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Abstract  

This paper considers the long-standing problem 

of conducting fault-injections experiments to 

establish the ultra-reliability of embedded systems.  

There have been extensive efforts in fault injection, 

and this paper offers a partial summary of the efforts, 

but these previous efforts have focused on realism 

and efficiency.  Fault injections have been used to 

examine diagnostics and to test algorithms, but the 

literature does not contain any framework that says 

how to conduct fault-injection experiments to 

establish ultra-reliability.  A solution to this problem 

integrates field-data, arguments-from-design, and 

fault-injection into a seamless whole.  The solution in 

this paper is to derive a model reduction theorem for 

a class of semi-Markov models suitable for 

describing ultra-reliable embedded systems.  The 

derivation shows that a tight upper bound on the 

probability of system failure can be obtained using 

only the means of system-recovery times, thus 

reducing the experimental effort to estimating a 

reasonable number of easily-observed parameters.  

The paper includes an example of a system subject to 

both permanent and transient faults.  There is a 

discussion of integrating fault-injection with field-

data and arguments-from-design. 

 

Introduction 

Background 

        A long standing problem in the field of ultra-

reliable digital control systems is the design of a fault 

injection experiment for system validation.  Such an 

experiment combines arguments-from-design, field-

data-on-fault-occurrence, and results-from-fault-

injections.  If the system successfully completes the 

experiment, then the system has a given reliability at 

a certain confidence level. 

         Such experiments are often considered 

impossible.  One stated goal is that a flight control 

system has less than one in a billion chance of failure 

during a ten hour flight.  To establish this at the 

equivalent confidence level requires 1000 aircraft 

flying continuously for 21,000 years.  Not even a six 

order magnitude gain in efficiency would make this 

experiment feasible. 

    The first response to this problem is to 

construct a model of the system using our knowledge 

of system structure and component failure rates, but 

this approach has the inherent problem of describing 

system recovery from faults.  System recovery is a 

complex process involving failure modes, application 

software, diagnostic software, and system 

architecture.  No detail of the model can be arbitrarily 

omitted since any detail may have a greater effect on 

the final computation than the small probability to be 

computed.  This has led to more and more complex 

models that are experimentally intractable: some of 

the states and transitions in these models are not 

observable, and the large number of parameters to 

estimate makes achieving a high confidence level 

infeasible. 

    The solution in this paper is to derive a model 

reduction theorem for a class of semi-Markov models 

suitable for describing ultra-reliable embedded 

systems.  The theorem shows a tight upper bound on 

the probability of system failure needs only the 

means of system recovery times, thus reducing the 

experimental effort to simple and easily-observed 

parameters.  

    The typical reliability model assumes the 

system works correctly if the components are fault 

free, and this assumption is often not stated, but we 

will consider it explicitly because we want to create a 

seamless integration of arguments-from-design and 

fault injection.  Arguments-from-design proceed by 

demonstrating that if a system begins in a certain 

state and receives certain inputs then its outputs will 

be acceptable.  Any such argument requires a 

straight-forward architecture.  If the system is non-

reconfigurable, the argument needs to include the 

presence of faulty components.  If the system is 

reconfigurable, the fault-injection experiment must 

observe that reconfiguration places the system in an 

acceptable state.  The argument-from-design can 



ignore the complex reconfiguration process.  The 

amount of diagnostics established by arguments-

from-design can vary with the system.  In the 

example below, arguments from design are expected 

to cover the first two fault occurrences.   

Procedure 

    The difficult part of a reliability model is a 

description of system recovery.  It is a complex 

procedure involving propagation of the fault through 

hardware; interaction of a fault with diagnostic, 

application, and system programs; comparison 

voting; and possibly system reconfiguration.  In 

addition, if the required probability of system failure 

is extremely small, then no detail of system recovery 

can be arbitrarily ignored since the effect of an 

omitted element could have more effect on the 

system than the probability that is to be computed. 

    These considerations have led to the 

construction of more and more complicated system 

recovery models, but there are several problems with 

this approach.  First, there is no guidance for how 

much detail is needed.  Second, detailed models of 

recovery contain states that are not observable such 

as the propagation of a hardware fault into an 

application program.  Third, detailed models contain 

numerous parameters, and obtaining these parameters 

by experiments would be overwhelming, especially if 

a high confidence level is sought.  

    We offer a solution to this problem by 

deriving a model reduction theorem that yields upper 

and lower bounds for the probability of system 

failure in terms of the means and variances of system 

recoveries where the upper bound uses only the 

means.  These bounds are tight if the system has the 

desirable properties of low component failure rates 

and fast system recoveries.  Furthermore, the upper 

bound only uses the means of system recoveries.  

Since we need only a few, easily observed 

parameters, experiments are brought within reach.     

    The procedure in this paper differs from the 

usual one of (1) constructing a model and (2) 

computing the probability of failure from the model.  

This procedure (1) constructs a model, (2) uses the 

theorem to write a formula for an upper bound for 

system failure in terms of component failure rates, 

operating time, and system parameters, (3) conducts 

experiments to obtain upper confidence bounds for 

the parameters, and (4) combines the formula and 

upper-bounds-for-the-parameters to get an upper 

confidence bound for the probability of system 

failure. 

    It is clear from the above that the system must 

be overbuilt: more reliable than the requirement.  If 

the system has exactly the required probability of 

failure, then any upper bound will be greater than the 

required probability. 

