in a large sample of Seyfert galaxies observed with 
XAfM-New4-on. Their parameters show a continuity between 
those classified as UFOs and non-UFOs (see §2)j with the 
latter occupying the lower end of the parameter space and 
suggesting a possible common physical origin. Indeed, they 
are directly consistent with an identification as accretion 
disc winds/outflows, both having velocities higher than most 
warm absorbers. Intriguing, they might possibly be related 
also to the radio jet activity (Tombesi et al. 2010b, 2011b). 
Considering the most pessimistic scenario, we are still able 
to confirm that the mechanical power of UFOs is indeed 
sufficient to exert a significant feedback impact on the sur
rounding environment. 

The cosmological feedbac~ from AGN outflows/jets has 
been demonstrated to influence the bulge star formation and 
5MBH growth and possibly also to contribute to the estab
lishment of the observed S1.ffiH-host galaxy relations, such 
as the MBH-{T (Di Matteo et al. 2005; King 2010; Ostriker et 
al. 2010; DeBuhr et al. 2011; Hopkins & Elvis 2010). Similar 
and possibly even more massive and/or energetic outflows 
might have influenced also the formation of structures and 
galaxy evolution through feedback at higher redshifts, close 
to the peak of the quasar activity at z "" 2 (Silk & Rees 1998; 
Scannapieco & Oh 2004; Hopkins et al. 2006). Simulations of 
AGN outflows with characteristics equivalent to UFOs have 
also been independently demonstrated to be able to signifi
cantly interact not only with the interstellar medium of the 
host galaxy but possibly also with the intergalactic medium. 
They can proyide a significant contribution to the quenching 
of cooling flows and the inflation of bubbles/cavities in the 
intergalactic medium in both galaxy clusters (e.g., Sternberg 
et al. 2007; Gaspari et al. 2011a) and especially groups (e.g., 
Gaspari et al. 2011b). The UFOs, and AGN outflows in gen
eral, might actually provide a feedback impact comparable 
or even greater than that from jets. In fact, the UFOs are 
likely more massive than jets. They are mildly-relativistic 
and have somewhat wide angles, therefore possibly exert
ing a higher impact on the surrounding host galaxy envi
ronment compared to the highly collimated relativistic jets, 
which might actually drill out of the galaxy and have a dom
inant effect only in the outside. UFOs are energetic, with 
a mechanical power comparable to that of jets (Tombesi 



et al. 2010b, 2011b), Moreover, UFOs have been found in 
<:40% of local radio-quiet AGNs (papers I and II) and may 
possibly have a more widespread feedback influence with re
spect to the less common radio-loud sources 'With powerful 
jets. Fine.lly, accretion disc outflows have been found also in 
radio-loud AGNs (Tombesi et aI. 20100, 2011b) and Ihere
fore their feedback effect might actually be concomitant with 
that from jets. 

Observationally~ we note tha.t direct evidence for AGN 
feedback activity driven by outflowsljets is recently emerg
ing also for Seyfert galaxies, with the detection of bubbles, 
shocks aI:d jet/cloud interaction from ....... pc up to ....... kpc scales 
(e.g., NGC 4151, Wang et aI. 2010; NGC 4051, Pounds & 
Vaughan 2011; both part of our sample and with detected 
UFOs). In conclusion, there is now plenty of theoretical and 
observational evidence that AGN feedback through outflows 
have the possibility to tie together the densest objects at the 
center of galaxies with the most diffuse regions of intergalac
tic gas, impacting all intermedia.te structures. In this regard) 
this work shows that UFOs provide another important ob
servational piece for the solution of this puzzle. SignifiC3li.t 
improvements are eXpected from the higher effective area 
and energy reso]ution in the Fe K band offered by the micro
calorimeters on board Astro-H and especially the proposed 
ESA mission Athena. 
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