FIELD TESTED SERVICE ORIENTED ROBOTIC ARCHITECTURE: CASE STUDY

Lorenzo Fliickiger and Hans Utz

Carnegie Mellon University, NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA-94035, USA.
{Lorenzo.Fluckiger,Hans.Utz} @nasa.gov

ABSTRACT

This paper presents the lessons learned from six years of
experiments with planetary rover prototypes running the
Service Oriented Robotic Architecture (SORA) devel-
oped by the Intelligent Robotics Group (IRG) at NASA
Ames Research Center. SORA relies on proven software
methods and technologies applied to the robotic world.
Based on a Service Oriented Architecture and robust mid-
dleware, SORA extends its reach beyond the on-board
robot controller and supports the full suite of software
tools used during mission scenarios from ground control
to remote robotic sites. SORA has been field tested in
numerous scenarios of robotic lunar and planetary explo-
ration. The results of these high fidelity experiments are
illustrated through concrete examples that have shown the
benefits of using SORA as well as its limitations.

Key words: Service Oriented Architecture, Space
Robotics, Field Tests Experiments.

1. INTRODUCTION

Advanced software methodologies are necessary to cope
efficiently with the complexity of the software powering
any modern robotics system. This need is even amplified
for robots designed for the exploration of uncharted envi-
ronments since the tasks involved require a high level of
autonomy combined with a rich set of interactions with
a control team. The Intelligent Robotics Group (IRG) at
the NASA Ames Research Center developed a Service
Oriented Robotic Architecture (SORA) to control its ex-
ploration robot prototypes. SORA has enabled complex
exploration scenarios in realistic environments to be con-
ducted while allowing IRG’s research in human-robot ex-
ploration to smoothly evolve. This paper reports on the
lessons learned from over six years of experiments with
the SORA software system.

1.1. Context

Human-robot exploration of remote locations has been
one of IRG’s key research topics for more than a decade.

Figure 1: K10 Red Rover in the Arctic, running SORA
during the 2007 Haughton Crater Field Test (Canada).

This applied research involves numerous robotics field
test experiments conducted to validate the proposed ap-
proaches. Most of these field tests take place in remote
locations that are good Mars or Moon analogs like shown
in Fig. 1. Some of the key requirements for the soft-
ware system running on IRG’s robotic platforms are: 1)
enable complex autonomous systems, 2) support a wide
range of robots and instruments, 3) permit a variety of
exploration scenarios, 4) facilitate the integration with a
whole suite of mission tools and 5) allow a dynamic re-
search by a small team. To address these challenging re-
quirements, in 2005 IRG began developing the Service
Oriented Robotic Architecture (SORA) which is detailed
in [1]. SORA embraces the typical concepts of service
oriented systems: encapsulation, communication patterns
based on stable interfaces, and reliance on robust middle-
ware. This builds a loosely coupled and highly cohesive
system.

The research on software methods and systems for
robotics has increased considerably over the past six to
eight years. The application of good software practices
to handle the complexity of robot systems has lead natu-
rally to the adoption of software architectures well estab-
lished in computer science. Three of those architectural
paradigms are classified in [2]: Distributed Object Ar-
chitecture (DOA), Component Based Architecture (CBA)

and Service Oriented Architecture (SOA). This is how-
ever still a very young domain and despite standardiza-
tion efforts such as RTC [3] and RoSta [4], the land-
scape of solutions is still extremely fragmented. Some
approaches are focused on constructing a new type of
middleware specifically for robotics like OROCOS [5] or
the ROS [6], increasingly adopted in the robotic research
community. Other approaches are building component
frameworks using an existing middleware like [7] or [8]
or are designed to be middleware independent [9].

SORA shares several characteristics common to CBAs
and SOAs in robotics and adds the following specificities:
1) SORA extends well beyond the robot controller and is
used across the whole mission tool suite and 2) SORA
has been used extensively in high fidelity robotic mission
simulations.