Faults, Field Data, and Diagnostics 

    In this paper, a fault is an input-output 

malfunction of a device.  This definition 

accomplishes two goals.  First, it relates fault 

injection in the lab to the model of fault occurrence in 

the field since, in the field, a device is declared faulty 

when it begins producing observable errors.  Second, 

it lends itself to achieving a high diagnostic level 

which, we will see, is vital for demonstrating ultra-

reliability.  An approach that has a fault as something 

that happens inside a device makes a fault both 

difficult to observe and hard to detect.  

    The actual fault pattern that appears at the 

output may be hard to obtain.  Hence, part of system 

design may be some arrangement for the detection of 

any fault pattern. 

    It is apparent that a system will be designed 

and validated for a given class of faults.  This class of 

faults will have to be stated (and agreed upon) in the 

initial stages of design. 

Applicability and Feasibility 

     From a theoretical point of view, this method 

of designing experiments is widely applicable.  It 

requires that the system use high quality components 

with a constant failure rate.  System recovery is semi-

Markov since the time for system recovery depends 

on the time since fault occurrence.  It also requires a 

system to have a high diagnostic level which is a 

characteristic of highly reliable systems. 

    Feasibility depends on a low overall fault 

occurrence rate and fast recovery.  The experiment 

gathers data on each fault recovery, and a low fault 

occurrence rate implies the number of system-

recoveries during the operating time will not be too 

large.  Fast system recoveries imply only a small 

amount of time is spent observing system recoveries 

in the experiment. 



Outline of Paper 

         The next section contains a literature survey.  

The results in this paper do not depend on any 

previous results in the literature, but applying the 

results in this paper can use the extensive literature 

on the realistic and efficient simulation of faults.  A 

section on preliminaries covers the miscellaneous 

topics of confidence level, field data, terminology, 

and the central limit theorem.  The next section 

presents and derives the model reduction theorem.  

After the theorem is presented, two sections describe 

the system and its path space model for the design of 

the experiment.  Since the theorem is based on paths 

through a model, this last section shows how to 

handle with a model with loops due to transient faults 

by unwinding the loops.  There are potentially an 

infinite number of paths, but almost all the paths will 

have a negligible contribution to system failure 

because of the small probability of more than a 

certain number of fault occurrences.  (A fault 

occurrence can include the dependent case of faults 

in more than one component, and the theorem 

includes this case, although the hypothetical system 

only considers single component failures for a simple 

first example.) 

Literature Survey 

There is a large body of literature on fault 

injection, and this section can only offer a cursory 

description of the efforts.  Nevertheless, it is possible 

to describe what has been done, and then note how 

this paper differs from previous work.  The survey 

below is by topic.  Since most papers discuss several 

topics, most papers appear more than once.   

    There are papers that survey the field and/or 

advocate fault injection as a useful tool 

[9,14,50,51,53].  One question is authenticity--do 

laboratory fault injections mimic actual fault 

occurrences [22, 45, 55].  Some papers use system 

architecture to design efficient and effective fault 

injection [1, 4, 6, 8, 20, 21, 24, 25, 26, 27, 29, 30, 31, 

39, 40, 42, 44, 46, 47, 48, 49, 55].  Others use the 

results of fault injections to compare or design 

systems [4, 8, 11, 12, 23 30, 36, 38, 39, 41, 47, 54].  

Fault injections are used to search for design flaws 

[3, 6, 17, 48].  They are used to test software as well 

as hardware [8, 13, 28, 50, 51, 52, 53].  There are a 

number of programs and tools for efficient fault 

injection [2, 7, 10, 22, 24, 26, 28, 31, 35, 43, 45, 49, 

55, 56].  There are efforts to model fault propagation 

and effect [5, 7, 12, 17, 19, 22, 23, 27, 28, 30, 32, 36, 

38, 39, 40, 41, 44, 45, 47, 50, 52].  Coverage is a 

popular topic, and the meaning of coverage can vary 

from simple detection to complete system recovery 

and reconfiguration [1, 2, 3, 4, 5, 10, 11, 12, 15, 16, 

17, 18, 20, 21, 27, 29, 31, 33, 36, 37, 38, 39, 40, 41, 

42, 43, 44, 54, 55].  There are papers about the 

efficient estimation of coverage [15, 16, 18, 27, 36, 

43], and there are papers about incorporating 

coverage into a reliability model [5, 13, 47]. 

    This paper is a modest effort, but different 

from all the above.  It considers only hardware.  The 

goal is to derive results in probability that permit 

establishing ultra reliability (for hardware) with a 

moderate fault injection effort.  This paper is 

different enough from previous efforts that it is 

technically self contained. 

Preliminaries 

Conducting the Experiment  

    The trials in an experiment consist of injecting 

certain faults and observing system recovery.  

Recovery must include detection and identification.  

If the system is reconfigurable, recovery must include 

reconfiguration.  Any trial can last only a short period 

of time, and the insistence that the system 

successfully recovers within this period is a stringent 

one.  This requirement can be relaxed, but at the cost 

of additional computational effort [57].  As an 

introductory effort, this paper accepts the simpler, 

although more demanding, requirement.   

    From the time of fault injection until 

recovery, the system is monitored to insure it 

maintains process control.  Acceptable control 

depends on the environment, but any deviation 

outside acceptable control is considered system 

failure. 

Overall confidence level 

    A confidence level is a quantitative measure 

of the quality of an experiment.  If there are random 

elements present, it is possible for an experiment to 

mislead us, and the confidence level gives the 

probability that the experiment has misled us.  A 99% 

confidence level means that there is a 0.99 (or more) 

chance that the experiment leads us to the correct 

conclusion.  This paper takes the position that the 



quality of the experiment should match the 

importance and quality of what is being established.  

