
A Change Impact Analysis to Characterize
Evolving Program Behaviors

Neha Rungta
NASA Ames Research Center
Email: neha.s.rungta@nasa.gov

Suzette Person
NASA Langley Research Center
Email: suzette.person@nasa.gov

Joshua Branchaud
University of Nebraska-Lincoln

Email: jbrancha@cse.unl.edu

Abstract—Change impact analysis techniques estimate the
potential effects of changes made to software. Directed Incremen-
tal Symbolic Execution (DiSE) is an intraprocedural technique
for characterizing the impact of software changes on program
behaviors. DiSE first estimates the impact of the changes on
the source code using program slicing techniques, and then
uses the impact sets to guide symbolic execution to generate
path conditions that characterize impacted program behaviors.
DiSE, however, cannot reason about the flow of impact between
methods and will fail to generate path conditions for certain
impacted program behaviors. In this work, we present iDiSE,
an extension to DiSE that performs an interprocedural analysis.
iDiSE combines static and dynamic calling context information
to efficiently generate impacted program behaviors across calling
contexts. Information about impacted program behaviors is use-
ful for testing, verification, and debugging of evolving programs.
We present a case-study of our implementation of the iDiSE
algorithm to demonstrate its efficiency at computing impacted
program behaviors.

Traditional notions of coverage are insufficient for charac-
terizing the testing efforts used to validate evolving program
behaviors because they do not take into account the impact of
changes to the code. In this work we present novel definitions
of impacted coverage metrics that are useful for evaluating
the testing effort required to test evolving programs. We then
describe how the notions of impacted coverage can be used to
configure techniques such as DiSE and iDiSE in order to support
regression testing related tasks. We also discuss how DiSE and
iDiSE can be configured for debugging; finding the root cause of
errors introduced by changes made to the code. In our empirical
evaluation we demonstrate that the configurations of DiSE and
iDiSE can be used to support various software maintenance tasks.

I. INTRODUCTION

Change impact analysis techniques [1] estimate the potential
effects of software changes. The results of an impact analy-
sis can be used by other program analysis techniques, e.g.,
regression testing, to determine which parts of a program to
re-analyze and which parts can safely be ignored because they
are not impacted by the changes. The evolutionary nature of
software development, coupled with the size and complexity
of deployed software systems motivates the need for efficient
change impact analyses. It is a well known fact that a “one line
fix” can have broad and unintended (and potentially disastrous)
consequences, thus impact analysis techniques play an impor-
tant role in software evolution and maintenance activities.

Most existing automated impact analysis techniques char-
acterize the effects of changes in terms of syntactic pro-
gram structures, such as functions or program statements,
that may be impacted. Dependency-based impact analysis
techniques [2] estimate the effects of program changes by
analyzing the interconnections between program components.
Given a change set—the set of program components that are
known to be changed—these techniques compute the impact
set—the set of program components that may be impacted by
the actual changes. This type of characterization describes the
impact of changes in terms of program locations, but does
not include descriptions of feasible program execution paths
through the impacted locations. Such details are useful for
verification, validation and debugging of evolving program
behaviors to reduce the scope of the analysis to focus on only
the set of impacted program behaviors.

Directed Incremental Symbolic Execution (DiSE) is an
intraprocedural change impact analysis for characterizing the
impact of software changes on program execution behav-
iors [7]. DiSE combines the efficiencies of static analysis with
the precision of symbolic execution [8], [9]. The static analysis
component of DiSE uses the locations of the actual changes
with program slicing techniques to estimate the impact of the
changes on other locations in the source code. The resulting
impact set is then used to guide symbolic execution to explore
program execution behaviors impacted by the changes, and
to generate path conditions summarizing the impacted pro-
gram behaviors. Characterizing impacted program behaviors in
terms of path conditions has the advantage that path conditions
can be checked using Satisfiability Modulo Theories (SMT)
solvers in order to support various software maintenance tasks
such as testing, debugging, and verification.

DiSE is an intraprocedural analysis and does not account for
the flow of impact between methods. Most realistic programs,
however, consist of multiple methods that are invoked from
different calling contexts; information flows between methods
through method arguments and return values. In this work
we present an extension to DiSE that performs an interpro-
cedural analysis enabling analysis of whole programs. This
extension of DiSE – iDiSE – combines static and dynamic
calling context information to efficiently generate impacted
program behaviors across calling contexts. Supporting the
flow of impacted behaviors across methods in interprocedural
programs is a non-trivial part of our analysis. We demonstrate978-1-4673-2312-3/12/$31.00 c© 2012 IEEE



the efficiency of our change impact analysis with an evaluation
of our implementation of iDiSE.

Many change impact analysis techniques are developed with
a particular software evolution task in mind, e.g., regression
testing [3]. Some techniques are configurable in that they
provide options to adjust the precision of the analysis, e.g., [4].
In this work, we illustrate how DiSE and iDiSE results can be
used by multiple client analyses, e.g., testing, debugging. First,
we describe novel notions of coverage that incorporate change
impact information. These notions of coverage can enable us to
evaluate the test effort required to validate evolving program
behaviors. Traditional coverage notions, e.g., statement and
branch coverage, are extended to take into account change
impact information. The notions of impacted coverage can
then be used to configure techniques such as DiSE and DiSE
in order to support regression testing related tasks. We also
describe how DiSE can be configured for debugging—finding
the root cause of errors introduced by changes to the code.
The primary contributions of our work are:
• An extension to the DiSE algorithm to support interpro-

cedural change impact analysis (iDiSE).
• Extended notions of coverage that combine traditional

notions of coverage with change impact information.
• Configuration options for DiSE and iDiSE based on the

requirements of the client analysis.
• An implementation of iDiSE as an extension to the

Java PathFinder symbolic execution framework [10], [11],
[12].

