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Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on
matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we charac-
terize the systematic biases introduced in measuring astrophysical parameters of binary black holes
by applying the currently most accurate effective-one-body templates to simulated data containing
non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the
systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These
biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based
instruments (SNR. ~ 50} but never dominate the error budget. At the much larger signal-to-noise
ratios expected for space-based detectors, these biases wiil become iarge compared to the statisticai
errors but are small enough (at most a few percent in the black-hole masses) that we expect they
should not affect broad astrophysical conclusions that may be drawn from the data.

PACS numbers:
I. INTRODUCTION

Binary black hole (BBH) coalescences are corner-
stone sources for gravitational-wave (GW) detectors, be
they existing ground-based detectors like LIGO [1] and
Virgo [2], planned space-based detectors such as classic
LISA [3] or eLISA [4], or a pulsar timing array [5]. The
analysis of GW data to detect and characterize binary-
black-hole merger events and-to test the predictions of
general relativity requires some family of efficiently com-
putable signal models, representing all the possible wave-
forms consistent with general relativity.

Modeling BBH waveforms has historically been sepa-
rated into three regimes, divided by the different com-
putational procedures suitable for each. The “inspiral”
where the individual black holes are sufficiently separated
for the post-Newtonian (PN) expansion to be valid [6-
9], the “merger” of the binary where numerical relativity
(NR) is needed [10-12], and the “ringdown” phase of a
single, post-merger, perturbed object relaxing to a Kerr
black hole [13, 14].

During the last years, the work at the interface be-
tween analytical and pumerical relativity has provided
the community with a variety of semi-analytical inspiral-
merger-ringdown waveform sets [15-26) of varying scope
in parameter range and accuracy. These waveforms have
already been used to search for GWs from high-mass [27]
and intermediate-mass [28] binary black holes in LIGO
and Virgo data and also to carry out preliminary param-
eter estimation studies for ground-based detectors [29]
and space-based detectors, such as classic LISA [30, 31].
In this paper we shall studv a set of inspiral-merger-

ringdown waveforms based on the Effective-One-Body
(EOB) {ramework [32-36].

Template waveforms will always be an approximation
to the true signals and the difference, if large enough,
can bias inferences made from the GW data about the
astrophysical parameters of the system or the validity
of general relativity. Estimates of the systematic errors
introduced by waveform approximants in the literature
(25, 37-41] have focused only on the inspiral or used gen-
eral conservative criteria to determine when the wave-
form has a bias, never using the parameter-estimation
techniques employed in actual data analysis.

In this work, we will carry out the first measurement of
systematic biases introduced when determining the phys-
ical parameters of 2 BBH merger by using EOB wave-
forms as templates. We do so by simulating data that
contain NR waveforms as the “signal” to be detected.
Then, using the Markov Chain Monte Carlo (MCMC)
method [42, 43], we sample the posterior distribution
function for the binary parameters using EOB waveforms
as the templates. The characteristic width of the poste-
rior as determined by the MCMC is taken as the statisti-
cal error, while the distance in parameter space between
the dominant mode of the posterior and the true, or “in-
jected” waveform parameters is the systematic error, or
bias, introduced by these waveforms. We study several
different BBH systems, sampling the total mass, mass
ratio, and signal-to-noise ratio (SNR) space for both a
LIGO/Virgo network in the advanced detector era and a
LISA-like configuration.

For this first analysis we employ non-spinning wave-
forms for quasi-circular orbits. In particular, for the in-
jected signals, we consider the NR waveforms produced



by the Caltech-Cornell-CITA collaboration in Ref. [14].
For the templates we use the EOB waveforms that were
calibrated in Ref. [25] to those NR waveforms [44]. Be-
cause our emphasis is on BBHs, and the merger wave-
forms in particular, it is certainly the case that spin
magnitude and orientation play an important role in the
waveform and parameter estimation [45-49]. NR wave-
forms with spins aligned or anti-aligned with the orbital
angular momentum are available, and EOB waveforms
that include spins have been developed in Refs. [22, 26,
36]. However, the spinning EOB waveforms are currently
restricted to the dominant mode and additional code
development is needed before they can be employed in
stochastic sampling methods like the MCMC. Thus, we
leave 1o the future the extension of this study to spinning
BBHs. -

