Visual Analysis of Air Traffic Data

Abstract

In this paper, we present visual analysis tools to help
study the impact of policy changes on air traffic con-
gestion. The tools support visualization of time-varying
air traffic demsity over an area of interest using dif-
ferent time granularity. We use this visual analysis
platform to investigate how changing the aircraft sepa-
ration volume can reduce congestion while maintaining
key safety requirements. The same platform can also
be used as a decision aid for processing requests for un-
manned aerial vehicle operations.

1. Introduction

Aviation and air travel has established itself as a
key economic and social resource in modern times. As
the world population increases and becomes ever more
interconnected, the demand for air travel will only in-
crease. On average there are over 87,000 flights [2]
within the national airspace system (NAS) every day.
Of these flights, approximately 28,500 are commercial,
27,000 are private, 24,000 are air taxis, and 2000 are
freight [2], moving some 1.7 million passengers and 54
million pounds of freight [15]. The number of passen-
gers flying within the U.S. is predicted to grow an aver-
age of 4.5% annually [14], and the amount of freight air-
craft expected to grow some 2% anually [14], while gen-
eral aviation is expected to grow 1% annually [14]. In
addition, there is increasing interest, from both govern-
ment and commercial sectors, in integrating unmanned
aerial vehicles (UAV’s) into the NAS. Though full UAV
integration poses its own unique set of complications,
nevertheless it is only a matter of time before they con-
tribute to the air traffic within the NAS. This constant
increase in air traffic within the increasingly congested
NAS will require new standards and procedures to ef-
ficiently accommodate new traffic.

To address these issues, the US Congress approved
plans for the development of the Next Generation Air
Transportation System (NextGen) [8], which is set to
be implemented between 2012 and 2025. The NextGen

system will provide the infrastructure to allow aircraft
to safely fly closer together, thereby making more effi-
cient use of limited airspace. It will also allow aircraft
to use more direct routes instead of being constrained
to predetermined air routes, thereby reducing conges-
tion and fuel costs.

With pieces of the NextGen infrastructure coming
into place there is an opportunity to further their ben-
efits by developing software tools that provide added
value. This paper focuses on such a software — a visual
analysis tool that allows policy makers to see the effects
of changing the aircraft separation volume on conges-
tion. The same tool can also be used as a decision aid
for processing requests for unmanned aerial vehicle op-
erations. Specifically, this paper will discuss methods
and tools used to calculate and render air traffic densi-
ties over areas of interest, as well as methods for aggre-
gating such traffic densities over different time scales to
extract fluctuations and periodic cycles in traffic pat-
terns. We then demonstrate these tools by examining
the effects of possible modifications to the current en-
route aircraft separation requirements. These modifi-
cations, which are based on the characteristics of large
fixed wing aircraft, have the potential of increasing the
amount of available air space, allowing for future in-
creases in overall air traffic numbers. In addition, we
show how these tools can be used to provide a quick
visual inspection of a potential UAV operation during
different times of the day. The studies conducted in
this paper are based on a data set provided by NASA’s
Aviation Systems Division. Our investigation shows
that our tools can be used to aid evaluation processes
to determine, and increase, potentially underutilized
airspace.

2. Previous Work

The main thrust of this paper is on visual analysis
of air traffic data. Hence, this section focuses on work
related to visualizing air traffic data. One of the most
popular technique for visualizing air traffic data is to
represent the trajectory of each aircraft as an animated
particle. Many such visualizations are available on



the web via sites such as youtube. A version that was
designed by Aaron Koblin [11], and accessible through
http://www.youtube.com/watch?v=H2qTwvaQ_F4,
demonstrates several techniques and embellishments
for presenting the flight trajectories. More recently,
the discrete nature of the flight tracks were smoothed
out to obtain a continuous estimate of air traffic den-
sity using a view dependent kernel density estimator
[12]. Representing air traffic data as a density plot
is not new. Kellner [10] also used density plots of
the arrival and departure rates of aircraft at different
airports to assess their capacity. This paper will use
similar techniques in visualizing the air traffic data.
More importantly, our work examines the impact of
varying minimum aircraft separation policy on air
traffic density, and also examines if a flight plan, e.g.
of a UAV operation request, will endanger existing
flight patterns.

