
DESIGNING FAULT-INJECTION EXPERIMENTS FOR THE RELIABILITY

OF EMBEDDED SYSTEMS

Allan L. White, NASA Langley, Hampton, Virginia

Abstract

This paper considers the long-standing problem

of conducting fault-injections experiments to

establish the ultra-reliability of embedded systems.

There have been extensive efforts in fault injection,

and this paper offers a partial summary of the efforts,

but these previous efforts have focused on realism

and efficiency. Fault injections have been used to

examine diagnostics and to test algorithms, but the

literature does not contain any framework that says

how to conduct fault-injection experiments to

establish ultra-reliability. A solution to this problem

integrates field-data, arguments-from-design, and

fault-injection into a seamless whole. The solution in

this paper is to derive a model reduction theorem for

a class of semi-Markov models suitable for

describing ultra-reliable embedded systems. The

derivation shows that a tight upper bound on the

probability of system failure can be obtained using

only the means of system-recovery times, thus

reducing the experimental effort to estimating a

reasonable number of easily-observed parameters.

The paper includes an example of a system subject to

both permanent and transient faults. There is a

discussion of integrating fault-injection with field-

data and arguments-from-design.

Introduction

Background

 A long standing problem in the field of ultra-

reliable digital control systems is the design of a fault

injection experiment for system validation. Such an

experiment combines arguments-from-design, field-

data-on-fault-occurrence, and results-from-fault-

injections. If the system successfully completes the

experiment, then the system has a given reliability at

a certain confidence level.

 Such experiments are often considered

impossible. One stated goal is that a flight control

system has less than one in a billion chance of failure

during a ten hour flight. To establish this at the

equivalent confidence level requires 1000 aircraft

flying continuously for 21,000 years. Not even a six

order magnitude gain in efficiency would make this

experiment feasible.

 The first response to this problem is to

construct a model of the system using our knowledge

of system structure and component failure rates, but

this approach has the inherent problem of describing

system recovery from faults. System recovery is a

complex process involving failure modes, application

software, diagnostic software, and system

architecture. No detail of the model can be arbitrarily

omitted since any detail may have a greater effect on

the final computation than the small probability to be

computed. This has led to more and more complex

models that are experimentally intractable: some of

the states and transitions in these models are not

observable, and the large number of parameters to

estimate makes achieving a high confidence level

infeasible.

 The solution in this paper is to derive a model

reduction theorem for a class of semi-Markov models

suitable for describing ultra-reliable embedded

systems. The theorem shows a tight upper bound on

the probability of system failure needs only the

means of system recovery times, thus reducing the

experimental effort to simple and easily-observed

parameters.

 The typical reliability model assumes the

system works correctly if the components are fault

free, and this assumption is often not stated, but we

will consider it explicitly because we want to create a

seamless integration of arguments-from-design and

fault injection. Arguments-from-design proceed by

demonstrating that if a system begins in a certain

state and receives certain inputs then its outputs will

be acceptable. Any such argument requires a

straight-forward architecture. If the system is non-

reconfigurable, the argument needs to include the

presence of faulty components. If the system is

reconfigurable, the fault-injection experiment must

observe that reconfiguration places the system in an

acceptable state. The argument-from-design can

ignore the complex reconfiguration process. The

amount of diagnostics established by arguments-

from-design can vary with the system. In the

example below, arguments from design are expected

to cover the first two fault occurrences.

Procedure

 The difficult part of a reliability model is a

description of system recovery. It is a complex

procedure involving propagation of the fault through

hardware; interaction of a fault with diagnostic,

application, and system programs; comparison

voting; and possibly system reconfiguration. In

addition, if the required probability of system failure

is extremely small, then no detail of system recovery

can be arbitrarily ignored since the effect of an

omitted element could have more effect on the

system than the probability that is to be computed.

 These considerations have led to the

construction of more and more complicated system

recovery models, but there are several problems with

this approach. First, there is no guidance for how

much detail is needed. Second, detailed models of

recovery contain states that are not observable such

as the propagation of a hardware fault into an

application program. Third, detailed models contain

numerous parameters, and obtaining these parameters

by experiments would be overwhelming, especially if

a high confidence level is sought.

 We offer a solution to this problem by

deriving a model reduction theorem that yields upper

and lower bounds for the probability of system

failure in terms of the means and variances of system

recoveries where the upper bound uses only the

means. These bounds are tight if the system has the

desirable properties of low component failure rates

and fast system recoveries. Furthermore, the upper

bound only uses the means of system recoveries.

Since we need only a few, easily observed

parameters, experiments are brought within reach.

 The procedure in this paper differs from the

usual one of (1) constructing a model and (2)

computing the probability of failure from the model.

This procedure (1) constructs a model, (2) uses the

theorem to write a formula for an upper bound for

system failure in terms of component failure rates,

operating time, and system parameters, (3) conducts

experiments to obtain upper confidence bounds for

the parameters, and (4) combines the formula and

upper-bounds-for-the-parameters to get an upper

confidence bound for the probability of system

failure.

 It is clear from the above that the system must

be overbuilt: more reliable than the requirement. If

the system has exactly the required probability of

failure, then any upper bound will be greater than the

required probability.

Faults, Field Data, and Diagnostics

 In this paper, a fault is an input-output

malfunction of a device. This definition

accomplishes two goals. First, it relates fault

injection in the lab to the model of fault occurrence in

the field since, in the field, a device is declared faulty

when it begins producing observable errors. Second,

it lends itself to achieving a high diagnostic level

which, we will see, is vital for demonstrating ultra-

reliability. An approach that has a fault as something

that happens inside a device makes a fault both

difficult to observe and hard to detect.