Within these limitations, we show that the EOB wave-
forms developed in Ref. [25] and tested here are accu-
rate enough to introduce little-to-no significant biases
when the data contain NR waveforms at SNRs consis-
tent with expectations for likely LIGO/Virgo detections
(SNR < 50). For LISA-like detections, where the ex-
pected SNRs are much higher than for ground-based de-
tectors, significant biases do emerge. Nonetheless, we
find that the discrepancies between the true and mea-
sured parameters, at a few percent for the black-hole
masses, are small enough to not impact key astrophysi-
cal conclusions that may be drawn from the data (e.g.,
black-hole seed models, etc.} [4, 50, 51]. However, when
very high accuracies are required, as when testing the
validity of general relativity [52, 53], best-fit EOB wave-
forms from the existing model will leave behind signif-
icant residual power, making them ill suited for these
applications without further development.

The remainder of the paper is corganized as follows.
In Sec. II we describe the numerical and analytic wave-
forms used in this work. In Sec. III we lay out how the
study will proceed, describing in particular the MCMC
sampler that we use. We then discuss in detail the re-
sults for stellar-mass BBHs in ground-based detectors
(Sec. IV) and super-massive BBHs in space-based obser-
vatories (Sec. V). In Sec. VI we summarize the findings
from this work, address limitations, and discuss future
directions to be pursued.

II. INSPIRAL-MERGER-RINGDOWN
WAVEFORMS USED IN THE ANALYSIS

Qur study involves comparisons between two sets of
waveforms. *We primarily seek to ewaluafe a continu-
ously parametrizable family of model waveforms based
on the EOB [ramework, against a discrete set of highly
accurate numerical relativity (NR) waveforms. In anal-
ogy with observational algorithm tests, we can think of
the numerical waveforms as “injected” signals, which we
challenge the “template” EOB waveforms to match.

We employ as injected signals the non-spinning NR

waveforms produced by the Caltech-Cornell-CITA col-
laboration [44], using the spectral Einstein code. The
NR polarizations have mass ratio ¢ = my/mz =
1,2,3,4,6 and contain -2 spin-weighted spherical har-
monics (£,m) = (2,%2), (2,+1), (2,0), (3, £3), (3,+2),
(4, £4), (5,£5), and (6,£6). These waveforms provide
30-40 GW cycles before merger, depending on the mass
ratio.

The phase and amplitude errors of the NR waveforms
vary with mass ratio and gravitational mode. The nu-
merical errors grow toward merger and ringdown, and
typically at merger, for the dominant (2,2) mode, the
phase error ranges between 0.05 and 0.25 rad, while the
fractional amplitude error is at most 1%: The subdomi-
nant modes can have somewhat larger errors, especially
the (3,3) and (4, 4) modes.

Applying the numerical waveforms to generate mock
signal observations, we will test the ability of a previously
published family of template waveforms to characterize
these signals [25]. These template waveforms are based
on the EOB framework, founded on the very accurate
results of PN theory, an expansion of general-relativity
dynamics in polynomials in v/e. In the EOB approach,
however, the PN expansions are applied in a resummed
form that maps the dynamics of two compact objects into
the dynamics of a reduced-mass test particle moving in
a deformed Kerr geometry [32-36]. Waveforms in the
EOB formalism are derived from such particle dynamics
up to the light-ring (unstable photon orbit) radius. The
subsequent ringdown portion of the waveforms is a su-
perposition of quasinormal modes matched continuously
to the inspiral. Tunable parameters effectively standing
in for currently unknown higher-order PN terms are fixed
by matching to numerical relativity simulation results.

The comparable-mass NR waveforms in Ref. [44] were
used, together with the small-mass-ratio waveforms pro-
duced by the Teukolsky code in Ref. [54], to cali-
brate a non-spinning EOB model in Ref. [25]. More
specifically, the numerical waveforms available at dis-
crete points in the parameter space were employed
to fix a handful of EOB adjustable parameters enter-
ing the EOB conservative dynamics and gravitational
modes. These adjustable parameters were then interpo-
lated over the entire mass-ratio space. The EOB model in
Ref. [25] contains four subdominant gravitational modes,
(2, £1), (8,£3), (4, £4) and (5, £5), beyond the dominant
mode (2, £2).