There are many factors affecting air traffic conges-
tion and airport capacity. One of those that is control-
lable and fall under policy decisions is the specification
of minimum separation between aircraft. Currently,
this is set to 5 nautical miles horizontally, and 1,000
feet vertically [5] when the aircraft is en-route. This
limit is adjusted as the aircraft approaches an airport
and can drop to 3 miles horizontally on landing ap-
proaches to airports. The relative weight class of the
leading and following aircraft are also taken into con-
sideration in such situations in order to reduce risks due
to wake turbulence [4]. The en-route limit accounts
for aircraft speed (typical passenger jets fly at aver-
age speed of 500 miles per hour or just over 8 miles
per minutes), weather impact on visibility, and wake
turbulence from leading aircraft, among other factors.
With the touted capabilities of ADS-B, the NextGen
enabled weather system, and integrated information
system, one can theoretically safely reduce the mini-
mum separation requirements between aircraft. This
paper provides visual analysis tools to examine the ef-
fects of different shapes and parameters describing the
minimum separation volume between aircraft.

With regards to UAV operation, they are more gen-
erally referred to as Unmanned Aircraft Systems (UAS)
[3, 9]. Over the past few years, interest in UAS has
rapidly increased. This is because of the possibilities
they offer to both government and commercial inter-
ests. They would enable a broad range of satellite-like
abilities, but at a much lower cost. Aerial photogra-
phy, communications, environmental monitoring, and
security are some of the abilities that UAS deployment
could make possible on a large scale. Currently, UAS
are predominantly used by the Department of Defense
and the Department of Homeland Security, and often

outside of the NAS. A handful of UAS are allowed to
operate inside our NAS, though almost exclusively for
national security or research purposes. However, each
UAS operation must be pre-approved by the FAA on
a case by case basis. This process is very tedious and
does not scale well to large numbers of flights. There
are a few studies on risk managment of operating UAS.
A recent study uses a site-specific non-uniform proba-
bilistic background air traffic to study the risks [13].
Using the visual analysis tools presented in this paper,
checking whether the flight plan for a UAS will allow for
a safe operation within the NAS can be accomplished
expeditiously.

3. Air Traffic Density Volumes

Air traffic data usually consists of a collection of
flight trajectories of different aircraft. Each flight tra-
jectory usually contains information about the type of
aircraft, origin and destination airports, followed by a
series of entries that records the time, location, and al-
titude of the aircraft. Other information such as date,
heading, velocity, etc. are generally recorded as well,
but were not available in the data set used in our study.
The data set used to test and demonstrate our visual
analysis tool has an area of interest that is located in
the north eastern part of North Dakota, specifically
the greater Devils Lake and Grand Forks areas. It in-
cludes all flight path information from flights that took
place over an area of approximately 190 by 165 miles,
between the altitudes of 0 and 60,000 feet, from the
begining of July 2008 to the end of June 2009. There
are 349,992 unique flight path records in this particular
data set. This data set is comprised of uniquely iden-
tified flight paths, each containing latitude, longitude,
and altitude information at 10 second intervals for the
duration of the flight within the area of interest. The
time of day and month in which the flights took place
are specified. However, the specific date the flight took
place is not included.

An intuitive way to visualize flight paths is by rep-
resenting each aircraft as a particle and animating the
trajectory of each aircraft. This results in animations
such as those found in [11]. An alternative way using
only a single static visualization is to trace and overlay
individual flight trajectories. Figure 1 shows an exam-
ple of such a visualization. Note that because there are
so many flight trajectories in this data set, displaying
each path at full intensity will produce an extremely
cluttered display. Instead, each path is rendered at
only 10% opacity. It is only then that clusters of simi-
lar flight paths can be observed. These clusters can in
turn be associated with local and regional airports and



Figure 1. Close to 350,000 flight tracks dur-
ing the span of 1 year are overlayed into a
single image. The tracks are colored depend-
ing on which month the flight occurred. Blue
is for the last month in the data set. Individ-
ual tracks are rendered with 10% opacity so
that some structure can be discerned from
the data e.g. the takeoff and landing patterns
around Grand Forks Intl. on the right.The
data set covers an area of approximately 190
miles by 165 miles in the north eastern por-
tion of North Dakota. This figure represents
altitudes between 0 and 60,000 feet, with a
vertical exaggeration of 10.

show the prevailing takeoff and landing patterns.