• An empirical evaluation illustrating the effectiveness of
(a) iDiSE at characterizing the impact of change on
program execution behaviors, and (b) various DiSE and
iDiSE configurations to support regression testing tasks
based on impacted coverage notions and debugging.

II. BACKGROUND

In this section, we provide an overview of the DiSE
methodology [7] and illustrate, using a small example, how
the intraprocedural analysis estimates which behaviors may
be impacted by changes to a method. We begin with a brief
explanation of symbolic execution.

A. Symbolic Execution

Symbolic execution is a non-standard approach for execut-
ing programs that uses symbolic values in place of concrete
(actual) values as program inputs [8], [9]. During symbolic ex-
ecution, each program statement is executed and the symbolic
state is updated to represent the effects on program variables.
At every conditional branch in the program, a constraint is
generated and added to the current path condition. A path
condition is a conjunction of constraints over constants and
symbolic input values that characterizes the current execution
path. The satisfiability of the path condition is checked each
time it is updated in order to determine the feasibility of the
current program path. When a path becomes infeasible, sym-
bolic execution stops exploration of that path and backtracks
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Fig. 1. Control flow graph for a simplified version of a Wheel Brake System.
Node n0 in the graph is a changed program location while the shaded nodes
are impacted program locations.

to explore another path. The resulting set of path conditions
form a summary of the program execution behaviors.

B. Motivating Example

To illustrate the DiSE analysis, a control flow graph (CFG)
for a simplified method in a Wheel Brake System (WBS)
system is shown in Fig. 1. The WBS example is taken
from [7]; it contains two integer global variables, AltPress
and Meter. The CFG shown is for the update method in
WBS with three integer variables, PedalPos, BSwitch, and
PedalCmd, as input arguments.

Each node in the CFG represents a single source code line
and edges between the nodes represent flow of control between
the lines of code. Assume a change was made to line 2 (node
n0) in Fig. 1 where the comparison operator is changed from
== to <=. Node n0 in Fig. 1 shows line 2 after the change is
made to the program. The shaded nodes in the CFG represent
lines impacted by the change at node n0. DiSE explores and
characterizes only the seven path conditions (execution paths)
impacted by the change at line 2. Full symbolic execution
of the changed version explores the entire symbolic state
space, generating 21 path conditions. As a result, any client
analysis which uses the results of full symbolic execution may
unnecessarily analyze program behaviors that are not impacted
by the change. Furthermore, for a small example such as this,
a full analysis is feasible; however, for larger methods or
when complex constraints are involved, a full analysis may
be intractable.

C. Directed Incremental Symbolic Execution

DiSE uses information about syntactic program changes
coupled with the results of data- and control- flow analyses
to direct symbolic execution. DiSE generates impacted path



conditions and avoids generating path conditions that are not
impacted by the changes. Path conditions generated by DiSE
encode program execution behaviors impacted by the changes
to the code.

1) Inputs to DiSE: The inputs to DiSE are the source code
for two versions of a procedure in programs P and P ′, and
the results of a lightweight syntactic Diff analysis comparing
the source code for P and P ′, e.g., textual or abstract syntax
tree comparison. The results of the Diff analysis identify the
change set – the set of locations in the source code that are
different between the two versions. For program P ′, the Diff
analysis marks source code lines that are added, changed, or
unchanged with respect to P . Similarly, the analysis marks
source code lines as removed, changed, or unchanged in P
with respect to P ′.

2) Static Impact Analysis: DiSE uses standard intraproce-
dural program slicing techniques, with the initial change set
as the slicing criteria, to generate the set of program locations
that may be impacted by the actual changes. Consider the
CFG computed for the modified version of update shown
in Fig. 1. Each node in the CFG corresponds to a program
location in the source code. Node identifiers appear in italics
just outside the node, e.g., n1, n2. Edges between the nodes
represent the possible flow of execution between the program
statements.

DiSE uses the change set computed by the Diff analysis
to mark n0 as changed and then performs program slicing to
identify program statements at n1, n3, n4, n5, n11, n13, and
n14 as impacted write statements—the values written at these
locations may impact subsequent execution of conditional
branch statements. The conditional branch statements at n0,
n2, n10, and n12 are also identified as impacted—statements
that may be impacted by the change and that may in turn affect
the path condition.

3) Directed Symbolic Execution: To compute the impact of
the changes on the execution behaviors of the modified version
of update, the impact set (of program locations) computed
by the static impact analysis is used to direct symbolic execu-
tion of the modified version of update and generate impacted
path conditions. To illustrate how DiSE prunes symbolic exe-
cution using the impact set, consider a feasible execution path,
p0 := 〈n0, n1, n5, n6, n7, n10, n11〉, generated during directed
symbolic execution. The path p0 contains the sequence of
impacted nodes, 〈n0, n1, n5, n10, n11〉, and the sequence of
nodes 〈n6, n7〉 that is not impacted by the change. However,
another feasible path, p1 := 〈n0, n1, n5, n6, n8, n9, n10, n11〉,
is pruned (not explored) during symbolic execution because
the sequence of impacted nodes is already covered by p0. The
only difference between p0 and p1 is the sequence of nodes
that is not impacted by the change.