The EOB model in Ref. [25] has been coded in the
(public) LIGO Algorithm Library (LAL) [55] (under the
name EOBNRv2). We carry out our study using LAL
to generate template waveforms. Henceforth, we de-
note the EOB model with only the dominant (2,2} mode
as EOBgp, and the model that includes the four sub-
dominant modes (2, £1), (3,+3), (4,+4) and (5,%5) as
EOBum.

The phase difference of the (2,2} mode between the
calibrated EOB model and numerical simulation remains
below ~ 0.1 rad throughout the evolution for all mass



ratics considered; the fractional amplitude difference at
merger of the (2,2) mode is 2% and grows to 12% during
the ringdown. Around merger and ringdown, the phase
and amplitude differences of the subdominant modes be-
tween the EOB and NR waveforms are somewhat larger
than the ones of the (2,2) mode. [The numerical er-
rors, and phase and amplitude differences between the
EOB and NR waveforms can be read from Figs. 6-10 in
Ref. 25].]

To quantify how these differences between template
and signal would affect GW searches in Advanced LIGO,
Ref. [25] studied the effectualness and measurement ac-
curacy of the EOB model. When investigating the effec-
tualness for detection purposes, they found that the NR
polarizations containing the strongest seven modes have
a maximum mismatch of 7% for stellar-mass BBHs, and
10% for intermediate-mass BBHs, when only the EOB
(2,2) mode is included for g = 1,2,3, 4,6 and binary to-
tal masses 20-200 Hz. However, the mismatches decrease
when all the four subdominant EOB modes are taken into
account reaching an upper bound of 0.5% for stellar-mass
BBHs, and 0.8% for intermediate-mass BBHs. Thus, the
EOB model developed in Ref. [25] is accurate enough for
detecticn, which generally requires a mismatch not larger
than 7%.

To understand whether the EOB model developed in
Ref. 25] is precise enough for measurement purposes, the
authcers carried out a preliminary study, adopting as ac-
curacy requirement for measurement the one proposed
in Refs. [40, 41]. Using a single Advanced LIGO detec-
tor, Ref. [25] computed the SNRs below which the EOB
polarizations are accurate enough that systematic biases
are smaller than statistical errors. Since subdotninant
modes have non-negligible contribution for large mass
ratios, and those modes have the largest amplitude er-
rors, they found that the upper-bound SNRs are lower
for the most asymmetric systems, such as ¢ = 6. How-

ever, as stressed in Ref. [25], the accuracy requirement in

Ref. [40, 41] may be too conservative and by itself it does
not sey which of the binary parameters will be biased
and how large the bias will be. It could turn out that the
biased parameters have little relevance in astrophysics or
tests of general relativity. It is the main goal of this pa-
per to measure the actual biases of the EOB model with
and without the subdominant modes.

Qur study is restricted to binary systems moving along
quasi-circular orbits where the spin of each constituent
black hole is negligible, thus reducing the mode! param-
eters € from a space of 17 dimensions to 9 dimensions:

8 ={nM,InM,InDy,t,,sind, o, cose, ¢, 05} . (1)

In the above equation, M = (1 - 2)(m) +mg) is the red-
shifted total mass of the binary, and M = v3/5 M is its
chirp mass, where v = mima/(my + mz2)? = q/(1 + q)?
is the symmetric mass-ratio. We denote by Df, the lumi-
nosity distance, which, along with the right ascension
« and declination §, describes the location of the bi-

nary. The orientation of the binary’s orbitael angular-
momentum vector I with respect to the line of sight k
from the observer is encoded in the model using the in-
clination ¢, polarization angle ¢, and phase ¢, — the
Euler angles that describe the rotation from k to L. The
parameter i, is the time.of the (2,2) mode’s maximum
amplitude, when the phase is p.

