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I. Introduction 

ed by NASA Marshall Space Flight Center, a team from government, industry, and academia has developed a 

flight demonstration mission concept of an integrated tethered satellite system called PROPEL: ―Propulsion 

using Electrodynamics‖.  PROPEL will demonstrate the operation of an electrodynamic tether (EDT) propulsion 

system in low Earth orbit (LEO).  The PROPEL mission has two primary objectives: (1) to demonstrate the 

capability of EDT technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, 

plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and (2) to 

fully characterize and validate the performance of an integrated EDT propulsion system, significantly advancing its 

TRL and qualifying it for infusion into future 

multiple satellite platforms and missions with 

minimum modification. 

The exponential increase of launch system 

size—and cost—with delta-V makes missions 

that require large total impulses cost prohibitive.  

The PROPEL mission will demonstrate a 

fundamentally different method for generating 

thrust (using an EDT) to overcome the limitations 

of the rocket equation and perform new classes of 

missions currently unaffordable or infeasible.  

EDTs compare favorably to other electric 

propulsion schemes in that they provide both 

high-thrust-to-power and extremely high specific 

impulse (Isp) performance, exceeding the 

fundamental limits of propellant-based electric 

propulsion (see Figure 1).  This will allow 

missions to be performed that require very large 

delta-V’s using much smaller, affordable 

systems. 

EDT propulsion generates Lorentz force 

thrust through the interaction between a current 

driven along a conducting tether and a planetary 

magnetic field, using the planet itself as reaction 

mass, rather than an expelled propellant.  The 

basic physics of EDTs has been successfully 

validated by prior flight experiments, but these experiments did not demonstrate orbital maneuvering.  PROPEL will 

fly two instrumented satellites connected by a moderate length tether to demonstrate EDT orbital maneuvering.  

Hence, PROPEL will operationally validate a relevant EDT propulsion system, significantly advancing its TRL to 8, 

preparing it for direct infusion into future NASA, other government, and even commercial missions to provide 

game-changing and cross-cutting capabilities to undertake new, more ambitious missions such as persistent 

operations in very low Earth orbit (LEO) for ionospheric science and Earth observation, orbital debris removal, 

orbital maneuvering, drag make-up, and even orbit capture and power generation for future missions at Jupiter and 

the gas giants.  

In this paper, we provide background information on EDT propulsion (Section II), followed by an overview of 

the PROPEL spacecraft and a design reference mission (Section III).  We then discuss PROPEL’s mission goals 

driving important questions that should be addressed and required measurements (Section IV).  Ongoing PROPEL 

mission design efforts are overviewed (Section V), followed by some concluding remarks (Section (VI).  An 

Appendix provides selected historical information on other tether missions.
‡‡‡

 

II. Electrodynamic Tether Propulsion 

As illustrated in Figure 2, EDT propulsion generates Lorentz force thrust through the interaction between a 

current driven along a conducting tether and a planetary magnetic field, using the planet itself as reaction mass 

rather than the expelled propellant.  In general, EDTs apply three key principles that govern their operation:
3
 1) the 

conductor has an intrinsic electromotive force (emf) generated along it due to the orbital motion of the tether across 

                                                 
‡‡‡

 Portions of this paper are from Ref. 1. 

L 

 

Figure 1. Comparison of electric propulsion technologies. 

EDTs provide both high-thrust-to-power and extremely 

high specific impulse performance, exceeding the 

fundamental limits of propellant-based electric propulsion. 



 

 

American Institute of Aeronautics and Astronautics 

 

 

3 

the magnetic field, 2) the conductor provides a low-resistance path connecting different regions of the ionosphere, 

and 3) access to external electron and ion currents is confined to specific locations, such as the endpoint when the 

conductor is insulated, or collected along a length of bare tether.
4
 

Current flows through the tether when a connection is made between the tether’s endpoints and the surrounding 

ionospheric plasma, which can be accomplished via passive or active means.  In the passive case, the voltages and 

currents in the overall system distribute themselves in a self-

consistent manner, which can require the endpoints to charge to 

high levels in order to attract enough current.  Active means 

generally employ an electron generator of some type, such as a 

hollow cathode plasma contactor (HCPC) or an electron gun.  