 The actual fault pattern that appears at the

output may be hard to obtain. Hence, part of system

design may be some arrangement for the detection of

any fault pattern.

 It is apparent that a system will be designed

and validated for a given class of faults. This class of

faults will have to be stated (and agreed upon) in the

initial stages of design.

Applicability and Feasibility

 From a theoretical point of view, this method

of designing experiments is widely applicable. It

requires that the system use high quality components

with a constant failure rate. System recovery is semi-

Markov since the time for system recovery depends

on the time since fault occurrence. It also requires a

system to have a high diagnostic level which is a

characteristic of highly reliable systems.

 Feasibility depends on a low overall fault

occurrence rate and fast recovery. The experiment

gathers data on each fault recovery, and a low fault

occurrence rate implies the number of system-

recoveries during the operating time will not be too

large. Fast system recoveries imply only a small

amount of time is spent observing system recoveries

in the experiment.

Outline of Paper

 The next section contains a literature survey.

The results in this paper do not depend on any

previous results in the literature, but applying the

results in this paper can use the extensive literature

on the realistic and efficient simulation of faults. A

section on preliminaries covers the miscellaneous

topics of confidence level, field data, terminology,

and the central limit theorem. The next section

presents and derives the model reduction theorem.

After the theorem is presented, two sections describe

the system and its path space model for the design of

the experiment. Since the theorem is based on paths

through a model, this last section shows how to

handle with a model with loops due to transient faults

by unwinding the loops. There are potentially an

infinite number of paths, but almost all the paths will

have a negligible contribution to system failure

because of the small probability of more than a

certain number of fault occurrences. (A fault

occurrence can include the dependent case of faults

in more than one component, and the theorem

includes this case, although the hypothetical system

only considers single component failures for a simple

first example.)

Literature Survey

There is a large body of literature on fault

injection, and this section can only offer a cursory

description of the efforts. Nevertheless, it is possible

to describe what has been done, and then note how

this paper differs from previous work. The survey

below is by topic. Since most papers discuss several

topics, most papers appear more than once.

 There are papers that survey the field and/or

advocate fault injection as a useful tool

[9,14,50,51,53]. One question is authenticity--do

laboratory fault injections mimic actual fault

occurrences [22, 45, 55]. Some papers use system

architecture to design efficient and effective fault

injection [1, 4, 6, 8, 20, 21, 24, 25, 26, 27, 29, 30, 31,

39, 40, 42, 44, 46, 47, 48, 49, 55]. Others use the

results of fault injections to compare or design

systems [4, 8, 11, 12, 23 30, 36, 38, 39, 41, 47, 54].

Fault injections are used to search for design flaws

[3, 6, 17, 48]. They are used to test software as well

as hardware [8, 13, 28, 50, 51, 52, 53]. There are a

number of programs and tools for efficient fault

injection [2, 7, 10, 22, 24, 26, 28, 31, 35, 43, 45, 49,

55, 56]. There are efforts to model fault propagation

and effect [5, 7, 12, 17, 19, 22, 23, 27, 28, 30, 32, 36,

38, 39, 40, 41, 44, 45, 47, 50, 52]. Coverage is a

popular topic, and the meaning of coverage can vary

from simple detection to complete system recovery

and reconfiguration [1, 2, 3, 4, 5, 10, 11, 12, 15, 16,

17, 18, 20, 21, 27, 29, 31, 33, 36, 37, 38, 39, 40, 41,

42, 43, 44, 54, 55]. There are papers about the

efficient estimation of coverage [15, 16, 18, 27, 36,

43], and there are papers about incorporating

coverage into a reliability model [5, 13, 47].

 This paper is a modest effort, but different

from all the above. It considers only hardware. The

goal is to derive results in probability that permit

establishing ultra reliability (for hardware) with a

moderate fault injection effort. This paper is

different enough from previous efforts that it is

technically self contained.

Preliminaries

Conducting the Experiment

 The trials in an experiment consist of injecting

certain faults and observing system recovery.

Recovery must include detection and identification.

If the system is reconfigurable, recovery must include

reconfiguration. Any trial can last only a short period

of time, and the insistence that the system

successfully recovers within this period is a stringent

one. This requirement can be relaxed, but at the cost

of additional computational effort [57]. As an

introductory effort, this paper accepts the simpler,

although more demanding, requirement.

 From the time of fault injection until

recovery, the system is monitored to insure it

maintains process control. Acceptable control

depends on the environment, but any deviation

outside acceptable control is considered system

failure.

Overall confidence level

 A confidence level is a quantitative measure

of the quality of an experiment. If there are random

elements present, it is possible for an experiment to

mislead us, and the confidence level gives the

probability that the experiment has misled us. A 99%

confidence level means that there is a 0.99 (or more)

chance that the experiment leads us to the correct

conclusion. This paper takes the position that the

quality of the experiment should match the

importance and quality of what is being established.

In the following if the requirement is that the

probability of system failure be p (or less), then the

experiment is designed to have a confidence level of

100(1-p)%.

 Since a reliability model has numerous

parameters to be estimated, the final confidence level

is a combination of the confidence level for each of

the parameters. The result, which does not assume

independence, is as follows [58].