In this paper, we are interested in analyzing air traf-
fic congestion as a result of policy changes to the sep-
aration minima criterion, as well as potential conflicts
of UAS operations within the NAS. The flight trajec-
tory data set in its current form is not directly suitable
for such analysis. Instead, with this data we need to
create a conflict probability volume that characterizes
the probability that an aircraft can be found in any
location in space (and time) and would therefore be
in conflict with another aircraft (or UAS). In order to
create such a volume, we essentially need to convert
the discrete flight tracks into a continuous volumetric
data. The first issue in creating such a volume is to
determine an appropriate discretization of the volume
of space of interest. Another issue is how the discrete
flight tracks are used to produce a smooth continuous
volume.

There were two main factors that we considered in
order to determine the spatial discretization. The first
factor is the FAA’s minimum aircraft separation crite-
rion. This is the required minimum seperation between
two in-flight aircraft, and is referred to as the conflict

boundary, or more generally the separation minima.
For en-route flights, this is specified to be 5 nautical
miles (nmi) horizontally (30,380 feet), and 1,000 feet
vertically for each aircraft. Within the terminal area,
this is lowered to 3 nautical miles. This criterion would
have discretized our volume of interest (190 mi x 165
mi x 60,000 feet) into a 38 x 32 x 60 grid. That is,
each aircraft takes up one voxel. The second factor is
determining a good resolution to represent the approxi-
mate distance traveled by an aircraft in 10 seconds, the
time resolution of the data. Given the presence of both
commercial aircraft and many relatively slower general
aviation and training aircraft used by the University
of North Dakota Aerospace aviation school, there is no
single all purpose resolution. Speeds can vary between
200 mph (2,900 feet per 10 seconds) for the slower per-
sonal and training aircraft, to 600 mph (8,800 feet per
10 seconds) for the faster passenger airliners. The ver-
tical separation criterion is also greatly influenced by
the relative weight class of the leading and following
aircraft. Taking these factors into consideration, we de-
cided to have each voxel represent a much smaller vol-
ume of 5,000 feet by 5,000 feet by 500 feet of airspace.
Our volume of interest is thus discretized using a 208
x 174 x 121 grid. It should be noted that the volume
of interest covers a much larger lateral area compared
to its vertical extent. Thus in all our visualizations,
there is a vertical exaggeration by a factor of ten. This
exaggeration allows for easily discernible variations in
altitude when viewing the volume from lower angles.

The next step in calculating the conflict probability
volume is to efficiently record the flight path informa-
tion onto the grid. This process is discussed in the
next section. Here, we discuss an alternative that also
provides information about air traffic density, as well
as explain some visualizations methods which will be
used to show the conflict probability. Basically, we
want to create a density volume that records the num-
ber of aircraft found at each grid point over the dura-
tion of interest (e.g. every 10 second interval, hourly,
monthly, or over the entire year). For this purpose,
there are a number of options ranging from a simple
nearest-grid-point (NGP) interpolation, where the lo-
cation of an aircraft at each 10 second interval is as-
sociated with the grid point closest to it, to more so-
phisticated kernel based techniques. In this paper, we
use the cloud-in-cell (CIC) interpolation [7]. Similar
to NGP, the CIC method first determines the voxel
that contains the flight data point. However, unlike
NGP, CIC distributes the contribution of the flight
data point amongst the 8 grid points of the voxel (in-
stead of the single closest grid point). The contribu-
tions are weighted according to proximity of the data



point to each grid point. The weighting function con-
tains the product of three terms, each of which are
linear in a dimension, with the total weighting normal-
ized to unity. If a data point is respectively 25%, 40%,
and 70% of the way across the cell from the lower front
left corner in the three dimensions, we attribute 0.75 x
0.6 x 0.3 of the particle’s mass to that corner [6]. This
produces a smoother density volume, that does not in-
cur the cost of more expensive methods such as kernel
density estimates [17].

Figure 2. Direct volume rendering of the data
set shown in Figure 1 that has been con-
verted into a 208 x 174 x 121 grid using cloud-
in-cell smoothing. The volume represents
the average aircraft density over the course
of a day based on an entire year’s worth of
data. Opacity is mapped to density so more
opaque bluish regions represent places with
higher aircraft density. A nonlinear opacity
map is used in order to see the air traffic cor-
ridors. A top down view of the region of in-
terest is used in this figure.