Future tether systems may employ field emitter array cathodes 

(FEACs),
5
 but much work remains before FEACs are 

practicable for EDT systems.  With either connection method, 

current flows through the tether as shown in Figure 1.  In the 

EDT boost propulsion case, current flows down the tether 

because a high voltage source has overcome the motion-induced 

v × B electric field in the tether.  After electrons are collected at 

the lower satellite (typical for a west-to-east Earth launch), they 

are conducted through the tether to the upper satellite where they 

are ejected.  Current closure occurs in the ionosphere, thus 

making the overall circuit complete.  The resulting J × B force is 

in a direction such as to pull the tether.  Thrust levels depend 

directly on magnitude of the current flow and tether length—and 

are typically less than 1 N. 

The drag, or de-boost, case does not require the high voltage 

source (though it can be used to achieve enhanced current 

levels) and, as such, is often referred to as the generator mode, 

in which energy to drive the current is extracted from the 

spacecraft orbit.  In this case the current flows up the tether, 

resulting in a J × B drag force.  This configuration also allows 

for energy-harvesting, in which the tether current may be driven 

through other electrical loads (e.g., resistors, flywheels, 

batteries).
6
  It is important to note that this configuration can be 

used to de-orbit spacecraft at end of life, as has been proposed.
7,8

 

For more details and additional theory behind EDTs and EDT propulsion systems, refer to Refs. 1–4. 

III. PROPEL General System and Mission Description 

PROPEL was designed with multiple users in mind and to be flexible with respect to platform.  To this end, the 

design team defined a set of mission objectives, detailed in Table I, to establish EDT propulsion ready for 

operational use.  

 

1. General PROPEL System Overview 

Figure 3 illustrates the general PROPEL system architecture.  In this case, the PROPEL space vehicle consists of 

the Host Side (HS) spacecraft and Endmass (EM) spacecraft separated by a 3-km tether with the HS at the lower 

altitude.  The EDT propulsion hardware consists of a 3-km conducting, multi-string tether with a tether deployer on 

the EM.  The reel-type deployer has deployment and retrieval operational flight heritage with the two Tethered 

Satellite System (TSS) missions.  HCPCs on both the host and EM are used for electrical contact with the 

ionosphere.  

 
Figure 2. The essential physics of EDT 

propulsion. An EDT system generates thrust 

using interaction between current driven 

along a tether and the magnetic field of the 

planet it orbits, enabling propulsion without 

expelling propellant (from Ref. 2). 
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PROPEL tether deployment will be monitored by on-board cameras, accelerometers, and tensiometers.  The 

tether and deployment system also includes cutters and retractors on each side to enhance system safety in the event 

of a severed tether.  The tether diagnostic hardware will provide 

tether dynamics, electrodynamic performance, and ambient 

ionospheric and PROPEL-induced plasma environments 

measurements.  Measurement correlations will establish a 

theoretical basis for extrapolating performance to a broad range 

of space conditions and applications.  The Langmuir probe 

provides reliable electron data at the boom tip.  The 

hemispherical RPA offers a wide angle integrated ion flux 

measurement.  To determine ion energy and density requires 

angle-of-incidence information provided by the Deflection Plate 

Analyzer (DPA). 

 

2. PROPEL’s Design Reference Mission 

PROPEL’s Design Reference Mission (DRM) operational 

profile (Figure 4) is designed to demonstrate the necessary EDT 

operational readiness objectives during a six-month mission life.  

PROPEL’s multi-step demonstration approach provides 

operational capability data in a characterized plasma environment 

to validate operational EDT propulsive systems. 

