NASA Science in the Middle of Nowhere:

Measuring Greenhouse Gases
in Railroad Valley, NV

Laura T. Iraci
NASA Ames Research Center
Moffett Field, CA
Why Railroad Valley?

- Multi-year history of JPL campaigns to calibrate radiance measurements
- RRV Playa (dry salt lake)
 - High reflectance, spectrally flat
 - Playa larger than footprint (10.5km)
 - Very low aerosol optical thickness
 - Very low population and vegetation
 - High clear sky ratio.
- Other RRV participants: JPL, JAXA, ColoState; Univ Wisconsin
ARC Railroad Valley: June 17-26 2011

- Measure Greenhouse Gas (GHG) vertical profiles from Alpha Jet and SIERRA Unmanned Aircraft System (UAS)
- Provide data to support calibration of GOSAT
- Explore local sources of carbon dioxide (CO$_2$) and methane (CH$_4$)
Study Area

- Play a Google Earth "tour" from ARC to RRV, then down into the Alpha data spiral, then out to SIERRA mapping field. (approx 45 sec)
Measuring GHG Vertical Profiles

- Commercial optical instrument
 - Picarro G2301-\textit{m} CRDS
 - Reconfigured for flight

- Alpha Jet fighter trainer
 - 25,000 ft spiral down to 100 ft agl
 - instruments suspended in wing pod
 - also carries ozone instrument
 - vertical profiles under GOSAT
 - June 22, 23, 25, 26
Measuring GHG Vertical Profiles

Blue = more CO$_2$, CH$_4$ Red = less CO$_2$, CH$_4$
Measuring GHG Vertical Profiles

- show video from Alpha (45 - 60 sec)
CO₂ Near-Surface columns from SIERRA

- Remotely piloted to extend data collection and reduce risk
- Flew stacked circles up to ~2500 ft agl
- Carries Picarro G2301-f CRDS CO₂/CH₄ sensor
 - modified for flight
 - also 3-D wind measurements for flux determination
Supporting GOSAT with CO$_2$ Data

- JAXA's GOSAT
 - carries TANSO-FTS
 - reports XCO$_2$ (column average dry mole fraction)

- ARC in-situ GHG data
 - ground truth for comparison to remote measurement

JPL/JAXA Field campaign organized by (left to right): A. Kuze, M. Helmlinger, C Bruegge
Supporting GOSAT with CO$_2$ Data

- CO$_2$ and CH$_4$ measurements during each GOSAT overpass
 - ground-based Picarro model G2311-f
 - sonic anemometer
Supporting GOSAT with CO$_2$ Data

- Pressure-weighted average of in-situ data, compared to satellite retrievals
Daytime Evolution of Boundary Layer

- SIERRA sampled in the morning (8 am)
- Alpha Jet sampled in the afternoon (2 pm)
- Ground based measurements in morning and afternoon
- Boundary layer mixes as the day warms up
Exploring Local Sources of Methane

- SIERRA takes off for a mapping mission
 - http://vimeo.com/26199759 (58 sec)
Exploring Local Sources of Methane

- **Hot Spot Identification:**
 - cold springs (right)
 - oil infrastructure (below)
 - level flights at XXX m above ground level
 - red = more CH$_4$, blue = less
Ground-Truthing Methane Hot Spots

- Mobile GHG lab deployed from Base camp to RRV 3 and RRV 6
- Soil gas and microbiology measurements taken to determine the source of methane
Determining Methane Origins

Playa (inactive oil derrick)

Edge of playa; more vegetated

Hydrothermally altered rocks at Pancake Ridge
Kate Springs (RRV3)

- Cold spring
- Collected bubbles
- $\text{CH}_4 = 84.32 \pm 0.13 \%$
- $\text{C}_2\text{H}_6 = 7.88 \pm 0.16 \text{ ppm}$
- $\text{C1/C2} = 105000$
Black Rock Station (RRV 4)

- Geothermal spring (37°C)?
- Collected bubbles
- CH$_4$ = 69.38 ± 9.21 %
- C$_2$H$_6$ = 3.46 ± 0.3 ppm
- C1/C2 = 183000

Conclusions:
- Methanogens are present and active in springs, but not prominent on crust or subsurface layers of the playa
- δ13C of CH$_4$ from bubbles collected in the natural springs (RRV3 and RRV4) fall in the biogenic range
Co-Authors & Many Thanks

- ARC ground based team: E Yates, K Schiro, E Sheffner, A Detweiler, C McKay, J DeMarines, C Kelley (U. Missouri)
- ARC Alpha jet team: M Loewenstein, J Tadic, W Gore, A Trias, E Quigley, R Walker
- SIERRA team: M Fladeland, R Berthold, M Sumich, R Kolyer
- H211 / Alpha crew
- JPL / JAXA: C Bruegge, A Kuze, M Helmlinger
- Others at Base Camp: F Schwandner
- Data analysis and other assistance: D Wunch, C Frankenburg, B Bebout, C Thomas
Come Join Us!

- NASA Postdoctoral Program (nasa.orau.org)
- Ames has four open civil service slots with airborne, satellite, instrumentation, and modeling foci
- Undergrad Internships: http://intern.nasa.gov/
- Laura.Iraci@nasa.gov
Learn More:

• Today
 • A33C-0234. In situ measurements of carbon dioxide (CO2), methane (CH4), and ozone (O3) over the Sierra Mountains of central California and western Nevada; Rebekah A. Olson
 • A33C-0236. An Observing Architecture for Synthesis of Multi-platform Observations of Carbon Dioxide over Railroad Valley, NV; Laura T. Iraci
 • A33C-0240. Development of a new platform for airborne measurements of atmospheric CO2 and CH4 and comparison with GOSAT measurements at Railroad Valley playa, Nevada; Jovan Tadic
 • A33C-0241. Automated network at Railroad Valley, Nevada, for providing radiometric calibrations of OCO2; Carol J. Bruegge
 • A33C-0237. Retrieval of surface albedo over the Railroad Valley playa from AVIRIS measurements; Thomas Taylor
 • A33C-0207. Validation of the GOSAT Thermal Infrared (TIR) Band using the University of Wisconsin airborne Scanning High-resolution Interferometer Sounder (S-HIS) and ground-based Atmospheric Emitted Radiance Interferometer (AERI) at Railroad Valley, Nevada; Robert Knuteson

• Tomorrow
 • A41B-0089. In-Situ Greenhouse Gas Measurement Comparisons in Railroad Valley, NV to Identify Local Point Sources and Quantify their Influences on Observed Background Concentrations; Kathleen A. Schiro
 • A41B-0090. Spatial and temporal variability in atmospheric CO2 and CH4 at Railroad Valley playa, a mid-latitude desert site; Emma L. Yates
 • A42D-07 (ORAL). Vicarious calibration and validation campaign of the GOSAT sensors at Railroad Valley; Akihiko Kuze (room 3008)

• Friday
 • B51G-0486. Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars; Angela M. Detweiler
 • Yesterday: B14A-06 (ORAL). SIERRA-Flux: measuring regional surface fluxes of carbon dioxide, methane, and water vapor from an unmanned aircraft system; Matt Fladeland

• Picarro booth #1401