1.2. Experience with Exploration Robots

In [1] we have shown how SORA has supported a Lu-
nar analog robotic field test during the summer 2007
at Haughton Crater, Devon Island (Canada). This first
full deployment of SORA involved two K10 rovers per-
forming systematic site surveys on a site above the Arc-
tic circle [10]. Since then, SORA has been used dur-
ing the summer periods of 2008 at Moses Lake (WA),
2009 at Black Point Lava Flow (AZ) [11] and 2010 at
the Haughton Crater site again [12], as well as in a cou-
ple of small-scale mission experiments conducted at sites
closer to the NASA Ames Research Center. These unique
opportunities allowed IRG to test SORA robustness in
applied scenarios involving full teams depending on the
robotic resource availability (mobility and data gather-
ing). Field experiments also put SORA services inter-
actions (within the robot and to the ground control) in
real situations with non homogeneous networks includ-
ing satellite links with variable Quality of Service (QoS).

1.3. SORA as Mission Backbone

Fig. 2 illustrates a typical field test where SORA is used
across the full system deployment: within rovers, by the
field team supporting the robots, by the control team ex-
ecuting remote operations and by the science team using
analysis and mission planning tools. Whenever SORA
services are collocated or distributed across a network,
their interactions are based on unified interfaces and are
transparently optimized by the supporting middleware.

The following Section 2 describes the high level concepts
of SORA. Then, using specific examples the paper high-
lights the benefits of the SORA in Section 3 and the short-
comings of SORA in Section 4. Finally the paper con-
cludes with future extensions to the current research.

2. SORA CONCEPTS

It is first important to emphasis that SORA is a software
architecture supporting robotic systems, and does not de-
fine a particular robot control architecture . Fig. 3 illus-
trates a simplified controller constructed with SORA. The
details of the services internal structure, and unified ser-
vices communication modes are described in [1]. The key
points concept of SORA are briefly highlighted in this
section, starting with the common characteristics shared
by SOAs and finishing with the SORA specificities.

2.1. Essential SOA aspects of SORA

This section describes what properties make SORA a typ-
ical SOA.

2.1.1. Services

SORA services encapsulate a set of interconnected
classes to offer high level functionalities to the system.
Each service is self contained and is dynamically load-
able. In addition, a service manages its own control-flow
requirements (message loops, threads etc). A service can
be passive, just waiting for events, or active with one or
multiple threads of execution.

2.1.2. Interfaces

Strongly typed, network transparent interfaces, specified
with the Interface Definition Language (IDL) [13], allow
connecting to the services. Implementation of the inter-
faces in different languages allows heterogeneous sys-
tems to interact. The same control interfaces are accessed
using Remote Method Invocation (RMI) for interactions
between services on the robot as well as by applications
running at ground control.

2.1.3. Data Distribution

In addition to RMI, SORA uses a Publish/Subscribe
scheme to distribute data across services, within a sin-
gle controller, and to the ground control systems. SORA
initially used the CORBA Notification Service [14] to im-
plement a publish/subscribe mechanism. This implemen-
tation still remains active while SORA transitions to the
Data Distribution System (DDS) [15]. DDS is a recent
standard by the Object Management Group (OMG) on
the publish-subscribe paradigm. At publication, most of
the rover telemetry will be also distributed using DDS.

I'The current control architecture of IRG robots is constructed as a
two tiered system combined with some services acting like behaviors,
thus it should be probably characterized as a mixed control architecture.

Sve :*C
_.

Onboard

Services o
Exploration Rover

MmMeA—» MAHO=mMX

(Packaged Data)

Satellite Link

|

|

[
Legend: :
Unifieg :

[

|

|

|

[

Commands

Unified Data
Distribution

OZCOoID

() M-Neo]

Science Team

Figure 2: Typical use of SORA across a full field deployment. Common unified interfaces are shared at each node. Data

distribution appears identical at all nodes.

2.1.4. Middleware

SORA relies heavily on middleware, specifically the
ACE/TAO implementation [16] of the CORBA [14] stan-
dard. In addition to CORBA, SORA uses the MIddle-
ware for RObots (Miro) [17]. Miro facilitates the use of
CORBA in the robotics context, without introducing an
extra layer of indirection, but by providing a configura-
tion of the middleware tailored to the robotics domain. In
addition to CORBA that will continue to be used for com-
manding, SORA relies on the RTI [18] DDS implemen-
tation for data distribution. DDS offers numerous new
Quality of Service (QoS) compared to CORBA for data
distribution across heterogeneous, non-reliable networks.
For example, building on DDS QoS, IRG was able to
conduct a field test where a 50s transmission delay was
introduced.