DRM Phases 1–3: PROPEL launches into a 500-km circular 

orbit.  This altitude provides very good environmental plasma 

conditions for the demonstration (e.g., 

ionospheric plasma electrical 

conductivity).  A 500-km insertion also 

allows for a complete system checkout 

and tether deployment at an altitude 

above the International Space Station 

(ISS) orbit, and provides for a slow 

passive decay in case of an operational 

anomaly.  Tether deployment will be 

initiated after solar array deployment, 

HS and EM checkout, instrument boom 

deployment, and HS–EM separation.  

DRM Phases 4–13: PROPEL will 

demonstrate full EDT propulsive 

capabilities by raising the orbit from 500 

km to 650 km after tether deployment 

and initial characterization.  Diagnostic 

instruments are mounted on each end-

body and allow the propulsive 

performance to be correlated with the 

surrounding space plasma environment.  

Following validation, the existing 

analytic performance models will be 

used to predict EDT performance to support mission operations.  Subsequent mission phases include deboost/power 

generation, inclination change, precision orbital maneuvering, drag make-up, and deorbit. 

 

 

 
Figure 3.  PROPEL consists of two 

spacecraft connected by a 3-km conducting 

tether. 

Table I. PROPEL will demonstrate capabilities that will enable 

new missions. 

PROPEL Objective Capability Enabled 

System-level 

demonstration of EDT 

propulsion delivering high 

thrust-to-power and large 

total impulse for LEO 

maneuvering and station 

keeping 

 Low-mass systems to produce large ΔV, 

reducing launch vehicle size and total life-

cycle costs for many future missions 

 Highly efficient orbital maneuvering and 

plane change of LEO spacecraft 

 Long-duration, low-LEO drag makeup of 

large space systems 

Accurately predict, verify, 

and control EDT orbital 

maneuvering, and validate 

simulation and modeling 

tools 

 Multiple precise orbital maneuvers and 

rendezvous with small, affordable systems 

 Long duration precision station keeping 

 Predictive control ensures flight safety 

Demonstrate orbital 

energy harvesting 

 High burst power with lower mass and 

cost 

 Power generation at the outer planets 

without RTGs 

Validate survival and 

operation of a conducting 

tether for an extended 

period 

 Tether performance data over a long 

mission duration will enable extrapolation 

to extended periods 
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IV. Important EDT Questions to Advance Technology 

While fundamental aspects of EDT performance have been demonstrated during previous EDT missions as 

shown in Table A, there are important questions that deserve greater investigation for certain applications.  

Specifically, PROPEL is intended to advance the technology readiness level (TRL) for a propulsion system that can 

support a broad range of capabilities, e.g. boost, deboost, inclination change, drag make-up, and energy harvesting.  

This flexibility in contrast to an EDT system with more focused goals, e.g., only deorbit or drag make-up.  Flexible 

orbital operations requires a system architecture with an appropriate level of symmetry to enable current flow in 

both directions (i.e., boost and deboost).  For a bi-directional current configuration and to achieve the mission goals 

for PROPEL as outlined in Section III, we have identified several key questions pertaining to tether electrodynamics 

to be addressed during the PROPEL mission as discussed below.
1
  We note there are also equally important tether 

dynamics questions, not discussed here, that must be considered to fully advance the TRL level of an EDT system.  

A. Electrodynamics 

1. Measuring hollow-cathode plasma contactor performance 

To enable bi-directional tether current flow, the PROPEL mission will use hollow-cathode plasma contactor 

(HCPC) devices placed at each end of the tether with one emitting electron current and the other collecting electron 

current.  We thus need to adequately understand HCPC performance in the ionosphere and ask: What is the 

predictable performance of a HCPC to collect current from and emit current to the surrounding ionosphere 

 
Figure 4.  PROPEL’s 6-month operational life will demonstrate all aspects of EDT propulsion and power 

generation capabilities in LEO.  Description of mission events: (1) Rideshare launch to 500-km circular 

orbit; (2) Host and End Mass checkout prior to separation and tether deployment; (3) Controlled tether 

release and deployment; (4) Diagnostics on EDT tether and plasma environment, SV attitude control; (5) 

Orbit raising; (6&7) Orbit lowering; (8) Orbital Maneuvering Tests; (9) Alternate collector/emitter demos; 

(10) Inclination change demonstration; (11) Autonomous trajectory profiling and rendezvous; (12) Orbit 

maintenance in high drag environment; and (13) Final de-orbit. 
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in terms of tether current, HCPC parameters, and ionospheric conditions?  The motivation for establishing a 

clear answer to this question results from our present understanding of HCPC operation in the ionosphere. 