D. Limitations of an Intraprocedural Change Impact Analysis

DiSE is an intraprocedural analysis that does not account for
the flow of impact between methods. Most realistic programs
consist of multiple methods passing data from one method to
another following call chains. Information in interprocedural

programs flows forward from one method to another through
the use of method arguments while information flows back
to the calling method through values returned by the callee.
Similarly, when a change is made to a method, the impact of
the change can flow to other methods through arguments and
return values. Because DiSE does not account for the flow
of impact between methods, it will not generate the full set
of impacted behaviors. To illustrate, consider two methods: A
and B.

int A (int x) {x = x+1; return B(x);}
int B (int x) {if (x>0) return 1;

else return 0;}

Method A contains an assignment to an input variable x
and then passes x as an argument to method B. Method B
returns either 0 or 1 based on the value of x. Suppose, a
change is made to the assignment statement and now x =
x − 1; the intraprocedural static impact analysis is unable to
mark conditional statements in B as impacted by the change
in method A. As result, DiSE will miss exploring one (either
x−1 > 0∧ ret = 1 or x−1 <= 0∧ ret = 0) of the impacted
program behaviors. To account for the flow of impact between
the methods in a program, an interprocedural impact analysis
technique is necessary.

III. INTERPROCEDURAL DISE

In this section we present an extension to the DiSE tech-
nique described in Section II that can be used to analyze
the impact of changes to program behaviors across methods.
We refer to this approach as interprocedural DiSE or iDiSE.
The iDiSE algorithm first performs a static approximation of
the impact sets across the calling contexts of methods in the
program and annotates this information on a call graph. During
symbolic execution the impact set information is dynamically
refined using the current calling context. Combining static and
dynamic information in iDiSE enables efficient generation of
impacted program behaviors across multiple methods.

A. Static Impact Analysis

In phase I of the iDiSE algorithm, the static impact analysis
uses as input the source code of a program P ′ and the
differences between programs P and P ′ to generate a set
of impacted program locations for P ′. The impact analysis
generates impact sets for each method in P ′. A call graph is
first constructed to capture the possible call sequences between
methods in the program. For each method in the call graph, an
impact set is generated for the method itself. The potential flow
of change impact information between methods is stored by
annotating the edges in the call graph and generating additional
impact sets for the formal parameter of each method.

1) Call Graph Construction: The iDiSE static impact anal-
ysis first generates a call graph for P ′. The call graph contains
one node for every method in P ′. The edges between the
nodes in the call graph represent a method invocation (caller
→ callee). Each node in the call graph has the same number
of outgoing edges as the number of method invocations. If



void main(){ int A(int x, int y){
. . . l0 : if(x > 0)
li : B(z) l1 : y := y + 1
. . . l2 : if(y > 0)
lj : t := A(x, y) l3 : x := B(y)
. . . l4 : return x+ y
} }

void B(int z){. . .}
l3 := {y 7→ z}

void main()
Imp(main)

Imp(B) Imp(B(z))

Imp(A) Imp(A(x))
Imp(A(y)) int B(int z)

lj := {} li := {}

int A(int x, int y)

I3 := Imp(B(int z)) :=

Imp(B) ∪ Imp(B(z)) := ∅

Imp(A) ∪ Imp(A(x)) ∪ Imp(A(y))
Imp(A) := {l0, l1, l2, l3, l4}

Imp(B) ∪ Imp(B(z)) := Imp(B(z))

t0

t2

t5

I0 := Imp(main()) := {lj}

I1 := Imp(B(int z)) :=

I2 := Imp(A(int x, int y)) :=

(a) (b) (c)
Fig. 2. Example to demonstrate the use of static and dynamic calling context in iDiSE. (a) An interprocedural program code snippet. (b) Call graph with
impact sets for each method and static calling context. (c) The impact sets dynamically refined based on the calling context.

method, mj , is invoked twice from method, mi, then there are
two edges from mi to mj in the call graph. Each edge in the
call graph is labeled with the program location of the method
invocation site. A call graph corresponding to the program
in Fig. 2(a) is shown in Fig. 2(b). The example in Fig. 2
contains three methods: main, A, and B. In main there is an
invocation to B at location li followed by an invocation to A
at location lj .

2) Generating an Impact Set: Impact sets for each method
are generated using standard program slicing techniques as
described in detail in [7]. High-level pseudocode for the
dependence analysis used to generate the impact sets is shown
in Fig. 3(a). The impact set, Imp for a method, m, is initialized
with the changes to the method. The impact set, Imp, is
provided as input to each of the procedures, DataFlow,
ControlFlow, and CallFlow in Fig. 3(a) until a fixpoint
is reached.

In the DataFlow procedure shown in Fig. 3(a), line 1 states
that if at impacted location la a value is assigned to a variable
(Def(la)) which may be used at another program statement lb
(Uses(lb)), then at line 2, lb is added to the set of impacted
program statements. Suppose, the program statement l1 : y :=
y + 1 in Fig. 2(a) is the single element of the change set for
method A computed by the diff analysis and provided as input
to iDiSE. The value assigned to y at line l1 may be used in
the conditional statement at l2, as the argument to method B
at line l3, and in the return value of x + y at line l4; hence,
there is a forward impact from l1 to l2, l3, and l4.

In the data flow analysis we also consider backward data
flow. In Fig. 3(a), line 6 states that if impacted location lb
uses a value (Uses(lb)) assigned at location la (Def(la)),
then at line 7, location la is added to the impact set. Suppose,
two assignments to variable x, x = 0 and x = 10 can reach
an impacted statement, return x + 1 (changed from return
x− 1). We would miss impacted behaviors one of the outputs
(x = −1 changed to x = 1 or x = 9 changed to x = 11)
if we do not consider both assignments to x that flow to the
impacted return statement.