2.2. Specific aspects of SORA

This section describes some characteristics that are
unique to SORA.

2.2.1. Services Assembly

A robot controller is constructed from a set of services.
These services are started according to a configuration
file crafted for a particular scenario. The same config-
uration mechanism is used also for services not running
on the robot, like simulated components. A robot con-
troller assembled for a typical exploration scenario with
autonomous navigation and a few science instruments av-
erage 45 services. These services could be grouped into
three categories:

1. Hardware: an average of 14 hardware services are in
charge of communication with physical sensors and
actuators.

2. Software: an average of 19 software services are in
charge of data processing and high level algorithms
for autonomy and control.

3. Infrastructure: an average of 12 services are per-
forming infrastructure tasks ranging from audible
notifications to bandwidth management.

2.2.2. Loose coupling

Services of a SOA are not subject to the same level of
coupling as the components of a CBA. SORA services
need to respect some rules, like resource usage to play
nice in the overall system. However, these rules are
not enforced by a formalism or a compiler. In addition,
the loose coupling between services allows freedom on
the implementation method of each service. In contrast
CBAs can offer facilities for architecture analysis, sys-
tem composition, and individual components building.
IRG is considering using the CORBA Component Model
(CCM) [19] in the future to gain some structured CBA
benefits, however CCM was not mature enough when
SORA was initiated.

2.2.3. Standard messaging between NASA robots

From its inception, SORA exposed a set of messages for
data distribution within the robot and to external sub-
scribers. Building on the expertise gained using this
system during several years, a collaboration with other
NASA centers started an effort to create standard mes-
sages for exploration robots across NASA. This effort led
to the RAPID project [20]. RAPID defines a set of stan-
dard data structures that are shared between the robots
of already three NASA centers: NASA Ames (K10s and
K-REX rovers), Johnson Space Center (LER, Centaur-
2 rovers) and the Jet Propulsion Laboratory (Athlete 6-
legged robot). RAPID is Open-Source Software and es-
sentially consists of a set of IDLs plus utilities classes.

Control Worstation

«executable» «executable»
Planning Tool Visualization Tool

Rugl Pose | «flow»

3| Robot Laptop

Navigator

FrameStore

Leaaiiy «service»

@ e NavigatorSve \@\ E
«service» «service»
LocomotorSve FrameStoreSvc
WheelGroup DgpsServerSve SE] «flown Fose
flows]
2 =
«service») OMPASS 1 PoseEstimatorSve
WheelGroupSve eace " flow»
HmrCompassSvc

Figure 3: A minimal robot controller built with only a
few services. Data distribution is unified across the full
deployment. Provided interfaces are transparently acces-
sible within a robot or remotely.

These IDLs are processed to generate code supporting
messages that are distributed using DDS.

2.2.4. Validation with field tests

As mentioned above, SORA was deployed in multiple
field tests on various rovers. In addition to power the K10
series rovers, SORA has also been tested on a smaller
scale rover, K10-mini (footprint of 40cmx30cm), as well
as the much larger new IRG rover K-REX (footprint
2mx1.6m). Outside of IRG rovers, SORA also currently
supports a navigation system based on a LIDAR for the
Centaur-2 rover [21]. The range of situations encoun-
tered across these field tests is summarized in Tab. 1.
SORA'’s exposure to these real world situations confirms
that SORA meets three key characteristics of robotic
space systems: flexibility, scalability and reliability. The
unified interfaces across the system, for both collocated
and distributed scenarios, provide a great flexibility. Sim-
ilarly, the facility to create specific robot controllers for
particular scenarios by easily assembling different sets of
services brings a great flexibility. Scalability is obtained
by the service encapsulation, the loose coupling between
services, and the interchangeability of services providing
identical interfaces. Finally, insulation of each service
and reliance on robust middleware promote a high level
of reliability.

3. SORA BENEFITS

This section describes the benefits of SORA during the
IRG robotics field tests. Each of these benefits are gener-
ated by architectural concepts and illustrated with a con-
crete example. Most of the advantages reported below

are derived from Service Oriented Architecture specific
concepts like encapsulation, communication pattern, and
exposition of stable interfaces. In addition, the use of
a component configurator pattern and reliance on robust
middleware increases the flexibility and reliability of the
system.