Suppose [i , i] is a 100(1-h i)% confidence

interval for p i for 1in, then ([1 , 1],..., [n ,

n]) is a 100(1- h 1 - ... - h n)% confidence interval

for (p 1 ,..., p n).

Hence, the more parameters to be estimated, the

higher the confidence level on each must be to

maintain an overall high confidence. This is one of

the motivators for the model reduction theorem in

next section and the reason for introducing

integrated-recovery-distributions when designing the

experiment.

Confidence Level for Lack of Diagnostics

 We wish an upper confidence bound u for the

probability that a fault is not detected, which is

denoted by (1-D) in the models below. Assuming all

faults are detected in n trials, the number of trials

needed to establish u as a upper bound at the 100(1 –

alpha)% level is

(1 – u)
 n
 = alpha (1)

This can be expanded to solve for n in case some

faults are undetected during the experiment by adding

more terms in the binomial expansion. For instance,

the number of trials n needed to establish that n is an

upper bound for (1-D) at the 100(1 – alpha)% level

if zero or one faults are undetected is given by

(1 – u)
 n
 + n(1 – u)

 n-1
 = alpha. (2)

 The upper and lower bounds are derived in

section four by considering all the paths from initial

states to system-failure states. It is a feature of this

path-space approach that for an upper bound on

system failure we also need an upper bound for D,

the probability that a fault is detected. We will take 1

as a 100% upper confidence bound on D.

Confidence Level for Means of System

Recoveries

 The upper bound on the probability-of-

system-failure uses the averages of the system

recoveries, and confidence intervals for averages are

derived from the central limit theorem that says a

sample average is approximately normally

distributed. A problem is that the confidence levels

are extremely high, and the normal approximation

may or may not be accurate enough even if the

sample size is large. This statistical point requires

more study, and this is a general problem. There are

a few results [58], but the consensus is that “no

systematic studies along this direction seem to have

been done” [62].

Two Results on Fault Injection

 We use two results in probability for fault

injection [59]. Suppose components have failure

rates λ 1 , … , λ n . The probability that component j

has failed given a component has failed is

 λ j /(λ 1 + … + λ n). (3)

 When injecting a fault, the experimenter will

allow a time S for system recovery, and if the system

does not recovery within that time, it will be declared

a system failure. When injecting a double fault, the

time of injection is given by the uniform distribution

on [0, S].

The Model Reduction Theorem

 A reliability model can be regarded as a

collection of paths from the initial state (or states) to

the failure state (or states). By the semi-Markov

property, an arbitrary path can be arranged as in

figure 1. At first glance, such an approach might

appear to not include transient faults or correlated

faults, but transient faults can be handled by

unwinding the loops. The unwinding process will

end as the probability of more fault occurrences

becomes negligible. Correlated faults can be handled

by letting a transition represent the failure of more

than one component.

 In the first line of figure 1, the successful

transitions are constant rate processes competing

against other constant rate processes. In the second

line the successful transitions are general

distributions (system recovery distributions)

competing against other general distributions and

constant rate processes. In the third line the

successful transitions are constant processes

competing against general distribution functions and

other constant rate processes. For notation

 D(T) = Probability of traversing the path in

figure 2 by time T

W(T) = Probability of reaching state B 1 by

time T

p(F i) = Probability the transition dF 1,i is

successful

(F i) = First conditional moment of dF 1,i

2
(F i) = Conditional variance of dF 1,i

(C j) = First moment of the holding time in

state C j

2
 (C j) = Variance of the holding time in C j.

The probability W(T) is easy to compute. A

convenient approximation which is used in section

VI, but whose derivation is left to the reader is

)4(

1k

T

1
!k

T

W(T)
!k

T

k

1i
iik

k1

k
k1

Let

)5(T)C(T)C(

T)F(T)F(

2/1
n

2/1
1

2/1
m

2/1
1

Assume

)6(1C,,C,,F,,F n1m1

and < 1.

k
 A 1 A 2 A k B 1

 k

 F 1,1 F 2,1 F m,1

 B 1 B 2 B m C 1

 F 1,2 F 2,2 F m,2

F 1,b1 F 2,b2 F m,bm

m

n
 C 1 C 2 C n D

 G 1,1 G 2,1 G n,1

 G 1,c 1 G 2,c 2 G n,c n

n

Figure 1. Arbitrary path in a semi-Markov model

The proof uses two standard results in

probability. If H is a distribution such that H(0-) =

0, then

(8)0cfor
H)(H)(

dH(t)

(7)H)(dH(t)tdtH(t)-1

2

22

c

00

c

Theorem: With the assumptions and notation as

above, upper and lower bounds for reaching state D

in figure 1 by time T are

T)(C

)(C)(C
)(C

T)(F

)(F)(F
1)p(F

)9()-W(T

D(T)

)(C)p(FW(T)

j

j
2

j
2

j

n

1j
j

i

i
2

i
2m

1i
i

n

1j
jj

m

1i
i

Proof of the theorem

Let q(t) be the density function for the

probability of reaching state B1 of figure 1. The

derivation is easier to follow if we assume the

recovery distributions have density functions, and we

will use f(x) dx instead of dF(x) although the theorem

holds in the general case.