Once processed, the air traffic density volume (and
later on, the conflict probability volume) needs to be
visualized. To do this, we used ParaView [1] and the
open source visualization toolkit Vtk [16] to help with
our analysis. Two main visualization techniques were
used. The first is direct volume rendering (for example,
see Figure 2). While this technique does make relative
high and low traffic areas discernible, it has a disad-
vantage. The internal 3D structures of the volume,
particularly at busy regions such as near airports, are
very difficult to discern without the aid of additional
tools such as cutting planes. This can be alleviated

Figure 3. Similar to Figure 2 except with iso-
surfaces instead of direct volume rendering.
The isosurfaces colored blue, green, and red,
represent densities of 25, 125, and 625 air-
craft per voxel, respectively. Also visible are
two proposed UAS tracks, shown in bright
red. Both UAS tracks are below 10,000 feet
so only the flight tracks between 0 and 15,000
feet elevation are depicted.

to some extent by adjusting the transfer function used
in the rendering. However, because the distribution of
air traffic density is very skewed (towards very low air-
craft counts, unless right over the airport), histogram
equalization is needed to distinguish slight variations in
aircraft densities. An alternative is to use isosurfaces.
An isosurface is a three dimensional countour surface
formed over the points of a certain threshold value. We
specify different threshold values corresponding to dif-
ferent density of interest. The different isosurfaces cor-
responding to these different thresholds are then ren-
dered as surfaces with different colors and opacity (see
Figure 3).

As can be seen in Figure 2 the main thoroughfares
are clearly visible as blue lines across the map. Areas
with denser air traffic are also visible as blue shaded
areas. However, it is hard to see distinct variations be-
tween low and high traffic areas other than as subtle
variation of opacity in the shades of blue. This issue
can be effectively handled with the application of iso-
surfaces. Once isosurfaces are applied, the resulting
renderings are much more informative. Figure 3 shows
a rendering with three distinct isosurfaces. High and
low traffic areas have become easily discernible, while
still showing the main thoroughfares.



The aircraft density volumes previously described
and depicted in Figures 2 and 3 provide a sense of
the air traffic over the region of interest. While the
grid discretization took into account the FAA’s separa-
tion minima, it was primarily driven by average aircraft
speeds. In addition, and much more importantly, while
the density volumes account for the location of the air-
craft itself, they do not take into account the sepera-
tion boundary surrounding an aircraft. As previously
stated, this seperation boundary is 5 nmi (30,380 feet)
horizontally. This is much larger than the horizontal
length of a single voxel (5,000 feet). Because of this
the location of an aircraft should have a much larger
area of influence than just the voxel within which it is
contained. In the next section, we describe an alter-
nate formulation that explicitly factors in the separa-
tion minima surrounding each aircraft.

4. Modifying the Separation Minima

We first describe the conflict probability as used by
Lee and Meyn [13]. The separation minima essentially
describes a boundary in the shape of a circular cylin-
der that is centered around an aircraft. The conflict
probability refers to the probability that another air-
craft can be found within this circular cylinder. Un-
certainty arises from the sensors used in determining
aircraft positions. Horizontal uncertainty is considered
to be independent of the vertical uncertainty since the
horizontal coordinates come from radar data, while the
vertical altitudes come from transponder data. The
radar data came from the Advanced Synthetic Aper-
ture Radar with a conservative uncertainty estimate of
0.125 nmi, while the transponder altitude uncertainty
is at most 100 feet. The contribution of each aircraft 4
to the conflict probability at position (z,y,z) is mod-
eled as p;i(z,y, 2) = pn, (z, )Py, (2). Where the horizon-
tal probability pjp, is modeled as a 2D Gaussian with
standard deviation o, and the vertical probability p,,
is modeled as a 1D Gaussian with standard deviation
Op-

2
20},

The total conflict probability at a point is simply
the sum of the contributions from each aircraft for the
relevant time frame. To calculate the conflict proba-
bility volume, we calculate the conflict probability for

each grid point normalized by the number of days (365
in this case).

This volume has some similarities and differences
when compared to the air traffic density volume ob-
tained using CIC. They are similar in that both pro-
duce a smooth volume based on the air traffic data
and provides information about local traffic density or
probability. They are different in that CIC uses a linear
dropoff function of contribution within the voxel that
contains the aircraft, while the latter uses a Gaussian
dropoff function spread out over several voxels, up to 5
nmi from the aircraft position. Also, the CIC volume
provides average number of aircraft, while the conflict
probability volume provides a probability of finding an-
other aircraft.