«service»
Executive

migator Odometry _-
g 9] Lz cflows

«service» «service» g
GPS

NavigatorSvc PoseEstimatorSveV1
—@— < aservice»
«flow»

DgpsServerSvc
Sequential PoseEstimator | | Process Sensors Data
Control Flow Continuously R
~.._Compass

lown
/O Locomotor

«servicen
OdometrySve

«servicen
HmrCompassSve

«service»
LocomotorSve

(a) HMP 2007 Controller
«servicen «service» =
Raecutive XsensSve «service»
= << OdometrySve
\mﬁgawr Orientation™~. o Odometry
5] g £ iown
«servicer PoseEstimator «senvicer g]
NavigatorSve PoseEstimatorSvcV2 GPS)
—(O— «service»
«flow» DgpsServerSve
Concurent Process Compass
Control Flow only when static _
[Xs2_ Compass

«flow» >~

/O Locomotor
«service»

E HmrCompassSvc

«service»
LocomotorSve

(b) HMP 2010 Controller

Figure 4: Two successive versions of the K10 controller
(only few services shown).

3.1. Encapsulation

Encapsulation of robotics capabilities into services ex-
posing well defined interfaces is effectively shielding the
overall system from any code modification within ser-
vices. As long as the IDLs for the interfaces and mes-
sages for data distribution remain the same, any change
to the internals of a service will not affect other ser-
vices. This is illustrated in Fig. 4 with the evolution of
the Navigator service. The navigator service allows
the rover to reach a given goal while avoiding obstacles
by building a dynamic map of the environment. While
ignoring the mapping services dependencies for the sim-
plicity of the discussion, we can see that the Navigator
service has strong dependency on the Locomotor ser-
vice and PoseEstimator service. In addition the
Navigator service is used by the Executive ser-
vice. The navigator has undergone major re-structuring
over the years to gain performance and obtain more flexi-
bility. In particular the initial navigator heavily relied the
Navigation classes from the CLARAty [22] framework,
state of the art at the time. The current navigator replaces
the previously sequential model with a newly developed,

Table 1: Range of key parameters during field tests using SORA

Parameter

Minimal/Unfavorable configuration

Full-blown/Optimal configuration

Configuration

1 robot + field team of 5

2 robots + field team of 6 + ground team of
9 + science team of 12

Local wireless network

10Mbps (degraded 802.11b) to no comms
(robot out of range for extended periods
and navigating fully autonomously)

50Mbps (Meshed Tropos network with
802.11n)

Link to ground

2Mbps (satellite link) to no comms (link
loss or no ground team)

15Mbps (microwave link) with optional
50s delay introduced

Number of services on the
robot

Simple navigation: 12 [Hardware (HW)=2,
Sofware (SW)=6, IN (Infrastructure)=4]

Autonomous navigation and science in-
struments: 55 [HW=19, SW=22, IN=14]

Distributed services (not on
the robot)

1-2 (’mission manager” to start an au-
tonomous plan and monitor robot health)

> 5 multiple control panels and 3D visual-
ization plus data collection system

Data collected on the robot

80MB/h (no science and exclude stereo im-

1GB/h (LIDAR data + stereo images in-

ages)

concurrent framework: sensor reading, map building and
action selection are asynchronous and the robot drives
continuously. New terrain analysis and path evaluation
algorithms were incorporated into the navigation system.
This extensive development effort has been transparent to
the many users of the navigator interface.

3.2. Communication Patterns

SORA services are interconnected with a dual communi-
cation pattern: RMI and Data Publish/Subscribe. These
two modes are complementary. RMI is especially conve-
nient for commanding individual services and querying
their state while the Publish/Subscribe mechanism is bet-
ter suited for distributing data to multiple services. Even
though it is possible to implement a request/reply pat-
tern using a data distribution model, the stricter RMI ap-
proach enables greater static checking and code genera-
tion. Thus RMI makes the implementation of transaction-
oriented interfaces, such as robot commanding, more ef-
ficient and less error prone. In addition to the regular
RMI concept, SORA uses the Asynchronous Method In-
vocation (AMI) [23] pattern which augments the service
decoupling and simplifies services implementation. For
example, a service can take minutes to complete an op-
eration; however, it can be impractical for the caller of
this operation to block its thread of execution while wait-
ing for completion. Using AMI, the call will immediately
return and the caller will be notified by a callback when
the completion actually occurred. All the complexity of
AMLI, thread safety, and exception handling is handled by
the middleware.