(10)dtdxdxdydy

)y(G-1)y(G-1

ee

)y(G-1)y(G-1

ee

)(xf)x(F-1)x(F-1

e

)(xf)x(F-1)x(F-1e

q(t)D(T)

1m1n

ncn,nn,1

y-y-x-x-t-T

0
y-y-

n

1c1,11,1

x-x-t-T

0
y-y-

1

mm,1mbm,mm,2

x-t-T

0
x-

11,1
t-T

0 1b1,11,2
x-

T

0

n

1-n1m1 nnnn

1

m1 1111

m

1-m1 mm

1
11

x

Working with just the limits of integration

)11(

D(T)

0000

T

0

s

0

s

0

r

0

r

0

-T

0

n1m1

where

)13(ssrr

)12(T)(Cs;T)(Fr

n1m1

2/1
ji

2/1
ii

It remains to establish four inequalities ((14)

through (17) below).

)16()C(

dy)y(G-1)y(G-1

ee

)15(
r

)F()F(
1)F(p

)x(dF)x(F-1)x(F-1e

)F(p

)F(p

)x(dF)x(F-1)x(F-1e

)x(dF)x(F-1)x(F-1e

)14()F(p

)x(dF)x(F-1)x(F-1e

jj

jjcj,jj,1

0

y-y-
j

2
i

i
2

i
2

i

ii,1
r

ibi,ii,2
x-

i

i

ii,1
0

ibi,ii,2
x-

ii,1

r

0
ibi,ii,2

x-

i

ii,1
0

ibi,ii,2
x-

j

jjjj

i

i
ii

i
ii

i

i
ii

i
ii

)17(

s

)C()C(
)C(

dy)y(G-1)y(G-1

ee

dy)y(G-1)y(G-1

ee

dy)y(G-1)y(G-1

ee

2

j

j
2

j
2

jj

jjcj,jj,1

s

y-y-
j

jjcj,jj,1

0

y-y-
j

jjcj,jj,1

s

0

y-y-
j

j

j

jjjj

j

jjjj

j

j
jjjj

The theorem is proved by substituting these

inequalities into the previous inequalities for D(T).

Description of the Nonreconfigurable

Sevenplex Example

General Description

 The architecture is a nonreconfigurable

sevenplex where each module consists of a computer-

on-a-chip plus six transmission lines to the other

modules. There are seven computers and forty two

links. The requirement is to establish that there is

less than one chance in a billion of failure during a

ten hour flight, and to establish this at the 100(1-1e-

9)% confidence level. The permanent and transient

failure rates for the computers are 1e-6/hour and 1e-

5/hour respectively. The rates for the links are 1e-

5/hour and 1e-4/hour.

Masking, Detection, and Identification

The general principles for masking arbitrary

faults are: (1) 3k+1 components are needed to reach

consensus in the presence of k (arbitrarily malicious)

faults and (2) any message from a good component

can be identified as being from that component [63,

64].

 For both diagnostics and Byzantine resilience,

this sevenplex has the following features.

(i) The computational and decision

making components are computers-on-a-

chip. The faults (input-output

malfunctions) appear on the output

registers, and any incorrect output will be

transmitted to another computer.

(ii) Communication is point-to-point

for all the computers. Hence, any good

computer knows from which computer it

received a correct message. It can,

however, require some time to determine if

the incorrect message arises from a faulty

computer or a faulty link.

Hence, we assume that arguments-from-design

have established the following.

The system can tolerate faulty

components as long as there are no

more than two faulty components

currently in the system.

 In addition, faults are characterized as input-

output malfunctions in order that fault injection in the

lab corresponds to observed fault occurrence in the

field. Since the total connectivity of the system

conveys any malfunction to the other processors, the

good processors can detect any fault occurrence. As

long as there are five good processors, the good

processors can identify the source of the fault with

one exception. If processor A tells the other

processors it has received a faulty message from

processor B and the other processors have received a

correct message from processor B, then the likely

culprit is the link between A and B. It is possible,

however, that processor A has sent a malicious

message. For this reason, processor A is also

suspect, and both processor A and the link will have

to be examined during the maintenance check.

During the experiment, declaring the link as faulty

will be considered a successful recovery. During the

experiment and run-time, the most damage such a

malicious processor can do is shut down all the links

to it.

 The arguments have not established the time it

takes to detect and identify the faulty units, nor do

they make any assertions about system behavior if

three or more faults are present. This part belongs to

the experimental effort.

The Path Space Model and Design of

the Experiment

Outline

The construction of the model and the design of

the experiment are intertwined. There are three steps.

1. Preliminary experiments are conducted

to get initial estimates of the model parameters.

2. These initial estimates are used to

construct a model.

3. The model is used to determine the

number and types of fault injections required.

Preliminary Experiments

Assume the preliminary values for the mean and

variance of system recovery are given in the first

three columns of Table 2. Recovery from a computer

transient takes longer because of the need to rewrite

the internal stored values. The model will be

constructed and the experiment designed on the

assumption that the initial estimates are reasonably

accurate. If these estimates are too large, then the

model and experiment will be inefficient. If these

parameters are too small, then the model and

experiment will not be adequate.

 This discussion assumes, for convenience,

that the final estimates match the initial estimates.

Integrated Recovery Functions

The typical model has a different recovery

function for each type of fault, but this creates a

proliferation of parameters, and we have seen in the

subsection on combining confidence levels that this

increases the number of trials needed to maintain a

high overall confidence level. Hence, each recovery

function in the model below integrates recovery from

several types of faults although a distinction is made

between permanent and transient faults since

permanent faults remain in the system and additional

data must be collected when there are three or more

faults in the system.

 Recovery integration is handled by

proportional sampling. For instance, recovery H1 in

figure 2 handles both processor and link permanent

faults. Suppose λ is the failure rate for processors, φ

is the failure rate for links, and N is the number of

faults to be injected to obtain the parameters for H1.