In the following if the requirement is that the 

probability of system failure be p (or less), then the 

experiment is designed to have a confidence level of 

100(1-p)%. 

    Since a reliability model has numerous 

parameters to be estimated, the final confidence level 

is a combination of the confidence level for each of 

the parameters.  The result, which does not assume 

independence, is as follows [58]. 

 

Suppose [  i ,  i ] is a 100(1-h i )% confidence 

interval for p i for  1in, then  ([  1 ,  1 ],..., [  n ,  

n ] )  is a 100(1- h 1 - ... - h n )% confidence interval 

for (p 1 ,..., p n ). 

 

Hence, the more parameters to be estimated, the 

higher the confidence level on each must be to 

maintain an overall high confidence.  This is one of 

the motivators for the model reduction theorem in 

next section and the reason for introducing 

integrated-recovery-distributions when designing the 

experiment. 

Confidence Level for Lack of Diagnostics 

    We wish an upper confidence bound u for the 

probability that a fault is not detected, which is 

denoted by (1-D) in the models below.  Assuming all 

faults are detected in n trials, the number of trials 

needed to establish u as a upper bound at the 100( 1 – 

alpha)% level is 

( 1 – u )
 n
  = alpha                                           (1) 

This can be expanded to solve for n in case some 

faults are undetected during the experiment by adding 

more terms in the binomial expansion.  For instance, 

the number of trials n needed to establish that n is an 

upper bound for (1-D) at the 100( 1 – alpha )% level 

if zero or one faults are undetected is given by 

( 1 – u )
 n
   +   n( 1 – u )

 n-1
  = alpha.               (2) 

    The upper and lower bounds are derived in 

section four by considering all the paths from initial 

states to system-failure states.  It is a feature of this 

path-space approach that for an upper bound on 

system failure we also need an upper bound for D, 

the probability that a fault is detected.  We will take 1 

as a 100% upper confidence bound on D.   

Confidence Level for Means of System 

Recoveries 

    The upper bound on the probability-of-

system-failure uses the averages of the system 

recoveries, and confidence intervals for averages are 

derived from the central limit theorem that says a 

sample average is approximately normally 

distributed.  A problem is that the confidence levels 

are extremely high, and the normal approximation 

may or may not be accurate enough even if the 

sample size is large.  This statistical point requires 

more study, and this is a general problem.  There are 

a few results [58], but the consensus is that “no 

systematic studies along this direction seem to have 

been done” [62].  

Two Results on Fault Injection 

    We use two results in probability for fault 

injection [59].  Suppose components have failure 

rates λ 1 , … , λ n .  The probability that component j 

has failed given a component has failed is 

                 λ j  /( λ 1 + … + λ n ).                       (3)              

    When injecting a fault, the experimenter will 

allow a time S for system recovery, and if the system 

does not recovery within that time, it will be declared 

a system failure.  When injecting a double fault, the 

time of injection is given by the uniform distribution 

on [0, S]. 

The Model Reduction Theorem 

    A reliability model can be regarded as a 

collection of paths from the initial state (or states) to 

the failure state (or states).  By the semi-Markov 

property, an arbitrary path can be arranged as in 

figure 1.  At first glance, such an approach might 

appear to not include transient faults or correlated 

faults, but transient faults can be handled by 

unwinding the loops.  The unwinding process will 

end as the probability of more fault occurrences 

becomes negligible.  Correlated faults can be handled 

by letting a transition represent the failure of more 

than one component. 

    In the first line of figure 1, the successful 

transitions are constant rate processes competing 

against other constant rate processes.   In the second 



line the successful transitions are general 

distributions (system recovery distributions) 

competing against other general distributions and 

constant rate processes.  In the third line the 

successful transitions are constant processes 

competing against general distribution functions and 

other constant rate processes.  For notation 

 

          D(T) = Probability of traversing the path in 

figure 2 by time T 

W(T) = Probability of reaching state  B 1  by 

time T 

p(F i ) = Probability the transition  dF 1,i  is 

successful 

( F i ) = First conditional moment of  dF 1,i 

 
2
( F i ) = Conditional variance of  dF 1,i 

(C j ) = First moment of the holding time in 

state C j 

 
2
 (C j ) = Variance of the holding time in C j. 

 

The probability  W(T)  is easy to compute.  A 

convenient approximation which is used in section 

VI, but whose derivation is left to the reader is 
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Figure 1.   Arbitrary path in a semi-Markov model 

                                                                                                            

The proof uses two standard results in 

probability.  If  H  is a distribution such that  H(0-) = 

0, then 
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Theorem: With the assumptions and notation as 

above, upper and lower bounds for reaching state D 

in figure 1 by time T are 
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Proof of the theorem 

Let  q(t)  be the density function for the 

probability of reaching state  B1  of figure 1.  The 

derivation is easier to follow if we assume the 

recovery distributions have density functions, and we 

will use f(x) dx instead of dF(x) although the theorem 

holds in the general case. 
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Working with just the limits of integration 
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It remains to establish four inequalities ((14) 

through (17) below). 
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The theorem is proved by substituting these 

inequalities into the previous inequalities for  D(T). 