Over at least the last 25 years, there have been numerous studies and ground chamber tests of HCPCs for high 

current performance in both electron collection and emission modes.
9,10

  What is missing is definitive, in-space, 

high-current HCPC experiments to clarify actual performance in connecting current flow between the EDT system 

and the ionosphere.  We focus on the electron collection process as it is generally believed to represent the largest 

effective impedance (as compared to electron emission).  We cite two theoretical models to highlight the 

uncertainty.
11

  These models are thought to represent upper and lower bounds of electron-collection performance.  

The first was developed by Katz et al.
12

 and the second was proposed by Gerver et al.
13

  Because of differences 

between the two models, the Gerver et al. model tends to predict higher collected electron current for a given 

emitted ion current level, HCPC bias voltage, and ionospheric condition.   

 

2. Performance as a function of increasing tether current 

The TSS-1R mission demonstrated an ability to draw currents that reached just over 1 A in a system where the 

tether may have been the dominant impedance element in the overall tether circuit.
14

  However, for propulsion 

applications, the tether impedance will be much lower and tether currents of several amps or more will be required.  

We thus ask: How does EDT system performance change with increasing current (above 1 A) and how can the 

system be optimized for high current operation?  

For low power applications (such as the PMG mission), the tether end bodies operate in the thermal current 

regime.  Prior to the TSS missions, this regime was thought to be adequately described by the Parker–Murphy (PM) 

model.
15

  However, TSS measurements found PM current collections predictions to be too low by a factor of 2–3.  

An ad hoc modification to the PM model agrees with the TSS data but, since the exact physical mechanism is still 

unknown, the ad hoc correction may not hold under more general, and higher current, conditions. 

When current is pushed above the level that can be provided by thermal currents at the plume double-layer 

boundary, tether endbody potential relative to the ambient ionosphere must increase more rapidly (increasing 

impedance).  It is possible in this situation for additional plasma to also be generated by ionization of (un-ionized) 

gas from the HCPC, spacecraft out-gassing or sputter products, or ambient neutrals (in LEO, neutrals are ~1000× 

denser than electrons).  It is critical to determine the amount and source of any anomalous ionization.  No EDT 

system has ever operated in this regime.  PROPEL will operate in both the lower power regime described above as 

well as this higher power regime.  Correspondingly, if EDTs are to be used for more ambitious missions in which 

higher thrust and power are required (e.g., ISS reboost or a MXER facility
16

), then it is essential that this regime be 

explored. 

B. EDT Operations 

It is not unreasonable to compare EDT maneuvering (e.g., boost, deboost, inclination change, drag make-up) to 

sailing a boat.  For a sailboat, one can only go where and how the wind allows!  Similarly, for an EDT system, it 

only can be maneuvered where and how the planetary magnetic field, ionosphere, and atmosphere allow.  

Predictable flight operations, i.e., getting from Point A to Point B, therefore will depend on an appropriate level of 

space weather forecasting, real-time observations, performance prediction, and integrated simulation.  A general 

maneuvering strategy likely will depend initially on larger, less precise maneuvers followed by smaller, more 

precise maneuvers.  Thus, with the PROPEL mission we will seek to answer: What level of forecasting, real-time 

observation, performance prediction, and integrated simulation are required to enable safe EDT system 

maneuvering? 