Then the experiment will inject 7γ/(7γ + 42φ) N

processor faults and 42φ/(7γ + 42φ) link faults.

 Recovery H2 handles a permanent fault

followed by a transient fault. With the notation of γ

for processor-rate, φ for link-rate, p for permanent,

and t for transient, the proportions are given in table

1.

Table 1. Proportion of Injected Faults

 for Recovery Distribution H2

Type

Proportion

Processor-

Processor

Processor-

Link

Link-

Processor

Link-

Link

Description and Figures for the Model

Based on the preliminary results from

exploratory fault injections and the accompanying

calculations, the system model was constructed, and

the first part of this model is shown in figure 2 The

construction of this model illustrates the difference

between constructing a conservative model for ease

of experimentation and constructing a more accurate

model for a more precise calculation of system

failure.

 The model begins in state 1 and transitions to

state 2 with a permanent fault and to state 17 with a

transient fault which is indicated by a dashed arrow.

The type of permanent fault injected is chosen

randomly from a multinomial distribution according

to the ratio as described in the previous section.

These fault injections yield a mean and variance for

H1, the recovery distribution for the first permanent

fault that occurs.

 An occurrence of a permanent fault while

recovering takes the system to state 3. Since this is

expected to be a rare occurrence, the model ignores

system recovery although the system can tolerate two

faults. The occurrence of a third fault in state 3 is

considered a system failure F1. The occurrence of a

transient fault in stated 2, however, has a probability

large enough that the model must track it – to state 4

where H2 is the recovery model for both faults. A

third fault occurrence in system 4 is unlikely enough

that it will be considered system failure. A

successful recovery from state 4 takes the system to

state 5 where a permanent is treated similarly to a

permanent failure in state 2 and a transient failure

takes the system to the recovery state 7. In state 7,

any fault occurrence is taken as a system failure.

Recovery goes to state 8 where there is one

permanent fault in the system. In state 8, any

additional faults are unlikely enough that system

recovery is not tracked and two additional faults

place the system in failure state F5.

 Recovery from the first permanent fault takes

the system to state 10 where a permanent fault leads

to state 11 (and a transient fault to state 58 although

this part of the model is not shown). In state 11, any

failure that occurs during system recovery is

considered a system failure. System recovery goes to

state 12. Since there are now two faults in the

system, we are no longer guaranteed the system will

correctly handle a fault. A correctly-handled

permanent fault takes the system to state 13 where

the recovery process is ignored and an additional

fault is declared system failure. A correctly-handled

transient fault takes the system to state 14. In state

12, an incorrectly-handled fault takes the system to

failure state F7. The model is simplified and the

probability of failure bounded above by having the

transition to F7 use ω, the sum of all failure rates.

 In state 14, the occurrence of any fault during

system recovery is declared a system failure.

Recovery goes to state 15 where there are two faults

in the system. The occurrence of a fault that is not

correctly handled (not detected) takes the system to a

failure state. The occurrence of a fault that is

correctly handled takes the system to state 16 where

system recovery is ignored and another fault

occurrence is considered system failure. The rest of

the model is similar. The complete model consists of

69 operational states plus 42 failure states. Because

of a lack of space only the first 16 operational states

and 11 failure states are displayed in figure 2. The

dotted lines indicate transitions to states not included

in this first part.

Fault Injection for Non-recovery

Non-recovery refers to the improper handling of

a fault which could range from non-detection to

removing a good component to system crash. In the

complete model, there are six failure states for

improper handling of a fault with two of them present

in the model in figure 1: F 7 and F 10. In the previous

states (12 and 15), the system has two faults present

and cannot be guaranteed to handle the third fault

correctly. The algebraic upper bounds for these two

states are

F 7 <

 () (18)

F 10 <

 () (19)

An upper bound of 1e-3 for () gives an upper

bound for F 7 of 1.43e-10, and the upper of 1e-3 can

be established at the 100(1 – 2e-10)% confidence

level with 22,322 successful trials. An upper bound

of 1e-2 for () gives an upper bound of 1e-11

for F 10, and the upper bound of 1e-2 can be

established at the 100(1 – 1e-11)% confidence level

with 2,520 successful trials.

 It‟s not shown because of a lack of space, but a

conditional probability of non-recovery of 1e-2 is

also sufficient for the other four non-recovery failure

transitions, and as before this requires 2,520

successful trials for each of them to give each a

confidence level of 100(1 – 1e-11)%. The total

contribution of the non-recovery states to system

failure is 1.89e-10, and the stated trials establish this

at the 100(1 – 2.5e-10)% confidence level.

Fault Injection for Recovery Distributions

In the complete model, there are 22 recovery

functions whose means must be estimated. The first

five recovery distributions are displayed in figure 2.

The computations actually use the upper bounds for

the means which need to be estimated at some

confidence level. If each of the 22 upper bounds are

estimated at the 100(1 – 3e-11)% level, then the total

contribution to the lack of confidence for the

distribution functions is 6.6e-10. Combined with the

lack of confidence for non-recovery of 1.89e-10, this

gives an overall confidence level for the experiment

of 100(1 – 8.49e-10)% which satisfies the desired

goal of a 100(1 – 1e-9)% level.

As mentioned before, there is a paucity of results

about the tails of the normal approximation. Hence,

we will derive a conservative upper-bound for the

tails of the normal. We begin by bounding the

normal density function above with

 ()

√
 (

) (20)

when x > 1. We have

 ∫ ()

 (21)

which says that a sample-mean plus 6.83 sample-

standard-deviations gives an upper confidence bound

of 100(1 – 3e-11) % .