Description of the Nonreconfigurable 

Sevenplex Example 

General Description 

         The architecture is a nonreconfigurable 

sevenplex where each module consists of a computer-

on-a-chip plus six transmission lines to the other 

modules.  There are seven computers and forty two 

links.  The requirement is to establish that there is 

less than one chance in a billion of failure during a 

ten hour flight, and to establish this at the 100(1-1e-

9)% confidence level.  The permanent and transient 

failure rates for the computers are 1e-6/hour and 1e-

5/hour respectively.  The rates for the links are 1e-

5/hour and 1e-4/hour. 

Masking, Detection, and Identification 

The general principles for masking arbitrary 

faults are: (1) 3k+1 components are needed to reach 

consensus in the presence of k (arbitrarily malicious) 

faults and (2) any message from a good component 

can be identified as being from that component [63, 

64]. 

 



    For both diagnostics and Byzantine resilience, 

this sevenplex has the following features. 

(i) The computational and decision 

making components are computers-on-a-

chip.  The faults (input-output 

malfunctions) appear on the output 

registers, and any incorrect output will be 

transmitted to another computer. 

(ii) Communication is point-to-point 

for all the computers.  Hence, any good 

computer knows from which computer it 

received a correct message.  It can, 

however, require some time to determine if 

the incorrect message arises from a faulty 

computer or a faulty link. 

Hence, we assume that arguments-from-design 

have established the following. 

The system can tolerate faulty 

components as long as there are no 

more than two faulty components 

currently in the system. 

    In addition, faults are characterized as input-

output malfunctions in order that fault injection in the 

lab corresponds to observed fault occurrence in the 

field.  Since the total connectivity of the system 

conveys any malfunction to the other processors, the 

good processors can detect any fault occurrence.  As 

long as there are five good processors, the good 

processors can identify the source of the fault with 

one exception.  If processor A tells the other 

processors it has received a faulty message from 

processor B and the other processors have received a 

correct message from processor B, then the likely 

culprit is the link between A and B.  It is possible, 

however, that processor A has sent a malicious 

message.  For this reason, processor A is also 

suspect, and both processor A and the link will have 

to be examined during the maintenance check.  

During the experiment, declaring the link as faulty 

will be considered a successful recovery.  During the 

experiment and run-time, the most damage such a 

malicious processor can do is shut down all the links 

to it.  

    The arguments have not established the time it 

takes to detect and identify the faulty units, nor do 

they make any assertions about system behavior if 

three or more faults are present.  This part belongs to 

the experimental effort. 

The Path Space Model  and Design of 

the Experiment 

Outline 

The construction of the model and the design of 

the experiment are intertwined.  There are three steps. 

1. Preliminary experiments are conducted 

to get initial estimates of the model parameters. 

2. These initial estimates are used to 

construct a model.   

3. The model is used to determine the 

number and types of fault injections required. 

Preliminary Experiments 

Assume the preliminary values for the mean and 

variance of system recovery are given in the first 

three columns of Table 2.  Recovery from a computer 

transient takes longer because of the need to rewrite 

the internal stored values.  The model will be 

constructed and the experiment designed on the 

assumption that the initial estimates are reasonably 

accurate.  If these estimates are too large, then the 

model and experiment will be inefficient.  If these 

parameters are too small, then the model and 

experiment will not be adequate. 

    This discussion assumes, for convenience, 

that the final estimates match the initial estimates.     

Integrated Recovery Functions 

The typical model has a different recovery 

function for each type of fault, but this creates a 

proliferation of parameters, and we have seen in the 

subsection on combining confidence levels that this 

increases the number of trials needed to maintain a 

high overall confidence level.  Hence, each recovery 

function in the model below integrates recovery from 

several types of faults although a distinction is made 

between permanent and transient faults since 

permanent faults remain in the system and additional 

data must be collected when there are three or more 

faults in the system.   

    Recovery integration is handled by 

proportional sampling.  For instance, recovery H1 in 

figure 2 handles both processor and link permanent 

faults.  Suppose  λ  is the failure rate for processors, φ 

is the  failure rate for links, and N is the number of 

faults to be injected to obtain the parameters for  H1.  



Then the experiment will inject  7γ/(7γ + 42φ) N 

processor faults and 42φ/(7γ + 42φ) link faults.   

    Recovery H2  handles a permanent fault 

followed by a transient fault.  With the notation of γ 

for processor-rate, φ for link-rate, p for permanent, 

and t for transient, the proportions are given in table 

1. 

Table 1. Proportion of Injected Faults  

                for Recovery Distribution H2    

Type 

 

Proportion 

Processor- 

Processor 

     

            
  

     

            
 

Processor- 

Link 

     

            
  

      

            
 

Link- 

Processor 

      

            
  

     

            
 

Link- 

Link 

      

            
  

      

            
 

 

Description and Figures for the Model 

Based on the preliminary results from 

exploratory fault injections and the accompanying 

calculations, the system model was constructed, and 

the first part of this model is shown in figure 2  The 

construction of this model illustrates the difference 

between constructing a conservative model for ease 

of experimentation and constructing a more accurate 

model for a more precise calculation of system 

failure. 

    The model begins in state 1 and transitions to 

state 2 with a permanent fault and to state 17 with a 

transient fault which is indicated by a dashed arrow.  

The type of permanent fault injected is chosen 

randomly from a multinomial distribution according 

to the ratio as described in the previous section.  

These fault injections yield a mean and variance for 

H1, the recovery distribution for the first permanent 

fault that occurs. 