C. PROPEL Electrodynamic Measurement Goals 

The measurements required to properly address the questions pertaining to the tether electrodynamics identified 

above are overviewed below.  In terms of understanding the electrodynamic state of the system (e.g., tether current, 

HCPC plasma plume, electrodynamic force, etc.) we can divide measurements into two groups: (1) those that 

measure the internal parameters of the (hard-wire) electrical circuit (e.g., the current flow in and voltage drop across 

the tether) and (2) those that determine the external leg of the circuit (e.g., the voltage drop and current flow between 

each tether end and the surrounding ambient ionosphere).  As in any electrical circuit loop, current flow in the tether 

depends on the characteristics of the whole tether series circuit—including the distributed, external return current leg 

connecting with the ionosphere.  Here, we focus on the electrodynamic measurements addressing the external leg of 

the circuit with measurements described below. 
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1. Characterization of ambient ionosphere 

Understanding the ambient environment is essential to establishing the local plasma parameters around the tether 

ends where current collection and emission take place.  The most spatially and temporally variable parameters will 

be ionospheric plasma density (charge neutrality assumed) and electron temperature.  In general, while 

understanding the neutral atmosphere make-up and density, as well as the ambient magnetic field, is essential, this 

information can be obtained via models.  For tether lengths of several to ten or so kilometers, knowledge of ambient 

conditions at one end is adequate for understanding the environment at both ends, at least for quiet conditions.  

Concerns for strong vertical gradients, for example due to equatorial plasma bubbles, may require ambient 

measurements at both ends.   

 

2. Characterization of current flow at tether collecting/emitting ends 

In the presence of HCPC dense plasma plume emissions (which includes un-ionized gas from the HCPC), the 

environment around both tether ends is highly disturbed.  The effective impedance between the ionosphere and the 

tether endbodies is also expected to be nonlinear as a function of tether current.  Quantifying the HCPC plume, how 

it interacts with the ambient ionosphere, and identifying possible anomalous ionization effects under varying 

conditions will all be valuable information.  This disturbed (non-Maxwellian) plasma environment will be highly 

localized and will have complex flow depending on source locations, magnetic field direction, and spacecraft 

velocity direction.  Under this situation, knowledge of plasma density, electron and ion velocity distribution, 

potentials with respect to the spacecraft and ambient plasma, and neutral density composition are required for a 

complete assessment of the state and processes at both tether ends. 

To properly understand the ambient and disturbed plasma states at the tether ends a combination of surface 

mounted and boom-mounted sensors will provide the necessary measurements.  Figure 3 shows a boom placed on 

both tether spacecraft end-bodies.  The boom is intended to provide a position that provides a direct measure of the 

ambient ionosphere and also ―looks‖ both out and inward towards the spacecraft.  Combined with spacecraft 

surface-mounted sensors that look out, a more complete picture of the complex interactions at both tether ends 

should be possible. 

V. Ongoing PROPEL Mission Design Efforts 

 PROPEL was designed for versatility of the EDT system with multiple end users in mind and to be flexible with 

respect to platform.  In partnership with the NASA’s Office of Chief Technologist (OCT) Game Changing Program, 

NASA Marshall Space Flight Center (MSFC) Leadership, and the MSFC Advanced Concepts Office, an effort is 

underway to develop a mission concept design for a near-term EDT propulsion flight validation mission.  The 

Electrodynamic Tether Propulsion Study (ETPS) will define an EDT propulsion system capable of very large delta-

V for use on future missions developed by NASA, DoD, and commercial customers.  The ETPS is exploring 

applications for boost or deboost of assets in LEO such as servicing missions to the International Space Station (ISS) 

and for power generation.  To complement the NASA team, MSFC has executed a Small Business Innovative 

Research (SBIR) Phase 3 contract, led by Tethers Unlimited, Inc., to continue leveraging the tether community’s 

accomplishments and the prior experience of subject matter experts. 

 To demonstrate the feasibility of an ETPS, the study will focus on a space demonstration mission concept design 

with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV).  