 Continuing to be conservative, we will use the

estimated-mean plus the estimated-standard-deviation

as an upper bound for the mean. If there are 10,000

trials, the standard deviation of the estimator is one-

hundredth of the population-standard-deviation.

Hence, we are using the sample-average plus 100

sample-standard-deviations (instead of 6.83 of them).

Table 2 displays the estimated means and

standard deviations in seconds for the five system

recoveries depicted in figure 2. Recoveries that

handle transients take longer because of system

restoration. Table 3 displays the eleven failure states

in figure 2. The upper bound computations use the

upper confidence bounds for the means which is the

estimated means plus the estimated standard

deviations.

αα

 1 2 3 F 1

 H 1

 4 F 2

 H 2

α

 5 6 F 3

 7 F 4

 17

 H 3

 8 9 F 5

α

 10 11 F 6

 F 7

 H 4

α

 12 13 F 8

 58 14 F 9

 H 5

 15 F 10

 16 F 11

Figure 2. First Part of the path Space Model for the Sevenplex

 Table 2. Estimates for Recovery Distributions

System

Recovery

Estimated

Population

Mean

Estimated

Population

Standard

Deviation

H1 2 2

H2 6 4

H3 4 2

H4 2 2

H5 4 2

Table 3. First Eleven Failure States

 State Algebraic Upper Bound Value

F 1

 ()

4.76e-11

F 2 () () 2.64e-13

F 3

 ()

6.77e-13

F 4

 () ()

3.39e-15

F 5

 ()

7.95e-14

F 6

 ()

4.76e-11

F 7

 ()

1.43e-10

F 8

1.52e-10

F 9

 ()

1.02e-12

F 10

 ()

1.52e-11

F 11

1.43e-11

Summary for Fault Injections

Summing all the upper bounds for all the failure

states gives 5.99e-10. The total number of fault

injections required is 257,442. If successful, the

experiment has established the probability of failure

is less than 1e-9 at an equivalent confidence level.

Summary

We approach the problem of designing fault-

injection experiments by reducing the number of

parameters to be estimated. The major result is a

bound on the probability of system failure in terms of

the means and variances of the recovery distributions.

The upper bound uses only the means, and this bound

is tight if the component failure rates are low and

system recovery is fast. Another technique is

integrated system recoveries where a single recovery

distribution describes the system‟s reaction to several

types of faults. We derive the bounds and apply the

techniques to the design of an experiment for a

redundant system. A number of problems remain:

collection of field data, the accuracy of the normal

approximation for extremely high confidence levels,

and fault-identification in a Byzantine scenario.

References

[1] Z. Alkhalifa, V. Nair, N. Krishnamurthy, J.

Abraham, “Design and evaluation of system-

level checks for on-line control flow error

detection,” IEEE Transactions on Parallel and

Distributed Systems, volume 10 Issue 6 (1999),

pp. 627-641.

[2] J. Ariat, M. Aguera, L. Amat, Y. Crouzet, J.-C.

Fabre, J.-C. Laprie, E. Martins, D. Powell,

“Fault injection for dependability validation: a

methodology and some applications,” IEEE

transactions on Software Engineering, Volume

16 Issue 2 (1990), pp. 166-182.

[3] J. Ariat, M. Aguera, Y. Crouzet, J.-C. Fabre, E.

Martins, D. Powell, “Experimental evaluation of

the fault tolerance of an atomic multicast

system,” IEEE Transactions on Reliability,

Volume 39 Issue 4 (1990), pp. 455-467.

[4] J. Ariat, J. Boue, Y. Crouzet, “Validation-based

development of dependable systems,” IEEE

Micro, Volume 19 Issue 4 (1999), pp. 66-79.

[5] J. Ariat, A. Costes, Y. Crouzet, J.-C. Laprie, D.

Powell, “Fault injection and dependability

evaluation of fault-tolerant systems,” IEEE

Transactions on Computers, Volume 42 Issue 8

(1993), pp. 913-923.

[6] D. Avreesky, J. Arlat, J.-C. Laprie, Y. Crouzeet,

“Fault injection for formal testing of fault

tolerance,” IEEE Transactions on Reliability,

Volume 45 Issue 3 (1996), pp. 443-455.

[7] J. Barton, E. Czek, Z. Segall, D. Siewiorek, “Fault

injection experiments using FIAT,” IEEE

Transactions on Computers, volume 39 Issue 4

(1990), pp. 575-582.

[8] A. Brombacher, I. van Beurdeu, “RIFIT:

analyzing hardware and software in safeguarding

systems,” Reliability Engineering & System

Safety, Volume 66 Issue 2 (1999), pp. 149-156.

[9] J. Carreira, D. Costa, J. Silva, “Fault injection

spot-checks computer system dependability,”

IEEE Spectrum, Volume 36 Issue 8 (1999), pp

50-55.

[10] P. Cascaval, S. Bennett, “Efficient march test for

3-coupling faults in random access memories,”

Microprocessors and Microsystems, Volume 24

Issue 10 (2001), pp. 501-509.

[11] P. Cheynet, R. Velazco, S. Rezgui, L. Peters, K.

Beck, R, Ecoffet, “Digital fuzzy control: a robust

alternative suitable for space application,” IEEE

Transactions on Nuclear Science, Volume 45

Issue 6 (1998), pp. 2941-2947.