    An occurrence of a permanent fault while 

recovering takes the system to state 3.  Since this is 

expected to be a rare occurrence, the model ignores 

system recovery although the system can tolerate two 

faults.  The occurrence of a third fault in state 3 is 

considered a system failure  F1.  The occurrence of a 

transient fault in stated 2, however, has a probability 

large enough that the model must track it – to state 4 

where H2 is the recovery model for both faults.  A 

third fault occurrence in system 4 is unlikely enough 

that it will be considered system failure.  A 

successful recovery from state 4 takes the system to 

state 5 where a permanent is treated similarly to a 

permanent failure in state 2 and a transient failure 

takes the system to the recovery state 7.  In state 7, 

any fault occurrence is taken as a system failure.  

Recovery goes to state 8 where there is one 

permanent fault in the system.  In state 8, any 

additional faults are unlikely enough that system 

recovery is not tracked and two additional faults 

place the system in failure state F5. 

    Recovery from the first permanent fault takes 

the system to state 10 where a permanent fault leads 

to state 11 (and a transient fault to state 58 although 

this part of the model is not shown).  In state 11, any 

failure that occurs during system recovery is 

considered a system failure.  System recovery goes to 

state 12.  Since there are now two faults in the 

system, we are no longer guaranteed the system will 

correctly handle a fault.  A correctly-handled 

permanent fault takes the system to state 13 where 

the recovery process is ignored and an additional 

fault is declared system failure.  A correctly-handled 

transient fault takes the system to state 14.  In state 

12, an incorrectly-handled fault takes the system to 

failure state F7.  The model is simplified and the 

probability of failure bounded above by having the 

transition to F7  use ω, the sum of all failure rates. 

    In state 14, the occurrence of any fault during 

system recovery is declared a system failure.  

Recovery goes to state 15 where there are two faults 

in the system.  The occurrence of a fault that is not 

correctly handled (not detected) takes the system to a 

failure state.  The occurrence of a fault that is 

correctly handled takes the system to state 16 where 

system recovery is ignored and another fault 

occurrence is considered system failure.  The rest of 

the model is similar.  The complete model consists of 

69 operational states plus 42 failure states.  Because 

of a lack of space only the first 16 operational states 

and 11 failure states are displayed in figure 2.  The 



dotted lines indicate transitions to states not included 

in this first part. 

Fault Injection for Non-recovery 

Non-recovery refers to the improper handling of 

a fault which could range from non-detection to 

removing a good component to system crash.  In the 

complete model, there are six failure states for 

improper handling of a fault with two of them present 

in the model in figure 1: F 7   and F 10.  In the previous 

states (12 and 15), the system has two faults present 

and cannot be guaranteed to handle the third fault 

correctly.  The algebraic upper bounds for these two 

states are 

F 7 <   
  

 
     (    )                               (18) 

F 10 <    
  

  
        (     )                       (19) 

                       

An upper bound of 1e-3 for (    ) gives an upper 

bound for  F 7 of 1.43e-10, and the upper of 1e-3 can 

be established at the 100(1 – 2e-10)% confidence 

level with 22,322 successful trials.  An upper bound 

of 1e-2 for  (     ) gives an upper bound of 1e-11 

for  F 10, and the upper bound of 1e-2 can be 

established at the 100(1 – 1e-11)% confidence level 

with 2,520 successful trials. 

 It‟s not shown because of a lack of space, but a 

conditional probability of non-recovery of 1e-2 is 

also sufficient for the other four non-recovery failure 

transitions, and as before this requires 2,520 

successful trials for each of them to give each a 

confidence level of 100(1 – 1e-11)%.   The total 

contribution of the non-recovery states to system 

failure is 1.89e-10, and the stated trials establish this 

at the 100(1 – 2.5e-10)% confidence level. 

 

Fault Injection for Recovery Distributions 

In the complete model, there are 22 recovery 

functions whose means must be estimated.  The first 

five recovery distributions are displayed in figure 2.  

The computations actually use the upper bounds for 

the means which need to be estimated at some 

confidence level.  If each of the 22 upper bounds are 

estimated at the 100(1 – 3e-11)%  level, then the total 

contribution to the lack of confidence for the 

distribution functions is 6.6e-10.  Combined with the 

lack of confidence for non-recovery of 1.89e-10, this 

gives an overall confidence level for the experiment 

of 100(1 – 8.49e-10)% which satisfies the desired 

goal of a 100(1 – 1e-9)%  level.   

As mentioned before, there is a paucity of results 

about the tails of the normal approximation.  Hence, 

we will derive a conservative upper-bound for the 

tails of the normal.  We begin by bounding the 

normal density function above with 

        ( )   
 

√    
       (  

  

 
 )                (20) 

when x > 1.  We have 

          ∫  ( )       
 

    
                     (21) 

which says that a sample-mean plus 6.83 sample-

standard-deviations gives an upper confidence bound 

of 100( 1 – 3e-11 ) %  . 

 Continuing to be conservative, we will use the 

estimated-mean plus the estimated-standard-deviation 

as an upper bound for the mean.  If there are 10,000 

trials, the standard deviation of the estimator is one-

hundredth of the population-standard-deviation.  

Hence, we are using the sample-average plus 100 

sample-standard-deviations (instead of 6.83 of them). 