Despite the advantages of RMI and AMI, data distribu-
tion is preferable when multiple consumers are interested
in the same type of data or when data needs to be trans-
mitted periodically. In addition, the Publish/Subscribe
mechanism decouples the services further as producers
of data are totally unaware of the consumers. SORA con-
tains a key service exploiting fully the Publish/Subscribe
mechanism: the data logger. This service is a generic data

cluded)

consumer, that can subscribe to any message type and se-
rialize it to file, including a trace of the request/reply pairs
of commands. With the Miro LogPlayer tool, the log files
created can be replayed at one’s convenience to analyze
a particular situation. The LogPlayer also permits data to
be fed back to the data-bus, where it can be consumed in
the same manner as the original data.

3.3. Stable Interfaces

All SORA interfaces (allowing remote method invoca-
tion), and all data structures (participating in the pub-
lish/subscribe mechanism) are defined with the IDL lan-
guage. Each IDL specification is carefully designed to
be as generic as possible while allowing access to spe-
cific capabilities of the sub-system. These interfaces and
data structures have certainly evolved from the initial
SORA conception to today’s system. However, changes
are mostly extensions of existing interfaces or addition of
new data structures to address a new domain. Keeping
these interfaces stable and their specification in a unique
repository (shared by all the parties contributing to soft-
ware for robotic field tests) permits to easily swap a ser-
vice for an equivalent one and enables to maintain all the
tools around the robot controller up to date.

An example of this evolution is shown in Fig. 4. A new
version of the PoseEstimator has been written for
the second HMP field test. The PoseEstimator com-
putes the best estimate of the rover position and orienta-
tion using a Kalman Filter to process various sensor in-
puts (not all included in this figure). The second version
of the PoseEstimator relies on an additional sensor,
and computes poses using a new algorithm. Thanks to the
SORA architecture, the previously existing sensor data is
consumed the same way and the services depending on
the PoseEstimator did not have to be modified at all.

CORBA interfaces support inheritance. SORA uses this
feature extensively to define the services interfaces. In
addition SORA extend this polymorphism to the imple-

mentation of the interfaces. Class polymorphism is a
powerful concept of any object-oriented language. This
is exemplified when used at the service level with in-
terface polymorphism. The best example in SORA are
the interfaces to the services encapsulating science in-
struments functionalities. For each field test IRG rovers
carry a new set of science instruments to achieve some
particular science goal. Of course, each instrument has
a particular set of characteristics that require some spe-
cific methods to access its functionalities. However, all
these instruments’ interfaces inherit from the same base
Instrument interface. This allows a range of services
to control and access any instrument in a transparent man-
ner at a high level. This is particularly the case for the
Executive service that executes plans defined by the
scientist. A plan contains instructions when instruments
need to be activated/deactivated, or when to acquire a
sample. The Executive is only aware of the base type
of Instrument and thus will command any instrument
which inherits and implements that base-interface.

The abstract interfaces in combination with the easy re-
configurability of the controller is also used to replace
some (or all) services of the controller for the physical
robot with simulated components. The Locomotor ser-
vice on Fig. 3 is responsible for translating high level
locomotion commands (translate, drive arc) to individ-
ual motor commands regarding the rover kinematics and
actuation capabilities. These low level commands are
passed to the Whee 1Group service that abstracts the ac-
tual robot hardware. A simulated WheelGroupSim ser-
vice which simulates the robot wheels motion has been
developed. It can simply be started in place of the orig-
inal service to obtain a simulation of the rover motion.
Applications like the 3D visualization tool which is used
to monitor the rover progress, do not need to be modified
at all and it is a matter of switching configuration files to
start a real rover controller or a simulated rover controller.