[12] G. Choi, R. Iyer, V. Carreno, “Simulated fault

injection: a methodology to evaluate fault

tolerant microprocessor architectures,” IEEE

Transactions on Reliability, Volume 39 Issue 4

(1990), pp. 486-491.

[13] J. Choi, P. Seong, “Dependability estimation of

a digital system with consideration of software

masking effects on hardware faults,” Reliabiity

Engineering & System Safety, volume 71 Issue 1

(2001), pp. 45-55.

[14] J. Clark, D. Pradhan, “Fault injection: a method

for validating computer-system dependability,”

Computer, Volume 28 Issue 6 (1995), pp. 47-56

[15] C. Constantinescu, “Using multi-stage and

stratified sampling for inferring fault-coverage

probabilities,” IEEE transactions on Reliability,

Volume 44 Issue4 (1995), pp. 632-639.

[16] C. Constantinescu, “Inferring coverage

probabilities by optimum 3-stage sampling,”

Microelectronics and Reliability, Volume 37

Issue 8 (1998), page 1280.

1[7] C. Constantinescu, “Teraflops supercomputer:

architecture and validation of the fault tolerant

mechanisms,” IEEE Transactions on Computers,

Volume 49 Issue 9 (2000), pp. 886-894.

[18] M. Cukier, D. Powell, J. Ariat, “Coverage

estimation methods for stratified fault-injection,”

IEEE Transactions on Computers, Volume 48

Issue 7 (1999), pp. 707-723.

[19] E. Czeck, D. Siewiorek “Observations on the

effects of fault manifestation as a function of

workload,” IEEE transactions on Computers,

Volume 41 Issue 5 , (1992), pp. 559-566.

[20] M. Dalpasso, M. Favalli, P. Olivo, B. Ricco,

“Fault simulation of parametric bridging faults in

CMOS IC‟s,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

Volume 12 Issue 9 (1993). pp. 1403-1410.

[21] T. Delong, B. Johnson, J. Profeta, “A fault

injection technique for VDL behavioral-level

models,” IEEE Design & Test of Computers,

Volume 13 Issue 4 (1996), pp. 24-33.

[22] K. Goswami, “DEPEND: a simulation-based

environment for system level dependability

analysis,” IEEE Transactions on Computers,

Volume 46 Issue 1 (1997), pp. 60-74.

[23] J. Hlavicka, S. Racek, P. Herout, “Evaluation of

process controller fault tolerance using

simulation,” Simulation Practice and Theory,

volume 7 Issue 8 (2000), pp. 769-790.

[24] G.-H. Hwang, W.-Z. Shen, “Fault analysis and

automatic test patttern for break faults in

programmable logic arrays,” IEE Proceeding-

Circuits Devices and Systems, Volume 143 Issue

3 (1996), pp. 157-166.

[25] S.-A. Hwang, J.-H. Hong, C.-W Wu,

“Sequential circuit fault simulation using logic

emulation,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

Volume 17 Issue 8 (1998). Pp. 724-736.

[26] Hyung Ki Lee, Dong Sam Ha, “HOPE: an

efficient parallel fault simulator for synchronous

sequential circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, Volume 15 Issue 9 (1996), pp.

1048-1058.

[27] Z. Kaibarczyk, R. Iyer, G. Ries, J. Patel, M. Lee,

Y. Xiao. “Hierarchical simulation approach to

accurate fault modeling for system

dependability,” IEEE Transactions on Software

Engineering, Volume 25 Issue 5 (1999), pp. 619-

632.

[28] W. Kao, r. Iyer, D. Tang, “FINE: A fault

injection and monitoring environment for tracing

the UNIX system behavior under faults,” IEEE

Transactions on Software Engineering, Volume

19 Issue 11 (1993), pp. 1105-1118.

[29] J. Karlsson, P. Liden, P. Dahlgren, R. Johanson,

U. Gunneflo, “Using heavy ion radiation to

validate fault-handling mechanisms,” IEEE

Micro, Volume 14 Issue 1 (1994), pp. 8-23.

[30] H. Kerkhoff, H. Speck, “Defect-oriented testing

of Josephson logic circuits and systems,” Physica

C: Superconductivity, Volume 350 Issues 3-4

(2001), pp. 261-268.

[31] Kwang-Ting Cheng “Transition fault testing for

sequential circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, Volume 12 Issue 12 (1993), pp.

1971-1983.

[32] C. Labovitz, A. Ahuja, A. Bose, F. Jahanian,

“Delayed Intrnet routing convergence,”

IEEE/ACM Transactions on Networking,

Volume 9 Issue 3 (2001), pp. 293-306.

[33] R. Lettner, M. Prammer, C. Scherrer, A.

Steininger, “Assessment of computer fault

toleranceóa fault injection toolset and the

rationale behind it,” Computer Standards &

Interfaces, Volume 21 Issue 4 (1999), pp. 357-

369.

[34] M. Hsueh, T. Tsai, R. Iyer, “Fault injection

techniques and tools,” Computer, Volume 30

Issue 4 (1997), pp. 75-82.

[35] M. Meyer, R. Camposano, “Active timing

multilevel fault simulator with switch-level

accuracy,” IEEE Transactions on Computer-

aided Design of Integrated Circuits and Systems,

volume 14 Issue 10 (1995), pp. 1241-1256.