We also consider control flow dependence between program
statments. Line 10 in Fig. 3(a) checks if impacted location la
is control dependent on a conditional statement lb, then at

line 11 the program statement lb is added to the impact set.
In Fig. 2(a), the execution of l1 is control-dependent on the
execution of the true branch of the conditional statement at
l0. This introduces a backward dependence edge between l1
and l0.

To compute interprocedural results, the impact analysis also
marks impacted call sites. A call site is marked as impacted
if the invocation leads to a method with a non-empty change
set through some path in the call graph. In Fig. 3(a), in the
CallFlow procedure at lines 14 and 15, if a call site, la, in
method m invokes another method m′ such that the impact set
of m′ is non-empty, then the call site, la, is added to the impact
set. For the example shown in Fig. 2(a), program location, lj ,
in the method main is marked as impacted by iDiSE because
it leads to method A which has a non-empty impact set.

The impact set for method A in Fig. 2(a) for the change
set of {l1} is {l0, l1, l2, l3, l4}. Standard program slicing
techniques using the dependence analysis described in this
section are used to generate the impact set for a given change
set.

3) Impact Sets for Formal Parameters: Change impact
information flows from a caller to a callee through one or more
arguments in the method invocation. The formal parameters
in the callee method are marked as impacted based on the
caller invoking the method. It is possible that in some contexts,
the impact of a change will not flow through to the callee.
Analyzing a method in the context of multiple invocation
sites has the potential to cause the analysis to generate an
exponential number of impact sets. To avoid this, iDiSE
computes a separate impact set for each formal parameter of
the method; iDiSE analyzes each method only once.

The total number of impact sets generated for a method
is the number of formal parameters plus one for the change
impact within the method body. We refer to the latter as the
impact set for the method. The main method in Fig. 2(a)
does not have formal parameters so it has a single impact set
Aff(main) as shown in Fig. 2(b). Whereas, method A has
two formal parameters, resulting in a total of three impact sets.
One for the method itself (Imp(A)) and one for each of its
formal parameters (Imp(A(x)) and Imp(A(y))).

To generate the impact set for a formal parameter, the



procedure DataFlow(Imp, m)
1: if la ∈ Imp ∧ lb ∈ m ∧ Def(la) ∈ Uses(lb) then
2: Imp := Imp ∪ {lb}
3: for each m′ ∈ P ′, lb ∈ m where lb invokes m′ do
4: CallGraphAnnotations(m,m′, lb) ∪ Def(la)
5: /∗ Impact Statements for Backward Data Flow ∗/
6: if lb ∈ Imp ∧ la ∈ P ∧ Def(la) ∈ Uses(lb) then
7: Imp := Imp ∪ {la}
8: return Imp
9:

procedure ControlFlow(Imp,m)
10: if la ∈ Imp ∧ lb ∈ m ∧ controlDependent(la, lb) then
11: Imp := Imp ∪ {lb}
12: return Imp
13:
procedure CallFlow(Imp,m)
14: for each m′ ∈ P ′, la ∈ m where la invokes m′ do
15: if ImpactSet(m′) 6= ∅ then Imp := Imp ∪ {la}

t7 : Y + 1 <= 0

s1
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s7t5

t1
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t2 : X <= 0
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t11
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t9

t6 : X > 0

t3 : Y <= 0 t8 : Y + 1 > 0

B invoked from main
B := ∅

A := Imp(A)

B invoked from A B invoked from A

B B

B := Imp(B(z)) B := Imp(B(z))

(a) (b)

Fig. 3. (a) Pseudocode for the dependence analysis used to compute the impact sets in iDiSE. (b) Partial Symbolic Execution Tree for the code in Fig. 2(a).

change set is initialized to the program locations that use
the impacted formal parameter. The initial change set for
the impacted formal parameter int x in method A is {l0, l4}
because the conditional statement at l0 and return statement
at l4 are the only statements that use (read) the variable x.

4) Annotating Call Edges: Edges in the call graph are
annotated using the argument names in the caller and their cor-
responding formal parameter names in the callee to represent
the flow of change impact information from caller to callee.
At lines 3 and 4 in Fig. 3(a), the CallGraphAnnotations
method adds argument names along a call edge when m′ is
invoked from m at location lb. The arguments annotated are
the ones that are assigned a value at an impacted location
la (Def(la)). The change at line l1 in method A shown
in Fig. 2(a) impacts the call site at l3. Variable y is assigned
a value at l1 and is passed as an argument when invoking
method B at l3. The edge from A to B in Fig. 2(b) is annotated
with l3 : y 7→ z which indicates the flow of the impact of the
change to y in A to B, and also maps the argument y to the
formal parameter, z, in method B.

B. Directed Symbolic Execution

During directed symbolic execution, paths are pruned based
on the reachability of impacted program locations from the
current state. Before checking reachability, iDiSE dynamically
refines the impact sets for a given method based on which
caller invoked the method and the annotation on the corre-
sponding call edge in the call graph. This approach efficiently
generates precise change impact information.