3.4. Component Configurator Pattern

SORA uses the “Component Configurator” pattern [24]
to combine the services in a full system. A configuration
file specifies which services should be started to create
a particular controller. Despite the fact that these con-
troller configuration files are currently crafted manually,
they have been a tremendous tool to develop and test our
robotic software. Configurations are created for each in-
dividual scenario. Scenarios are ranging from a minimal
controller containing only the locomotion service to a full
blown field test controller requiring a suite of science in-
struments, passing by controllers containing simulated
components. In addition to facilitate developers task,
the simplicity and rapidity of creating a new controller
configuration also allows tuning controllers regarding re-
source usage or memory footprint. The flexibility and ro-
bustness of the SORA services assembled with the com-
ponent configurator pattern can be measured by the num-
ber of services (range 30 to 50) running in concert on a
robot, while sharing the ressources harmoniously.

3.5. Robust Middleware

The architectural paradigms implemented in SORA
would not have achieved such a reliable and extensive
set of features without adopting a robust middleware.
As mentioned in the Section 2, SORA heavily relies on
CORBA coupled Miro, and increasingly on DDS. These
dependencies obviously are imposing some constraints
due to the choice of a specific middleware (see Section 4
for the drawbacks). Middleware is pervasive, so replac-
ing any middleware for another one would require sub-
stantial code changes. However, this commitment to a set
of well-established libraries enables rapid progress with
a finite (and usually limited) amount of resources. The
ACE/TAO CORBA implementation went though several
release cycles, so about once a year SORA updates to use
the latest revision. Each new revision of ACE/TAO re-
solves some issues and bring new improvements. SORA
directly benefited from these new versions representing a
considerable amount of work from outside parties. At the
same time, CORBA being a standard, new revisions of
the implementation only requires minor changes on the
user side. The same stability argument can be made for
Miro. The few changes in the Miro source code over the
years is a praise to its reliability and SORA has been very
well supported by Miro’s initial set of features.

Finally, appropriate usage of middleware frees the devel-
opers of the robotic software from issues or changes of
the lower layers. For example, as shown in Fig. 2, the
Field Site and Ground Operations are connected using an
unreliable satellite link. To cope with lower and intermit-
tent data rates, the robot telemetry is transferred using a
specific method developed as part of Miro. However, this
extension of the data distribution method is completely
transparent to the services running either on the Field Site
or Ground Operations. The exact same applications are
running on each site, not cognizant if the connection is
supported by a direct optical fiber link (situation for the
local test site at NASA Ames) or by a satellite link.

4. SORA SHORTCOMINGS

The long-term use, continuous development and inten-
sive field testing of SORA provided a good stress-test un-
covering weaknesses in the design and implementation
choices as well as the deployed software technologies of
the SORA architecture. In this section we want to dis-
cuss some of those: scalability of the publish/subscribe
mechanism, re-use of data structures, synchronization of
services and middleware acceptance by external parties.

4.1. Publish/Subscribe Scalability

The CORBA Notification service is designed as a cen-
tral monolithic data-relay. This obviously makes it a

single-point of failure and is not scalable to complex dis-
tributed applications. Also, the QoS options do not sup-
port bandwidth-management very well, which is a major
scalability concern in heterogeneous networks. Further-
more the Notification service has other short-comings,
such as a very inefficient transfer of type-code informa-
tion, that are of concern especially on low-bandwidth
network-links. We overcame these problems by deploy-
ing a customized extension that allows to create a feder-
ation of notification service instances exchanging events
between instances on a separate data-channel [25]. We
also added a time-based filter, implementing message-
frequency limits between nodes of the federation.

While this system provides a solution for our specific re-
quirements it is obviously not a generalized system aimed
at addressing all design deficiencies of the Notification
service. SORA transition to DDS allows to overcome
these limitations regarding data distribution. DDS ex-
tensive QoS capabilities permits its deployment in very
difficult network environments. Furthermore it supports
different modes of data-dissemination that allow imple-
mentation of a wider set of communication patterns over
a data-bus. On the down-side, adding a second middle-
ware package neither helps the footprint nor the complex-
ity of the software architecture.