Table 2 displays the estimated means and 

standard deviations in seconds for the five system 

recoveries depicted in figure 2.  Recoveries that 

handle transients take longer because of system 

restoration.  Table 3 displays the eleven failure states 

in figure 2.  The upper bound computations use the 

upper confidence bounds for the means which is the 

estimated means plus the estimated standard 

deviations.     
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Figure 2. First Part of the path Space Model for the Sevenplex

  



 

    Table 2. Estimates for Recovery Distributions 

System 

Recovery 

Estimated

Population

Mean 

Estimated 

Population 

Standard 

Deviation 

H1 2 2 

H2 6 4 

H3 4 2 

H4 2 2 

H5 4 2 

 

Table 3.  First Eleven Failure States 

 State Algebraic Upper Bound Value 

F 1   

 
       (  ) 

4.76e-11 

F 2          (  )  (  ) 2.64e-13 

F 3   

 
         (  )  

6.77e-13 

F 4   

 
         (  )  (  ) 

3.39e-15 

F 5   

  
          (  )  

 

7.95e-14 

F 6   

 
      (  )  

4.76e-11 

F 7   

 
     (    )  

1.43e-10 

F 8   

  
        

1.52e-10 

F 9   

 
         (  )  

1.02e-12 

F 10   

  
        (     )  

1.52e-11 

F 11   

   
          

1.43e-11 

 

Summary for Fault Injections 

Summing all the upper bounds for all the failure 

states gives 5.99e-10.  The total number of fault 

injections required is 257,442.  If successful, the 

experiment has established the probability of failure 

is less than 1e-9 at an equivalent confidence level.  

Summary 

We approach the problem of designing fault-

injection experiments by reducing the number of 

parameters to be estimated.  The major result is a 

bound on the probability of system failure in terms of 

the means and variances of the recovery distributions.  

The upper bound uses only the means, and this bound 

is tight if the component failure rates are low and 

system recovery is fast.  Another technique is 

integrated system recoveries where a single recovery 

distribution describes the system‟s reaction to several 

types of faults.  We derive the bounds and apply the 

techniques to the design of an experiment for a 

redundant system.  A number of problems remain: 

collection of field data, the accuracy of the normal 

approximation for extremely high confidence levels, 

and fault-identification in a Byzantine scenario. 

References 

[1] Z. Alkhalifa, V. Nair, N. Krishnamurthy, J. 

Abraham, “Design and evaluation of system-

level checks for on-line control flow error 

detection,” IEEE Transactions on Parallel and 

Distributed Systems, volume 10 Issue 6 (1999), 

pp. 627-641. 

[2] J. Ariat, M. Aguera, L. Amat, Y. Crouzet, J.-C. 

Fabre, J.-C. Laprie, E.  Martins, D. Powell, 

“Fault injection for dependability validation: a 

methodology and some applications,” IEEE 

transactions on Software Engineering, Volume 

16 Issue 2 (1990), pp. 166-182. 

[3] J. Ariat, M. Aguera, Y. Crouzet, J.-C. Fabre, E. 

Martins, D. Powell, “Experimental evaluation of 

the fault tolerance of an atomic multicast 

system,” IEEE Transactions on Reliability, 

Volume 39 Issue 4 (1990), pp. 455-467. 

[4] J. Ariat, J. Boue, Y. Crouzet, “Validation-based 

development of dependable systems,” IEEE 

Micro, Volume 19 Issue 4 (1999), pp. 66-79. 

 



[5] J. Ariat, A. Costes, Y. Crouzet, J.-C. Laprie, D. 

Powell, “Fault injection and dependability 

evaluation of fault-tolerant systems,” IEEE 

Transactions on Computers, Volume 42 Issue 8 

(1993), pp. 913-923. 

[6] D. Avreesky, J. Arlat, J.-C. Laprie, Y. Crouzeet, 

“Fault injection for formal testing of fault 

tolerance,” IEEE Transactions on  Reliability, 

Volume 45 Issue 3 (1996), pp. 443-455. 

[7] J. Barton, E. Czek, Z. Segall, D. Siewiorek, “Fault 

injection experiments using FIAT,” IEEE 

Transactions on Computers, volume 39 Issue 4 

(1990), pp. 575-582. 

[8] A. Brombacher, I. van Beurdeu, “RIFIT: 

analyzing hardware and software in safeguarding 

systems,” Reliability Engineering & System 

Safety, Volume 66 Issue 2 (1999), pp. 149-156. 

[9] J. Carreira, D. Costa, J. Silva, “Fault injection 

spot-checks computer system dependability,” 

IEEE Spectrum, Volume 36 Issue 8 (1999), pp 

50-55. 

[10] P. Cascaval, S. Bennett, “Efficient march test for 

3-coupling faults in random access memories,” 

Microprocessors and Microsystems, Volume 24 

Issue 10 (2001), pp. 501-509. 

[11] P. Cheynet, R. Velazco, S. Rezgui, L. Peters, K. 

Beck, R, Ecoffet, “Digital fuzzy control: a robust 

alternative suitable for space application,” IEEE 

Transactions on Nuclear Science, Volume 45 

Issue 6 (1998), pp. 2941-2947. 

[12] G. Choi, R. Iyer, V. Carreno, “Simulated fault 

injection: a methodology to evaluate fault 

tolerant microprocessor architectures,” IEEE 

Transactions on Reliability, Volume 39 Issue 4 

(1990), pp. 486-491. 

[13] J. Choi, P. Seong, “Dependability estimation of 

a digital system with consideration of software 

masking effects on hardware faults,” Reliabiity 

Engineering & System Safety, volume 71 Issue 1 

(2001), pp. 45-55. 