1) Pruning Example: A partial symbolic execution tree is
shown in Fig. 3(b). Execution begins at the initial state, s0,
generating the next symbolic states s1 and s2, where s2 is a
successor of s1 on the current execution path. Assume states
s1 and s2 are generated by execution of program statements
in method B when it is invoked from main. Next, we see
in Fig. 3(b), states labeled s3 and s4 are generated respectively

by transitions t2 : X <= 0 and t3 : Y <= 0, on the current
path after which method A returns. At this point, symbolic
execution backtracks to generate the other choice of s5 and
then explores B. An impact set (B := Imp(B(z))) for method
B is dynamically generated when transition t5 is executed. The
information about impacted program statements in this set is
used to direct execution within method B. Eventually, when
the search backtracks to states s1 and s0 in Fig. 3(b), the
transitions t10 and t11 lead to subtrees generated by executing
instructions in method B. Subtrees reachable from t10 and
t11 are pruned because the impact set of B is empty when
invoked from main. The fact that the impact set for B is
empty indicates that the transitions, t10 and t11 do not lead
to execution paths that are impacted by the changes. The
details on dynamically generating impact sets and checking
reachability to prune paths is described in detail below. The
goal of Fig. 3(b) is to demonstrate to the reader that the iDiSE
algorithm uses information from the static impact analysis
coupled with the actual calling context to decide when to
explore paths in a certain method. When method B is invoked
from from A, the iDiSE analysis generates paths through
method B; however, the paths through B are pruned in the
iDiSE analysis when B is invoked from main.

2) Dynamically Generating Impact Sets: When a method
is invoked during symbolic execution, the final impact set for
the method is dynamically generated based on the method’s
calling context and information computed by the static anal-
ysis. For the example in Fig. 2(a), the dynamically generated
impact sets for the methods are shown in Fig. 2(c). When
method B is invoked from main, its final impact set, I1, is
empty for two reasons. First, the impact set for B itself is
empty. Second, there are no annotations on the call edge from
main to B in Fig. 2(b); hence, the elements from the impact
set for the formal parameter z of method B are not added to the
final set. When, however, method B is invoked from method



A, the impact set of its formal parameter z—Imp(B(z))—is
assigned as the final impact set of B as shown in the set labeled
I3 in Fig. 2(c). Dynamically generating the final impact sets
based on the calling context of the method allows iDiSE to
efficiently track the impact of the flow of changes between
different methods.

Dynamically generated impact sets for a method have
a scope within which they can be used to check reacha-
bility. Fig. 2(c) is a list of impacted sets in scope when
transition t5 in Fig. 3(b) executes. The impact set I3 is in
scope for all transitions in method B following t5. When the
symbolic execution backtracks to state s2, to a point before
the invocation of B, the impact set I3 is removed from the list
of impact sets in scope. When transition t9 in Fig. 3(b) is
executed, method B is invoked again from method A. At this
point a new final impact set, I4, is generated for method B
and added to the list of impact sets in scope: 〈I0, I1, I2, I4〉;
contents of I4 are identical to those of I3. Eventually, when
the search backtracks to state s1 in Fig. 3(b), the sets in
scope are 〈I0, I1〉. Here reachability to impacted statements
within method B is checked using I1. Checking reachability
to impacted statements is described next.

3) Checking Reachability: During symbolic execution,
paths are explored or pruned based on reachability from the
current symbolic state to the program instructions in the im-
pacted set. Our previous work on DiSE checks reachability to
impacted program locations with respect to a particular impact
set. It maintains separate sets of explored and unexplored
impacted program locations within a method. In iDiSE (and
DiSE), if an impacted program location, l′, in the unexplored
set is reachable from the current program location, l, then
execution continues along that path otherwise the path and its
corresponding sub-tree is pruned. Reachability between l and
l′ is checked using the CFG for the method—does there exist
a sequence of edges from l to l′ in the CFG? The details of
the reachability check are described in [7].

The reachability check in iDiSE is extended to account for
reachability of program statements in other methods. In iDiSE,
we unroll the call stack to check reachability in other methods
within the current calling context. After checking reachability
within the current method, iDiSE uses the call stack to extract
the sequence of method invocations that led to the current
method. A possible calling context is as follows: main →
A→ B for the example shown in Fig. 2(b). In this context we
want to check whether an execution path can be pruned while
the execution is at a location in method B. Suppose there are
no unexplored impacted program locations in method B that
are reachable from the current location, then we look at the
call site from A that invoked the current instance of method B.
We then check if there exists a unexplored impacted program
location in method A reachable from the call site. The check
continues along the call chain until we get through the series
of invocations or we find a reachable, unexplored, impacted
program statement.

Dynamically generating impacted sets and computing reach-
ability along the calling context of the program allows iDiSE

i2

if(x > 0)

falsetrue

i0

i1 j1
if(x > 0)

if(y > 0)
j0 k0

if(x > 0)

x = y x = z
k1

k2

(a) (b) (c)

Fig. 4. Different notions of coverage for impacted program locations:
(a) impacted branch coverage and basic block coverage, (b) impacted path
coverage, (c) impacted data flow coverage.

to efficiently prune parts of the symbolic execution tree that
are not impacted by the changes.

IV. ANALYSIS CONFIGURATIONS

Traditional notions of coverage are insufficient for charac-
terizing the test effort required to validate evolving programs
because they do not distinguish between coverage of impacted
and unimpacted parts of the program. In this section, we
describe how traditional notions of coverage are extended to
incorporate information about change impact. We describe
how these notions of impacted coverage can be used to
configure techniques such as DiSE and iDiSE when applied
to regression testing. We believe these notions of impacted
coverage are generic and can be applied to the evaluation of a
wide variety of change impact analysis and regression testing
techniques. This section also presents a discussion on how
DiSE and iDiSE can be configured for debugging—finding
the root cause of errors introduced by a change.