Next we will investigate the effects that changes to
the seperation minima have on the airspace, and how
our visualization can be used to show these effects.
In particular, we examine the case when the shape of
the conflict boundary volume is changed from a circu-
lar cylinder to an elliptical cylinder. The motivation
is that aircraft, particularly large passenger or com-
mercial planes, tend to maintain their current heading
when en-route and make much smaller changes to their
bearing. Thus, we can keep the 5 nmi separation along
the plane’s heading, and align this with the major axis
of an ellipse. The minor axis is then aligned orthogo-
nal to major axis, and can have a smaller separation
minimum. The plane is still conservatively assumed
to be centered in the ellipse to account for potential
danger due to wake turbulence. The vertical compo-
nents remain unchanged. The formulation for the con-
tribution of individual aircraft to the conflict proba-
bility volume is modified to be the product of 3 one
dimensional Gaussian distributions. These represent
the Gaussian distributions along the major axes, the
minor axis, and the vertical axis of each aircraft. The
uncertainty in the horizontal location pj, is separated
into two one dimensional components: pys, and py,, to
represent the uncertainty in positions along the major
and minor axes respectively. The uncertainty in the
vertical location is the same as the previous formula-
tion for p,,.

We experimented with various values of separation
minimum for the minor axis and studied their impact
on the reduction of conflict probability (which is pro-
portional to air traffic congestion) for different safety
margins. Table 1 shows the effects of varying the mi-
nor axis from the original 5 nmi down to 1 nmi. The
column headings indicate different thresholds on the
conflict probability volume. Entries in the table indi-
cate the percentage of grid points that are at or below
the safety margin. Not surprisingly, as we reduce the



. Conflict | | 4005 | 0.01 | 005
Minor
5 nmi 14% | 4.36% | 1.68% | 0.34%
4 nmi 12% | 3.45% | 1.33% | 0.27%
3 nmi 9% | 2.51% | 0.98% | 0.19%
2.5 nmi 8% | 2.04% | 0.81% | 0.14%
2 nmi 7% | 1.58% | 0.64% | 0.09%
1 nmi 3% | 0.72% | 0.29% | 0.02%

Table 1. Effects of changing the separation
minimum along the minor axis (orthogonal to
aircraft heading) on the percentage of con-
flict probability volume using different safety
margins. For example, 1.33% of the volume
of airspace in the study region has a conflict
probability of .01 or less if the minimum sep-
aration along the minor axis is set to 4 nmi.

separation minimum along the minor axis, we expect
to see a reduction in the conflict probability. These ef-
fects are better seen in Figure 4 which shows the mostly
linear relationship between separation minimum of the
minor axis and the reduction in the conflict probability
(expressed as a ratio of the conflict probability using
a different minor axis against the conflict probability
where the minor axis is 5 nmi). These results are bol-
stered by the visualizations showing how the conflict
probability volume appears for two different separation
minimum of the minor axis, illustrated in Figure 5.

5. Analysis of UAS Tracks

The conflict probability volume constructed based
on the separation minima can also be used in the anal-
ysis of UAS trajectories. Current UAS operations are
granted approval based on the impact on their safe
operation within the NAS. This can be achieved by
minimizing the cumulative conflict probability along
their paths, and ensuring that the conflict probabili-
ties everywhere along their trajectories are below some
threshold.

We obtained two theoretical UAS tracks originating
from the Grand Forks Air Force Base (RDR). One track
goes towards the Tiger military operation area (MOA)
along the northern corridor while the other goes to-
wards the Devils Lake MOA along the southern corri-
dor (See Figures 6 and 7). Both tracks share a common
initial track from the RDR. These theoretical tracks are
meant to show the least conflicting routes from RDR
to the north and south MOAs. These tracks can be
seen in Figures 3 and 6. Note that unlike the aircraft
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Figure 4. The same information as in Table 1
showing the linear relationship between the
reduction of the percentage of air space vol-
ume conflict as the minor axis is reduced.
The different curves are for different thresh-
olds of the conflict probability. So, the blue
curve shows the percentage of volume that
is above the 5% conflict probability thresh-
old as a function of minor axis separation dis-
tance.

trajectory data, the UAS tracks were derived based on
the resolution of the conflict probability grid. Hence,
one can observe the jagged nature of their trajectories.