4.2. Rigidity of Data Structures

The publish-subscribe model of data-distribution is cen-
tral to many SORA like distributed systems. Unfor-
tunately this model violates some of the abstraction
concepts of the object-oriented paradigm. The data-
structures used for distributing information through the
system become the public interface to write applications
against. This is a necessary caveat in a data-centric
distributed applications such as robotics, but can affect
maintainability and code re-use.

In addition, the data-distribution systems used by SORA
do not efficiently support type-polymorphism. A data-
bus supporting single-inheritance in the disseminated
data-structures would allow generic data-consumers sub-
scribing to a generalized concept (i.e. position), to ig-
nore the specific sensor information (i.e. additional GPS
data fields). However, the CORBA Notification service
as well as DDS only allow retrieval of the payload-type
of an event that was put in on the publisher side.

In consequence, SORA data producers (like a pose sen-
sor) are less interchangeable than if type-polymorphism
was available. In a similar way, code re-use is limited
when writing data consumers since they cannot share a
common high level data type. Finally, this limitation also
affects the maintainability of data collected during field
tests. The logged data is used extensively after the field
tests for analysis and development purpose. So any exten-
sion of previously defined data-types requires additional
effort to convert the logged data to match the new type-
signatures.

4.3. Synchronization of Services

In a loosely coupled architecture tight synchronization
of services is generally not envisioned. This is gener-
ally true for most of our services, too. Triggering activity
in one service on an event emitted by another service is
straight forward, but other synchronization primitives do
not exist.

This becomes more of an issue, with simulation, when
single-stepping and faster-than-real-time execution be-
come of interest. Synchronization of the systems real-
time clock is usually provided by network services. But a
uniform, synchronized time-step is difficult to provide ef-
ficiently in a large-scale distributed system and generally
not provided by any middleware or object model infras-
tructure.

4.4. Middleware Acceptance

Objective criteria generally state a clear benefit of mid-
dleware over ad-hoc solutions for distributed systems de-
velopment. Nevertheless, the acceptance of middleware,
especially of CORBA is often an issue. The major issues
reported usually are footprint and complexity.

Both those arguments are only partially true. Middle-
ware packages usually have similar foot-print as other
frameworks and libraries that are regularly used in the
development of large-scale systems (GUI toolkits, data-
bases, JIT-compiler etc). It is difficult to over-come es-
tablished misconceptions regarding the complexity and
performance of middleware In our experience, the com-
plexity of middleware can be managed by a small number
of domain experts, though. The other developers then do
not have to be concerned about the details of the distribut-
edness of their applications.

One factor which stays true is, that most middle-
ware packages (especially open-source packages like
ACE/TAO) are not trivial to install and to integrate into
the build-process. ACE/TAO now provides packages for
most Linux distributions, but an installer for Windows is
still missing. Also, the poor readability of the generated
code also makes it difficult for the non-domain expert to
directly look up the method signatures in the code gener-
ated by the IDL-compiler.

5. CONCLUSION AND FUTURE WORK

This paper describes the Service Oriented Robotic Ar-
chitecture (SORA) design concepts, the benefits brought
by this approach and the difficulties encountered. SORA
has been deployed to multiple high fidelity mission sim-
ulations of remote rovers controlled from ground opera-
tions. These experiments have demonstrated the advan-
tages of SORA in term of flexibility, scalability and re-

liability. At the same time, these experiments helped to
identify SORA limitations in those areas.

Future work on SORA includes refining some of the SOA
concepts, fully replacing the CORBA publish/subscribe
mechanism with the DDS standard, and continuing to
standardize the robotic interfaces with other NASA cen-
ters. In addition, the SORA source code has been cleared
for release under the NASA Open Source Agreement li-
censing and thus will be available to a larger community
for evaluation and contributions.

The advantages of SORA extend beyond the domain of
the robot controller architecture. SORA is the backbone
supporting IRG field test scenarios by connecting the var-
ious robotic mission tools with a powerful distributed sys-
tem infrastructure. The SORA design and implementa-
tion has enabled a full eco-system of robotic capabilities,
and will continue to smoothly support their evolution in
the future.

ACKNOWLEDGMENTS

This work was supported by the NASA Exploration Technology
Development Program and the NASA Enabling Technology
Development and Demonstration Program The authors would
like to thanks all the individuals who contributed to SORA:
Mark B. Allan, Xavier Bouyssounouse, Matthew Deans, Susan
Lee, Mike Lundy, Eric Park, Liam Pedersen and Vinh To.