A. Impacted Coverage Metrics

Traditional notions of code coverage, e.g., statement or
branch coverage, are useful for describing whether or not
parts of the code have been executed during, for example,
regression testing; however, when used in the context of
evolving software, these coverage metrics do not provide any
indication regarding the coverage of impacted statements and
branches – valuable information for evaluating the results of
software maintenance tasks such as regression testing. In this
work, we extend several traditional notions of code coverage
to incorporate change impact information. These new notions
of coverage are useful for configuring DiSE and iDiSE, and
for relating the behavioral coverage computed by directed
symbolic execution, and described by the path conditions, back
to the source code.

The CFGs shown in Fig. 4 illustrate the impacted coverage
notions defined in this work. CFGs provide an intuitive mech-
anism for illustrating the impacted coverage notions because
each constraint on a path condition generated by symbolic
execution can be directly mapped to a conditional branch in
the code (and in the CFG). In Fig. 4, each node in a CFG
represents a single program statement.

Definition IV.1. Impacted Statement Coverage: Cover every
impacted program statement.



Definition IV.2. Impacted Basic Block Coverage: Cover every
basic block that contains an impacted program statement.

Impacted statement coverage entails covering every executable
program statement that is impacted by the change. Impacted
basic block coverage is very similar to impacted statement
coverage. Because many analyses are performed at the ba-
sic block level, rather than the program statement level, it
is important to define coverage metrics for both. Suppose
the conditional branch statement at node i0 in Fig. 4(a) is
marked as impacted. When the ImpactedStatement or
ImpactedBasicBlock option is specified, the analysis
will generate path conditions through nodes i0 to i1 or through
nodes i0 to i2; covering the impacted statement i0. Here, i0
is also an impacted basic block.

Definition IV.3. Impacted Branch Coverage: Cover every pos-
sible decision of impacted control structures (if-statements,
while-statements, switch-statement cases), impacted ex-
ception handlers, and all impacted entry and exit points.

When DiSE or iDiSE is configured with the option,
ImpactedBranch, the analysis generates feasible path con-
ditions through the true and false branches of all impacted
conditional branch statements. The analysis also generates path
conditions for the various cases in impacted switch statements,
impacted exception handlers, and impacted entry and exit
points, e.g., entry and exit points of an impacted method. When
ImpactedBranch is specified for the example in Fig. 4(a),
the analysis generates path conditions through nodes i0 to i1
and through nodes i0 to i2.

Definition IV.4. Impacted Path Fragment Coverage: Cover
every possible combination of impacted path fragments, where
an impacted path fragment is a sequence of program state-
ments that ends in an impacted conditional statement and
the path fragment contains only one impacted conditional
statement.

Each program execution path is composed of one or more path
fragments. Different combinations of path fragments result in
different paths. Similarly, different combinations of impacted
path fragments result in different impacted paths. Suppose,
the conditional branch statements at j0 and j1 in Fig. 4(b)
are both impacted. The sequence of edges leading to j0 and
the sequence of edges leading to j1 each constitute a path
fragment. We have shown the sequence of edges as a dotted
edge in Fig. 4(b) for brevity. Using the ImpactedPathFrag
option, DiSE or iDiSE will generate the following paths (path
conditions): (1) x > 0 ∧ y > 0, (2) x > 0 ∧ y ≤ 0, (3)
x ≤ 0 ∧ y > 0, and (4) x ≤ 0 ∧ y ≤ 0.

Definition IV.5. Impacted Data Flow Coverage : Cover every
use of a variable defined at an impacted write statement.

The goal of impacted data flow coverage is to ensure every
possible use of every definition in an impacted write statement
is covered. Suppose, the assignments to x at nodes k0 and k1
are both impacted in Fig. 4(c). In this example x is subse-

quently used in the conditional branch statement at k2. When
DiSE or iDiSE is configured with ImpactedDataFlow, it
generates four path conditions: y > 0, y ≤ 0, z > 0, and
z ≤ 0. The impacted data flow coverage obligations can then
be fulfilled by solving these path conditions.

B. Debugging

Changes to programs can impact the correctness of the
program by introducing unexpected program behaviors (errors
or bugs). Regression testing techniques often allows us to
detect these errors, but, they do not provide information about
the root cause of errors. Techniques such as DiSE and iDiSE
can be configured to facilitate the process of finding the cause
of an error (debug it).

The DARWIN method for debugging evolving programs
detects potential conditions for failing test cases when a
change is made to a program [13]. Suppose a test case T
passes in P , but, fails in P ′. Darwin generates a path condition,
Φ := φ0∧ . . .∧φn, in P along the path which is generated by
running T ; and similarly generates Φ′ := φ′0∧ . . .∧φ′m in P ′.
Next, for each φ′i where 0 ≤ i < m, the DARWIN method
computes a new formula Φi := Φ∧φ′0 ∧ . . .∧¬φ′i; if the new
formula Φi is satisfiable then DARWIN reports the location
where φ′i is generated as a potential cause for the failing test.

DiSE and iDiSE results can be used to improve on the DAR-
WIN debugging approach by configuring DiSE (or iDiSE)
with an option DeltaDebug to retain only the constraints
generated at impacted conditional branch statements. This
approach safely reduces the number of constraints on the path
conditions and enables the debugging process to focus on
impacted program locations as the potential cause for failing
test cases.

V. EVALUATION

We now present the results of a study in which we evaluate
the effectiveness of our change impact analysis technique.

A. Tool Support

We have implemented DiSE and iDiSE in the Java
PathFinder symbolic execution framework (SPF) [11], [12].
We use the Choco constraint solver [15] to check path feasi-
bility during symbolic execution. Our analysis uses a custom
interprocedural data- and control-flow analysis to compute a
conservative approximation of the impacted program state-
ments. The artifacts in our study were compiled with Java
version 1.6.0 26. We then computed a source-level diff using
a custom Abstract Syntax Tree (AST) differencing application
written in Java.