The HTV would fly its standard ISS resupply mission.  When resupply mission is complete, the ISS reconfigures 

and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS.  Though the focus of 

this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion 

system’s capability is relevant to a number of applications, as noted above.  The spacecraft is designed for minimal 

impact to HTV systems and will occupy only a portion of the HTV’s payload accommodation.  (See Figure 5.)  The 

ETPS will build on prior work on long-life, failure-resistant, conducting tethers and include an instrument suite with 

demonstrated heritage capable of performing necessary diagnostics to measure performance against predictions for a 

given system size (to be determined) and boost rate.  
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 Since the HTV is substantially more massive than the free-flyer concept detailed in Section III above, the 

system’s power requirement was increased from 1 kW to 2 kW.  

This precipitated a slight increase in tether size and solar array 

power capability.  In this mission concept, upon completing its 

primary mission objectives and departing from ISS, the HTV 

proceeds to a distance designated to be outside of the ISS 

operational volume, at which point the tether system will be 

deployed below the HTV.  While tethered to the HTV, an in-

space demonstration of a fully operational ETPS will be executed 

to boost and deboost the system mass and demonstrate energy 

harvesting.  The tether spacecraft will carry out a series of 

controlled spacecraft propulsion maneuvers with critical 

performance measurements taken by onboard diagnostic 

instrumentation to verify predicted performance.  Upon 

accomplishing its mission, the ETPS will have demonstrated the 

steps necessary to advance the system level TRL to 7–8.  

 Fail-safe features are integrated into the system design.  

Tether retrieval is accomplished from the EM.  The EM is 

deployed below the HTV.  In the event of a catastrophic break in 

the tether, the EM would have downward acceleration in a high drag region where it would re-enter rapidly and burn 

up.  Momentum would be conserved, posing no risk and minimal movement for the HTV.  The HTV also has its 

own propulsion system and can drive itself to a nominal reentry, if needed.  

 Ionospheric and magnetic field operational environmental models, expertise in plasma physics, and predictive 

modeling will be used to more accurately predict system and mission performance.  The development of the 

Marshall Electrodynamic Tether Orbit Propagator (MEDTOP) is one of the primary products of this design effort.  

MEDTOP is a physics-based tool to model the EDT system performance and interactions in a space environment.  

This is a needed addition to the current suite of tools to simulate system performance.   

 The baseline concept design will include: mission and operation definition; identification and appropriate sizing 

of all components to be determined by analysis; baseline list of critical measurements to quantify performance; 

characterization of key technology risk; spacecraft bus design and system and integration requirements definition; 

and system safety impacts for manned systems.  Given the proximity to other space assets, the demonstration 

mission concept is operationally very safe for ISS.  The ISS community has provided data to determine sufficient 

altitude and clearance down and away from ISS for the ETPS demonstration.  Aided by proprietary modeling 

techniques that include TUI’s proprietary TetherSim software,
2
 end-to-end simulation of the tether system orbital 

dynamics will be used to evaluate mission requirements and demonstrate technical feasibility of the tether 

propulsion system.  The tether propulsion system study will be completed prior to the end of FY12.  Electrodynamic 

modeling on the MEDTOP tool will be complete in FY12 with updates to include the tether dynamics development 

continuing into FY13. 

VI. Summary and Conclusion 

The PROPEL mission represents a significant effort to advance the TRL of EDT technology to an operational 

level.  While the focus of this paper is principally on the ―electrodynamics‖ of the system, the PROPEL mission 

itself addresses all aspects of an operational system, including dynamics, reliability, safety, operational planning, 

and external coordination.  The PROPEL EDT system is being configured to validate operations associated with 

boost, deboost, inclination change, drag make-up, energy harvesting, and deorbit.  A general mission configuration 

is discussed in Section III and a more specific alternate mission design is described in Section V, assuming the use 

of Japan’s ISS HTV vehicle as the ―host‖ spacecraft after its ISS–specific functions are completed. 