[14] J. Clark, D. Pradhan, “Fault injection: a method 

for validating computer-system dependability,” 

Computer, Volume 28 Issue 6 (1995), pp. 47-56 

 

[15] C. Constantinescu, “Using multi-stage and 

stratified sampling for inferring fault-coverage 

probabilities,” IEEE transactions on Reliability, 

Volume 44 Issue4 (1995), pp. 632-639. 

[16] C. Constantinescu, “Inferring coverage 

probabilities by optimum 3-stage sampling,” 

Microelectronics and Reliability, Volume 37 

Issue 8 (1998), page 1280. 

1[7] C. Constantinescu, “Teraflops supercomputer: 

architecture and validation of the fault tolerant 

mechanisms,” IEEE Transactions on Computers, 

Volume 49 Issue 9 (2000), pp. 886-894. 

[18] M. Cukier, D. Powell, J. Ariat, “Coverage 

estimation methods for stratified fault-injection,” 

IEEE Transactions on Computers, Volume 48 

Issue 7 (1999), pp. 707-723. 

[19] E. Czeck, D. Siewiorek “Observations on the 

effects of fault manifestation as a function of 

workload,” IEEE transactions on Computers, 

Volume 41 Issue 5 , (1992), pp. 559-566. 

[20] M. Dalpasso, M. Favalli, P. Olivo, B. Ricco, 

“Fault simulation of parametric bridging faults in 

CMOS IC‟s,”  IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 

Volume 12 Issue 9  (1993). pp. 1403-1410. 

[21] T. Delong, B. Johnson, J. Profeta, “A fault 

injection technique for VDL behavioral-level 

models,” IEEE Design & Test of Computers, 

Volume 13 Issue 4 (1996), pp. 24-33. 

[22] K. Goswami, “DEPEND: a simulation-based 

environment for system level dependability 

analysis,” IEEE Transactions on Computers, 

Volume 46 Issue 1 (1997), pp. 60-74. 

[23] J. Hlavicka, S. Racek, P. Herout, “Evaluation of 

process controller fault tolerance using 

simulation,” Simulation Practice and Theory, 

volume 7 Issue 8 (2000), pp. 769-790. 

[24] G.-H. Hwang, W.-Z. Shen, “Fault analysis and 

automatic test patttern for break faults in 

programmable logic arrays,” IEE Proceeding-

Circuits Devices and Systems, Volume 143 Issue 

3 (1996), pp. 157-166. 

[25] S.-A. Hwang, J.-H. Hong, C.-W Wu, 

“Sequential circuit fault simulation using logic 

emulation,” IEEE Transactions on Computer-



Aided Design of Integrated Circuits and Systems, 

Volume 17 Issue 8 (1998). Pp. 724-736. 

[26] Hyung Ki Lee, Dong Sam Ha, “HOPE: an 

efficient parallel fault simulator for synchronous 

sequential circuits,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits 

and Systems, Volume 15 Issue 9 (1996), pp. 

1048-1058. 

[27] Z. Kaibarczyk, R. Iyer, G. Ries, J. Patel, M. Lee, 

Y. Xiao. “Hierarchical simulation approach to 

accurate fault modeling for system 

dependability,” IEEE Transactions on Software 

Engineering, Volume 25 Issue 5 (1999), pp. 619-

632. 

[28] W. Kao, r. Iyer, D. Tang, “FINE: A fault 

injection and monitoring environment for tracing 

the UNIX system behavior under faults,” IEEE 

Transactions on Software Engineering, Volume 

19 Issue 11 (1993), pp. 1105-1118.  

[29] J. Karlsson, P. Liden, P. Dahlgren, R. Johanson, 

U. Gunneflo, “Using heavy ion radiation to 

validate fault-handling mechanisms,” IEEE 

Micro, Volume 14 Issue 1 (1994), pp. 8-23. 

[30] H. Kerkhoff, H. Speck, “Defect-oriented testing 

of Josephson logic circuits and systems,” Physica 

C: Superconductivity, Volume 350 Issues 3-4 

(2001), pp. 261-268. 

[31] Kwang-Ting Cheng “Transition fault testing for 

sequential circuits,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits 

and Systems, Volume 12 Issue 12 (1993), pp. 

1971-1983. 

[32] C. Labovitz, A. Ahuja, A. Bose, F. Jahanian, 

“Delayed Intrnet routing convergence,” 

IEEE/ACM Transactions on Networking, 

Volume 9 Issue 3 (2001), pp. 293-306. 

[33] R. Lettner, M. Prammer, C. Scherrer, A. 

Steininger, “Assessment of computer fault 

toleranceóa fault injection toolset and the 

rationale behind it,” Computer Standards & 

Interfaces, Volume 21 Issue 4 (1999), pp. 357-

369.  

[34] M. Hsueh, T. Tsai, R. Iyer, “Fault injection 

techniques and tools,” Computer, Volume 30 

Issue 4 (1997), pp. 75-82. 

 

[35] M. Meyer, R. Camposano, “Active timing 

multilevel fault simulator with switch-level 

accuracy,” IEEE Transactions on Computer-

aided Design of Integrated Circuits and Systems, 

volume 14 Issue 10 (1995), pp. 1241-1256. 

[36] G. Miremadi, J. Torin, “Evaluating processor-

behavior and three error-detection mechanisms 

using physical fault-injection,” IEEE 

Transactions on Reliability, Volume 44 Issue 3 

(1995), pp. 441-454. 

[37] D. Powell, E. Martins, J. Ariat, Y. Crouzet, 

“Estimators for fault tolerance coverage 

evaluation,” IEEE Transactions on Computers, 

Volume 44 Issue 2 (1995), pp. 261-274. 