B. Artifacts

To evaluate our analysis, we used two Java artifacts that are
representative of programs used in the evaluation of symbolic
execution techniques. The first, tcas, is an aircraft collision
avoidance system from the Software-artifact Infrastructure
Repository (SIR) [16]. SIR contains 41 versions of tcas,
each of which is a mutant of version 0 containing one or



Version Time (P ′) Time (P ) States (P ′) States (P )
(P -P ′) Full iDiSE Full iDiSE Full iDiSE Full iDiSE
V0V2 0:01:29 0:00:48 0:01:30 0:00:48 679 536 679 536
V0V3 0:01:47 0:00:02 0:01:30 0:00:02 837 32 679 21
V0V4 0:01:36 0:00:06 0:01:30 0:00:08 743 216 679 208
V0V5 0:01:49 0:00:02 0:01:30 0:00:02 763 26 679 31
V0V6 0:01:41 0:01:01 0:01:30 0:00:57 679 560 679 560

V0V10 0:01:33 0:01:36 0:01:30 0:01:43 775 759 679 679
V0V23 0:01:26 0:00:11 0:01:30 0:00:50 631 96 679 536
V0V29 0:00:48 0:00:24 0:01:30 0:00:49 311 240 679 536
V0V34 0:05:58 0:00:02 0:01:30 0:00:02 2317 20 679 20
V0V40 0:01:08 0:00:02 0:01:30 0:00:02 615 31 679 32

(a)
V43V44 0:01:28 0:00:50 0:01:27 0:00:51 679 536 679 536
V45V46 0:01:34 0:01:02 0:01:35 0:00:55 695 544 695 544
V46V47 0:01:53 0:01:26 0:01:34 0:01:09 857 758 695 624
V47V48 0:02:42 0:02:57 0:01:53 0:01:53 1045 1045 857 847
V49V50 0:02:53 0:00:54 0:03:01 0:01:19 1435 980 1205 846
V50V51 0:02:49 0:00:04 0:02:53 0:00:04 1435 44 1435 44

(b)

TABLE I
COSTS OF RUNNING IDISE VS. FULL SYMBOLIC EXECUTION FOR TCAS .

two functional changes (e.g. operator mutations, modified
constants, and modified control structures). We translated the
C versions in SIR to Java. Each version has 10 methods and
contains 185 SLOC. We created an additional ten versions
(42 – 51) to simulate a software evolution process where each
version is based on the previous version, e.g., version 43 is a
mutant of version 42. We used version 0 as our base version.
Versions 42 – 44 contain refactoring changes, i.e,. changes that
do not affect the functionality of the program, and versions
45 – 51 contain functional changes.

To illustrate the analysis configurations discussed in Sec-
tion IV, we use the Wheel Brake System (WBS) example, a
synchronous reactive component from the automotive domain.
The Java model consists of one class and 231 SLOC. It
is based on a Simulink model derived from the WBS case
example found in ARP 4761 [17], [18]. We evaluate the
update method in WBS.

C. Results and Discussion

Costs of iDiSE: How do the costs of iDiSE compare to
full symbolic execution in terms of time and states explored?
In Table I, we report the total wall clock time in seconds
and the states explored during directed symbolic execution
for iDiSE and for full symbolic execution. The impacted
program behaviors for each pair of tcas versions, P and P ′,
are generated by iDiSE using the DeltaDebug configuration
described in Section IV-A. For the tcas artifact, iDiSE is
able to achieve significant reductions in terms of the total
time and states explored as shown in Table I. Versions V0V29
and V0V34 in Table I(a) require the minimum and maximum
analysis times respectively for full symbolic execution from
the set of 41 versions in SIR. Versions V0V5 and V0V10
have the minimum and maximum analysis times respectively
for iDiSE from that same set. Similar reductions in time and
states explored were noted in all 41 versions of tcas and also
in the evolutionary versions of tcas shown in Table I (b).

Benefits of iDiSE: What reductions can be achieved by

iDiSE? Table II shows that, in general, iDiSE generates fewer
path conditions (PCs) than symbolic execution for tcas. In
V0V23, iDiSE generates 3 PCs in program P ′, and 29 PCs in
P , whereas full symbolic execution generates 866 PCs for P ′

and 595 PCs for P . Similar reductions can be observed for
the other versions of tcas.

Because of space limitations, Table I and Table II contain
a representative subset of the version pairs evaluated. Never-
theless, these results demonstrate that iDISE is an effective
technique for analyzing evolving software because it can
generate impacted behaviors and avoid exploring behaviors
that are not impacted by the change. Moreover, because the
set of impacted behaviors computed by DiSE and iDiSE is
reduced with respect to full symbolic execution, the client
analysis that uses the results will also benefit. For example, to
check for input partition equivalence [14] for V0V2 in Table II,
it is necessary to compare only the 29 path conditions in P
and P ′, rather than the 595 path conditions computed by full
symbolic execution. This is one of the key strengths of our
technique.