The two UAS paths do not go above 10,000 feet. To
get a less cluttered visualization, we do not show air
traffic above 15,000 feet. Once the initial trajectory
clears the local RDR terminal air space, we can observe
that the north bound UAS path is relatively clear of
any high air traffic areas. On the other hand, the south
bound UAS path not only leads to an area surrounded
by high air traffic, but this path even passes through a
rather large thoroughfare, depicted by the green isosur-
face in Figure 6. After showing this potential problem
with the southern track to the track developers, we
were given two reasons: (i) The UAS headed to the
Devil Lake MOA along the southern corridor initially
headed north in order to reduce the amount of time
spent in the high traffic region e.g. compared to if
it headed directly towards the Devil Lake MOA. The
amount of time in the high traffic region is directly pro-
portional to the conflict probability of the track. (ii)
The grid that was used to develop the tracks essentially
had horizontal information only. The vertical compo-
nent of conflict probability was modeled as a simple lin-
early decreasing function up till 6,000 feet. Using the
visual analysis tools, one can quickly examine and see



Figure 5. The first row shows the conflict probability volumes using 5 nmi for the minor axis sep-
aration, while the second row uses 2.5 nmi for the minor axis separation. The first column shows
the conflict probability volumes for 6am CMT when we see the first surge of morning traffic. The
next two columns show the conflict probability volumes for 9am and 6pm CMT respectively. These
images show the spatial context for the reduction in conflict probabilities (and the air traffic density)
as a result of reducing the separation minimum of the minor axis from 5nmi to 2.5nmi. Isosurface
colors correspond to thresholds of .5% in blue, 1% in green and 5% in red. The quantitative changes

in conflict volumes are shown in Table 1.

potential conflicts of planned UAS trajectories against
the prevailing air traffic patterns for a given area of
operation.

Since Figure 6 is based on daily averages, we sought
to answer the question whether there are particular
times during the day when it is safer relative to oth-
ers. Obviously, flying during non-peak hours e.g. be-
fore 6am or late at night would reduce potential con-
flicts. In fact, from midnight to 5am, and after 10pm,
the southbound UAS track does not intersect with the
green traffic region. However, these may not be the
times required for the UAS operations. Between 6am
and 9pm, we found that the southbound UAS track
has significantly reduced conflict probability between
10am and 5pm CMT (see Figure 7). Note that while
the southbound UAS penetrated the green zone (at or
over 125 aircraft per day) in Figure 6, it is above the
green zone (at or over 1% conflict probability) in Figure
7.

6. Conclusions and Future Work

This paper presented visual analysis tools for study-
ing air traffic data. These tools can be used to view
airspace not only in terms of aircraft density, but also
for the potential of a loss of seperation. This is because
the analysis takes into account the FAA required seper-
ation minima, not just the position of an aircraft. We
demonstrated the utility of the tools using two different
applications. First, we studied the impact of chang-
ing the separation minima for aircraft on the conflict
probability volume. This is one of the first consider-
ations if aircraft are to fly closer to each other using
the NextGen infrastructure, and can be used to study
future changes to the seperation minima. Second, we
demonstrated the use of our visual analysis tool for
UAS requests to quickly analyze a trajectory in rela-
tion to the air traffic density (and hence conflict prob-
ability) in its theater of operation. This will help to
quickly identify potential conflicts of a specific UAS
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count varying weather conditions as well as unforeseen
deviations from the normal traffic patterns on flight
day. Visual analysis such as the one described in this
paper are enabling tools that will help make the visions
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Figure 6. Zoomed in view of Figure 3. The
UAS tracks are now colored differently to in-
dicate the overlapping segment as well as the

northern and southern forks. The two tall
rectangular volumes indicate the locations of
two airports : Grand Forks Intl. and Grand
Forks AFB. The origination airport of the two
UAS tracks is the Grand Forks Air Force Base
on the left. The UAS headed along the south-
ern corridor clearly intersects the green iso-
surface, which represents at least 125 aircraft
per day on average.

of NextGen a reality.
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Figure 7. Details on the southbound UAS track for 10am, 11am and 12 noon CMT. Isosurface colors
correspond to thresholds of 0.5% in blue, 1% in green and 5% in red in conflict probabilities. Here,
we can see that the southbound UAS track has conflict probability of less than 1% at 10am and 11am,

and less than 0.5