[36] G. Miremadi, J. Torin, “Evaluating processor-

behavior and three error-detection mechanisms

using physical fault-injection,” IEEE

Transactions on Reliability, Volume 44 Issue 3

(1995), pp. 441-454.

[37] D. Powell, E. Martins, J. Ariat, Y. Crouzet,

“Estimators for fault tolerance coverage

evaluation,” IEEE Transactions on Computers,

Volume 44 Issue 2 (1995), pp. 261-274.

[38] J. Rajski, J. Tyzer, “The analysis of digital

integrators,” IEEE Transactions on Computers,

Volume 42 Issue 6 (1992), pp. 643-650.

[39] J. Rajski, J. Tyzer, “Accumulator-based

compaction of test responses,” IEEE

Transactions on Circuits and Systems II, Volume

39 Issue 5 (1992), pp. 293-301.

[40] J. Rajski, J. Tyzer, “Test responses compaction

in accumulators with rotate carry adders,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Volume 12

Issue 4 (1993), pp. 531-539.

[41] H. Seungjae, K. Shin, “Experimental evaluation

of behavior-based failure-detection schemes in

real-time communication networks,” IEEE

Transactions on Parallel and Distributed Systems,

Volume 10 Issue 8 (1999), pp. 613-625.

[42] G. Silberman, I. Spillinger, “Using functional

fault simulation and the difference fault model to

estimate implementation fault coverage,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Volume 9 Issue

12 , (1990). Pp. 1335-1343.

[43] D. Smith, B. Johnson, N. Andianos, J. Profeta,

“A variance reduction technique via fault-

expansion for fault-coverage estimation,” IEEE

Transactions On Reliability, Volume 46 Issue 3

(1997), pp. 366-374.

[44] D. Smith, B. Johnson, J. Profeta, ìSystem

dependability valuation via a fault list generation

algorithm,” IEEE Transactions on Computers,

Volume 45 Issue 8 (1996), pp. 974-979.

[45] D. Stort, G. Ries, M. Hsueh, R. Iyer,

“Dependability analysis of a high-speed network

using software-implemented fault injection and

simulated fault injection,” IEEE Transactions on

Computers, Volume 47 Issue 1 (1998), pp. 108-

119.

[46] N. Stressman, B. Vinnakota, R. Harjani,

“System-level design for test of fully differential

analog circuits,” IEEE Journal of Solid-State

Circuits, Volume 31 Issue 10 (1996), pp. 1526-

1534.

[47] C. Stroud, “Reliability of majority voting based

VLSI fault-tolerant circuits,” IEEE Transactions

on Very Large Scale Integration, Volume 2 Issue

4 (1994), pp. 516-521.

[48] A. Tomita, K. Sakamura, “Improving design

dependability by exploiting an open model based

specification,” IEEE Transactions on Computers,

volume 48 Issue 1 (1999), pp.24-37.

[49] T. Tsai, M. Hsueh, H. Zhao, Z. Kaibarczyk, R.

Iyer, “Stress-based and path-based fault

injection,” IEEE Transactions on Computers,

Volume 48 Issue 11 (1999), pp. 1183-1201.

[50] J. Voas, “Fault injection for the masses,”

Computer, Volume 30 Issue 12 (1997), pp. 129-

130

[51] J. Voas, “Certifying software for high-assurance

environments,” IEEE Software, Volume 16 Issue

4 (1999), pp. 48-54.

[52] J. Voas, F. Charron, G. McGraw, K. Miller, M.

Friedman, “Predicting how badly „good‟ software

can behave,” IEEE Software, Volume 14 Issue 4

(1997), pp. 73-83.

[53] J. Voas, G. McGraw, L. Kassab, L. Voas, “A

„crystal ball‟ for software liability,” Computer,

Volume 30 Issue 6 (1997), pp.29-36

[54] C. Walter, “Evaluation and design of an ultra-

reliable distributed architecture for fault

tolerance,” IEEE transactions on Reliability,

Volume 39 Issue 4 (1990), pp. 492-499.

[55] C. Yount,, D. Siewiorek, “A methodology for

the rapid injection of transient hardware errors,”

IEEE Transactions on Computers, Volume 45

Issue 8 (1996), pp. 881-891.

[56] M. Zwolinski, “A technique for transparent fault

injection and simulation in VHDL,”

Microelectronics Reliability, Volume 41 Issue 6

(2001), pp. 797-804.

[57] A. White, “Reliability with imperfect

diagnostics,” Journal Microelectronics and

Reliability, Volume 24 Issue 6 (1984), pp. 1069-

1076.

[58] S. Wilks, Mathematical Statistics, Wiley, New

York, 1963.

[59] S. Karlin and H. Taylor, A First Course in

Stochastic Processes, Academic Press, New

York, 1975.

[60] Jean-Claude Laprie, “Dependable computing

and fault tolerance: concepts and terminology,”

Proceedings of FTCS-15, 1985, pp.2-11.

[61] A. Friedman, Foundations of Modern Analysis,

Dover, New York, 1982.

[62] Anirbon DasGupta, Asymptotic Theory of

Statistics and Probability, Springer, New York,

2008.

[63] L. Lamport, R. Shostak, M.Pease, “The

Byzantine Generals Problem,” ACM

Transactions on Programming Languages and

Systems 4 (1982), pp. 382–401.

[64] M.Pease, R. Shostak, L. Lamport,

“Reaching Agreement in the Presence of

Faults,” Journal of the ACM 27 (1980), pp.

228-234.

31th Digital Avionics Systems Conference

October 16-20, 2012