In Table II, we also report the number of constraints
associated with impacted branch conditions (Impacted Con-
straints) versus unimpacted branch conditions (Unimpacted
Constraints). This information, along with the percentage of
the total constraints, is useful for debugging-related client
analyses. For example, in V0V2 there are 216 constraints gen-
erated at conditional statements not impacted by the changes,
while 319 constraints are generated at impacted conditional
statements. In this case, approximately 40% of the constraints
generated during directed symbolic execution are not impacted
by the change. In other versions of the tcas example, often
a considerable percentage of the constraints are generated
at conditional branches not impacted by the change. As a
result, a client analysis such as the DARWIN debugging
approach described in Section IV can be improved using iDiSE
results to detect program locations that are potential causes
in failing tests. Checking fewer constraints can reduce the
cost of locating potential causes of failing tests. Furthermore,
the quality of the potential causes reported can be improved
because only impacted locations are reported.

Benefits of Configurability: What are the costs and benefits
of using impacted coverage configurations? The coverage
configurations are technique-agnostic; they can be used by
both DiSE and iDiSE, and other change impact analyses.
In Table III we present the number of states generated,
total wall clock time, and path conditions generated when
running DiSE on the WBS example configured for several
notions of impacted coverage defined in Section IV—impacted
branch coverage (Branch), impacted basic block coverage
(Basic Block), and impacted path fragment coverage (Path
Frag.). We also present the total number of path conditions
generated by full symbolic execution (Full). In general, the
different configurations of DiSE generate fewer path condi-
tions compared to full symbolic execution. In version V0V4,
DiSE generates only a single path condition for covering
the impacted branches, basic blocks, and path fragments;



whereas full symbolic execution generates 24 path conditions
because it explores the entire symbolic state space. The results
in Table II and Table III illustrate the configurability of DiSE
and iDiSE and show the tradeoff in cost and precision for
these configurations.

Note that we do not attempt to compare DiSE and iDiSE
directly; however, we note that DiSE is useful as an inex-
pensive, local analysis of a method. If a change is made to
an algorithm of a single method in a large system, DiSE can
pinpoint the analysis to that method, avoiding the expense of
a system-wide analysis. For programs with multiple methods,
it is essential to use iDiSE so that the effects of the changes
can be propagated between methods.

The threats to validity in our study include (1) the tools
upon which our technique is built, e.g., SPF, JPF, Choco,
(2) the selection of artifacts used to evaluate the benefits
of iDiSE, and (3) the changes applied to create the mu-
tants. Implementing iDiSE in another framework or using
another constraint solver/decision procedure could produce
different results; however, replicated studies with other tool
frameworks would address this threat. The artifacts selected
for our study are control applications that are amenable to
symbolic execution. They are comparable in structure and
complexity to other artifacts that we are aware of that are
used to evaluate symbolic execution techniques. The mutant
versions in the WBS example were created manually, and
may or may not reflect actual program changes; however, the
mutations were developed in a systematic way that considered
program location, change type, and number of changes. The
tcas example was chosen because it is a control system with
a version history.

VI. RELATED WORK

The technique presented in this paper, iDiSE, combines
static program slicing and symbolic execution to estimate
the impact of changes made to software. The results of
iDiSE characterize the impact in terms of program execution
behaviors. iDiSE is an extension of our previous work in [7]
that now includes an interprocedural analysis and options that
enable the impact analysis to be configured to support the
requirements of specific client analyses that use the DiSE
and iDiSE results. The techniques most closely related to
our work are Differential Symbolic Execution (DSE) [14] and
Regression Model Checking (RMC) [19]. Like our technique,
DSE utilizes symbolic execution to characterize the effects of
program changes; however, DSE does not use program slicing
techniques to improve the efficiency of symbolic execution. It
instead relies on abstract summaries of unchanged code blocks.
RMC uses differences between two versions of a program to
drive pruning of the state space during model checking of the
new version of the program. Similar to DiSE and iDiSE, RMC
uses a static impact analysis to calculate ‘dangerous’ elements
whose behavior may be impacted by the changes.

Many techniques have been developed to assist developers
maintain evolving software. Tools that difference various rep-
resentations of program source code [20], [21], [22], [23] are

used regularly by practitioners to detect changes. Determining
the impact of the changes is more challenging however, both
in terms of detecting what is impacted and in how the impact
set is characterized and reported. Dynamic impact analysis
techniques [5], [6] use information collected during execution
of the program, however, the impact sets computed by such
techniques are restricted to observed behaviors. By using
symbolic execution to compute impact sets, our technique
has the potential to analyze more observed behaviors; how-
ever, the limitations of symbolic execution may also limit
the capabilities of our technique unless the limitations are
manifested in the parts of symbolic execution pruned by
DiSE and iDiSE. Reporting change impact sets in terms of
the code impacted [4], [24], [25] or test cases impacted [3],
[26] provides developers with a mechanism for targeting the
impact of the changes during subsequent evolutions tasks,
e.g., regression testing. Because our technique uses symbolic
execution, the impact sets reported to the user are characterized
in terms of path condition, representing the effects of changes
on program execution paths. Another recent work, [27], uses
program slicing based on program outputs, and backwards
symbolic execution to reason about program changes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we illustrate how the results of our change
impact analysis technique, iDiSE, can be used to support
software evolution tasks, including testing and debugging. We
describe novel configuration options that combine traditional
notions of coverage with change impact information, and
explain how the impact analysis performed by DiSE and iDiSE
can be configured to support the specific requirements of the
client analysis. We also introduce the algorithms supporting
the interprocedural version of our analysis, iDiSE and demon-
strate that like DiSE, the cost of generating impacted program
behaviors using interprocedural DiSE, is less than the cost of
full symbolic execution. In the future, we plan to conduct a
more comprehensive evaluation comparing how the results of
iDiSE can be used to improve the efficiency of client analysis
techniques relative to other state-of-the-art techniques.
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