REFERENCES

[1] Flickiger, L., To, V., & Utz, H. Service-oriented robotic
architecture supporting a lunar analog test. In Interna-
tional Symposium on Artificial Intelligence, Robotics, and
Automation in Space (iSAIRAS), 2008.

[2] Amoretti, M. & Reggiani, M. Architectural paradigms for
robotics applications. Advanced Engineering Informatics,
24(1):4 — 13, 2010. Informatics for cognitive robots.

[3] Object Management Group. Robotic Technology Com-
ponent (RTC). http://www.omg.org/spec/RIC,
2012.

[4] RoSta. Robot standards and references architectures.
http://www.robot-standards.org/, 2009.

[5] Orocos. OROCOS: open robot control software. http:
//www.orocos.org/,2012.

[6] Willow Garage. Robot Operating System (RoS).
http://www.willowgarage.com/pages/
software/ros—-platform, 2012.

[7] Makarenko, A., Brooks, A., & Kaupp, T. Orca: Compo-
nents for robotics. In 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS’06), De-
cember 2006.

[8] Jackson, J. Microsoft robotics studio: A technical intro-
duction. Robotics Automation Magazine, IEEE, 14(4):82
—87, December 2007.

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., & In-
grand, F. Genom3: Building middleware-independent
robotic components. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 4627 —
4632, May 2010.

Fong, T., Allan, M., Bouyssounouse, X., et al. Robotic site
survey at haughton crater. In International Symposium on
Artificial Intelligence, Robotics, and Automation in Space
(iSAIRAS), 2008.

Deans, M. C., Fong, T., Allan, M., et al. Robotic scouting
for human exploration. In AIAA Space 2009, Pasadena,
California, September 2009.

Fong, T. W., Bualat, M., Deans, M., et al. Robotic follow-
up for human exploration. In Space 2010, pages AIAA—
2010-8605. AIAA, September 2010.

Object Management Group. OMG IDL. http://
www.omg.org/gettingstarted/omg_idl.htm,
2012.

Object Management Group. CORBA/IIOP specification.
Technical report, OMG, Framingham, MA, April 2004.

Object Management Group. Data distribution service
(DDS). http://www.omg.org/spec/DDS, 2012.

ACE/TAO. ACE, TAO, and CIAO sucess sto-
ries. http://www.cs.wustl.edu/~schmidt/
TAO-users.html, 2012.

Utz, H., Sablatnog, S., Enderle, S., & Kraetzschmar, G. K.
Miro — middleware for mobile robot applications. IEEE
Transactions on Robotics and Automation, Special Is-
sue on Object-Oriented Distributed Control Architectures,
18(4):493-497, August 2002.

RTL RTIDDS. http://www.rti.com/products/
dds/, 2012.

Schmidt, D. C. & Vinoski, S. Object interconnections:
The CORBA component model: Part 1, evolving towards
component middleware. C/C++ Users Journal, February
2004.

Torres, R., Allan, M., Hirsh, R., & Wallick, M. RAPID:
Collaboration results from three NASA centers in com-
manding/monitoring lunar assets. In Aerospace confer-
ence, 2009 IEEE, pages 1 —11, march 2009.

Pedersen, L., Utz, H., Allan, M., et al. Tele-operated lunar
rover navigation using LIDAR. In International Sympo-
sium on Artificial Intelligence, Robotics, and Automation
in Space (iSAIRAS), 2012.

Nesnas, 1., Wright, A., Bajracharya, M., et al. CLARAty:
An architecture for reusable robotic software. In Proceed-
ings SPIE Aerosense Conference, Orlando, Florida, April
2003.

Schmidt, D. C. & Vinoski, S. Programming asynchronous
method invocations with CORBA messaging. C++ Re-
port, 11(2), February 1999.

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann,
F. Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. Wiley & Sons, 2000.
Hirsh, R. L., Simon, C. L., Tyree, K. S., et al. Astronaut

Interface Device (AID). In Proceedings of AIAA Space
2008, San Diego, CA, September 2008. AIAA.