The mission is being designed to quantify electrodynamic performance over a wide range of ambient conditions 

and thrust (tether current) levels.  This includes specialized instrumentation to explore the connection between tether 

end-body spacecraft and the ambient ionosphere 

Appendix 

Space tether technology elements have been demonstrated on orbit over the past 30 years.  In this timeframe, 

there have been over 23 major orbital/suborbital tether missions developed overall.  A list of missions with which 

 
Figure 5.  Design concept for PROPEL on 

the HTV. 
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PROPEL team members have been involved along with the mission development timeline and key results is 

presented in Table A.  These space tether missions typically can be divided into several key demonstration areas 

(electrodynamics/plasma physics, dynamics, or formation flying).   

 

Table A. Selected tether missions of relevance to PROPEL.  The PROPEL team has important connections to 

each of these missions. 

Project Title and 

Involved PROPEL Team 

Members 

Relevance to PROPEL Launch Date Tether Category and Mission Summary 

Tether Experiment 

(T-Rex)  
 Tether deployment 

 Fast HCPC ignition 
31 August 2010 

Electrodynamics/plasma physics 

+ Successful deployment of tape and fast ignition 
of hollow cathode 

Multi-Application 

Survivable Tether 

(MAST) 
 Tether dynamics 17 April 2007 

Dynamics  

+ Obtained data on tethered satellite dynamics 

– Problem with release mechanism resulted in 

minimal tether deployment 

Propulsive Small 

Expendable Deployer 

System 

(ProSEDS) 

 Hollow cathode plasma 
contactor (HCPC), deflection 

plate analyzer (DPA), and 

Langmuir probe (LP) 
instrument development 

 Measurement device and model 
development 

 EDT heritage 

 Tether development 

29 March 2003 

Electrodynamics/plasma physics  

+ Model, process, and instrument development 

– Did not launch because of changed NASA 
requirements 

Tether Physics and 

Survivability Experiment 

(TiPS) 

 Deployment 

 Long-term survivability 

12 May 1996– 

20 June 1996 
deploy 

Dynamics  

+ Successful deployment 

+ Tether survived over 10 years on orbit 

Tethered Satellite System 

Program Relight 

(TSS-1R) 

 Current collection theory 

 Tether deployment 

 Plasma potential measurement 

 EDT 

22 February– 
9 March 1996 

Electrodynamics/plasma physics 

+ Demonstrated electrodynamic efficiency 
exceeding existing theories 

+ Demonstrated ampere-level current 

– Flaw in insulation allowed high-voltage arc to 

cut tether 

– Tether not tested prior to flight 

Small Expendable 

Deployer System 2 

(SEDS-2) 

 Deployment and deboost  

 EDT 
9 March 1994 

Dynamics  

+ Demonstrated successful, controlled deployment 

of tether with minimal swing 

Plasma Motor Generator 

(PMG) 
 Hollow cathode 26 June 1993 

Electrodynamics/plasma physics 

+ Demonstrated electrodynamic boost and 
generator mode operation 

– Did not measure thrust 

Small Expendable 

Deployer System 1 

(SEDS-1) 
 Deployment and deboost  29 March1993 

Momentum exchange  

+ Demonstrated successful, stable deployment of 

tether 

+ Demonstrated controlled deorbit of payload 

First Tethered Satellite 

System Program 

(TSS-1) 

 Tether dynamics 

 Controlled  retrieval 

 EDT 

31 July– 

8 Aug1992 

Electrodynamics/plasma physics 

– Too-long bolt added without proper review 

caused jam in tether deployer 

+ Demonstrated stable dynamics of short tethered 

system 

+ Demonstrated controlled retrieval of tether 

CHARGE-2B  High-voltage operations 29 March 1992 

Electrodynamics/plasma physics 

+ Full deployment of conductive tether 

+ Demonstration of active electron emission 

+ Demonstrated hollow cathode-like neutralizer 

CHARGE-2  High-voltage operations 14 December 1985 

Electrodynamics/plasma physics 

+ Full deployment of conductive tether 

+ Demonstration of active electron emission 

+ Demonstrated hollow cathode-like neutralization 
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