[38] J. Rajski, J. Tyzer, “The analysis of digital 

integrators,” IEEE Transactions on Computers, 

Volume 42 Issue 6 (1992), pp. 643-650. 

[39] J. Rajski, J. Tyzer, “Accumulator-based 

compaction of test responses,” IEEE 

Transactions on Circuits and Systems II, Volume 

39 Issue 5 (1992), pp. 293-301. 

[40] J. Rajski, J. Tyzer, “Test responses compaction 

in accumulators with rotate carry adders,” IEEE 

Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, Volume 12 

Issue 4 (1993), pp. 531-539. 

[41] H. Seungjae, K. Shin, “Experimental evaluation 

of behavior-based failure-detection schemes in 

real-time communication networks,” IEEE 

Transactions on Parallel and Distributed Systems, 

Volume 10 Issue 8 (1999), pp. 613-625. 

[42] G. Silberman, I. Spillinger, “Using functional 

fault simulation and the difference fault model to 

estimate implementation fault coverage,” IEEE 

Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, Volume 9 Issue 

12 , (1990). Pp. 1335-1343. 

[43] D. Smith, B. Johnson, N. Andianos, J. Profeta, 

“A variance reduction technique via fault-

expansion for fault-coverage estimation,” IEEE 

Transactions On Reliability, Volume 46 Issue 3 

(1997), pp. 366-374. 

[44] D. Smith, B. Johnson, J. Profeta, ìSystem 

dependability valuation via a fault list generation 

algorithm,” IEEE Transactions on Computers, 

Volume 45 Issue 8 (1996), pp. 974-979. 



[45] D. Stort, G. Ries, M. Hsueh, R. Iyer, 

“Dependability analysis of a high-speed network 

using software-implemented fault injection and 

simulated fault injection,” IEEE Transactions on 

Computers, Volume 47 Issue 1 (1998), pp. 108-

119. 

[46] N. Stressman, B. Vinnakota, R. Harjani, 

“System-level design for test of fully differential 

analog circuits,” IEEE Journal of Solid-State 

Circuits, Volume 31 Issue 10 (1996), pp. 1526-

1534. 

[47] C. Stroud, “Reliability of majority voting based 

VLSI fault-tolerant circuits,” IEEE Transactions 

on Very Large Scale Integration, Volume 2 Issue 

4 (1994), pp. 516-521. 

[48] A. Tomita, K. Sakamura, “Improving design 

dependability by exploiting an open model based 

specification,” IEEE Transactions on Computers, 

volume 48 Issue 1 (1999), pp.24-37. 

[49] T. Tsai, M. Hsueh, H. Zhao, Z. Kaibarczyk, R. 

Iyer, “Stress-based and path-based fault 

injection,” IEEE Transactions on Computers, 

Volume 48 Issue 11 (1999), pp. 1183-1201. 

[50] J. Voas, “Fault injection for the masses,” 

Computer, Volume 30 Issue 12 (1997), pp. 129-

130 

[51] J. Voas, “Certifying software for high-assurance 

environments,” IEEE Software, Volume 16 Issue 

4 (1999), pp. 48-54. 

[52] J. Voas, F. Charron, G. McGraw, K. Miller, M. 

Friedman, “Predicting how badly „good‟ software 

can behave,” IEEE Software, Volume 14 Issue 4 

(1997), pp. 73-83. 

[53] J. Voas, G. McGraw, L. Kassab, L. Voas, “A 

„crystal ball‟ for software liability,” Computer, 

Volume 30 Issue 6 (1997), pp.29-36 

[54] C. Walter, “Evaluation and design of an ultra-

reliable distributed architecture for fault 

tolerance,” IEEE transactions on Reliability, 

Volume 39 Issue 4 (1990), pp. 492-499. 

[55] C. Yount,, D. Siewiorek, “A methodology for 

the rapid injection of transient hardware errors,” 

IEEE Transactions on Computers, Volume 45 

Issue 8 (1996), pp. 881-891. 

 

[56] M. Zwolinski, “A technique for transparent fault 

injection and simulation in VHDL,” 

Microelectronics Reliability, Volume 41 Issue 6 

(2001), pp. 797-804. 

[57] A. White, “Reliability with imperfect 

diagnostics,” Journal Microelectronics and 

Reliability, Volume 24 Issue 6 (1984), pp. 1069-

1076. 

[58] S. Wilks, Mathematical Statistics, Wiley, New 

York, 1963. 

[59] S. Karlin and H. Taylor, A First Course in 

Stochastic Processes, Academic Press, New 

York, 1975. 

[60] Jean-Claude Laprie, “Dependable computing 

and fault tolerance: concepts and terminology,” 

Proceedings of FTCS-15, 1985, pp.2-11. 

[61] A. Friedman, Foundations of Modern Analysis, 

Dover, New York, 1982. 

[62] Anirbon DasGupta, Asymptotic Theory of 

Statistics and Probability, Springer, New York, 

2008. 

[63] L. Lamport, R. Shostak, M.Pease, “The 

Byzantine Generals Problem,” ACM 

Transactions on Programming Languages and 

Systems 4 (1982), pp. 382–401. 

[64] M.Pease, R. Shostak,  L. Lamport, 

“Reaching Agreement in the Presence of 

Faults,” Journal of the ACM 27 (1980), pp. 

228-234.   

 

 

31th Digital Avionics Systems Conference 

October 16-20, 2012

 


