CONTROL ID: 1485183

TITLE: The impact of temporal geopotential variations on GPS

AUTHORS (FIRST NAME, LAST NAME):
Stavros Melachroinos²,¹, Frank G Lemoine¹, Nikita P Zelensky²,¹, Brian D Beckley²,¹, Douglas S Chinn²,¹, Joseph B Nicholas³,¹, John J McCarthy²,¹, Teresa Pennington⁵,¹, Scott B Luthcke¹

INSTITUTIONS (ALL):
1. Code 698, Planetary Geodynamics Laboratory, NASA/GSFC, Greenbelt, MD, United States.
2. Science Division, SGT-INC, Greenbelt, MD, United States.
3. Emergent Space Technologies, Greenbelt, MD, United States.

ABSTRACT BODY:
Lemoine et al. (2006) and Lemoine et al. (2010) showed that applying more detailed models of time-variable gravity (TVG) improved the quality of the altimeter satellite orbits (e.g. TOPEX/Poseidon, Jason-1, Jason-2). This modeling included application of atmospheric gravity derived from 6-hrly pressure fields obtained from the ECMWF and annual gravity variations to degree & order 20x20 in spherical harmonics derived from GRACE data. This approach allowed the development of a consistent geophysical model for application to altimeter satellite orbit determination from 1993 to 2011. In addition, we have also evaluated the impact of TVG modeling on the POD of Jason-1 and Jason-2 by application of a weekly degree & order four gravity coefficient time series developed using data from ten SLR & DORIS-tracked satellites from 1993 to 2011 (Lemoine et al., 2011).

In this study we first evaluate the impact of a more detailed TVG modeling to the GPS constellation orbits and positions of a dedicated IGb08 GPS core station network used for the Jason-1 and Jason-2 POD. Using the NASA GSFC GEODYN orbit determination software, for the computation of the GPS constellation orbits we use a consistent LEO-to-ground GPS station approach with Jason-1 and Jason-2. Then subsequently we reestimate the GPS ground station orbits.