Our comparisons between the EOB waveforms and
the NR. data are restricted to the late-inspiral, merger
and ringdown, that is roughly 30-40 GW cycles before
merger, depending on the mass ratio. The injected sig-
nals contain only the NR waveforms available. We do not
match the NR waveforms to EOB or PN waveforms at
low frequency to increase the number of cvcles because
we do not know how well the EOB or PN waveforms
would approximate the NR waveforms outside the region
of calibration and we do not want to introduce unknown
errors when estimating the systematic biases.

There is no guarantee that a template that is in phase
with the NR waveform during the last 30-40 GW cycles
will remain so throughout the entire inspiral. The mass
parameters are strongly encoded in the GW phase, so
any additional de-phasing at earlier times than covered
by the NR simulations can potentially increase the sys-
tematic biases. Therefore, in order for our study to be
meaningful, we consider binary systems that have a total
mass such that the majority of the SNR is accumulated
during the last 30-40 GW cycles before merger.

III. STATISTICAL VERSUS SYSTEMATIC
ERRORS USING MCMC TECHNIQUES

‘We use the MCMC algorithm [42, 43] to produce sam-
ples from the posterior distribution function for the wave-
form parameters. The MCMC sampler is built on the
foundation of Bayes’ Theorem, which, in the context of
parameter inference, defines the posterior distribution
function for parameter vector @ and data d as

p(6ld, 7 = X422 O, @)

Here p(-|:) are conditional probability densities with ar-
guments on the right-hand side of the bar assumed to
be true, p(d|@,T) is the likelihood, p(@|I) is the prior
distribution, and p(d|Z) is the model evidence, which, in
parameter-estimation applications, serves only as a nor-
malization constant. The information Z denotes all of
the assumptions that are built into the analysis, par-
ticularly that the NR waveforms represent reality (see
Sec. II for associated discussion). Henceforth, to sim-
plify notation, we shall not include Z when writing the
conditional probability density p(-|-). When comparing
different model combinations, we adopt the notation for
conditional probabilities with arguments to the right of
a vertical bar representing the data and arguments to
the left signifying which model was used as templates.



For example, results labeled p(EQB22[NR) come from the
posterior distribution functions for models using EOBs»
as the templates and an NR waveform as the data.

With the posteriors, we compare the statistical error
(the characteristic width of the posterior) to the system-
atic error (the displacement from the injected parameter
values of the posterior’s mode). We do not include a noise
realization in the simulated data, as that introduces addi-
tional biases — each noise realization pushing the best-fit
solution away from the injected value in a different way
— which are not easily quantified [56]. As the control
in this experiment, we simulated (noise-free) data with
EOB waveforms and use EOB templates for parameter
estimation, giving us one set of results with no systematic
bias except from the sampling error in the Markov chains
due to their finite length. We use these controlled results
as code verification, and as the standard against which
the other models’ performance is compared. We then
test the EOB waveform models by injecting NR wave-
forms (summed over all available modes) and using the
two EOB models discussed in Sec. II as templates. The
EOBgz; model is used as a baseline, as it has been em-
ployed in LIGO/Virgo search pipelines to analyze data
collected in recent science runs [28, 57]. The EOBun
model is the most complete waveform at our disposal
and is used to measure how well the EOB model could
perform on NR data.

In Eq. (2) we use the standard gaussian logarithmic
likelihood lnp(d|@) = —(d — h(8)|d — h(8))/2+ C, where
C is & normalization constant that does not depend on
model parameters and is henceforth neglected, h is the
template, and

Sfuya a* : 4
(alb) —zz / ()i f;;};‘(f)b 1(f)

denotes a noise-weighted inner product with the sum on ¢
over I (independent) interferometer channels and S {f)
is the one-sided noise power spectral density (PSD) for
detector i. The bounds of integration [fumin, fiyq) are
the minimum, frequency of the NR waveform and the
Nyquist frequency of the data, respectively. The Nyquist
frequency is chosen to ensure that the highest frequency
portion of the waveform is well below the instrument sen-
sitivity curve, while fiu:n is set by the duration of the NR
waveform and the total mass of the system, such that we
only integrate over frequencies where there is numerical
data.

For sach case, the Markov chains are run for ~ 10° it-
erations, taking about 10*° CPU hours to complete. The
chains rely on parallel tempering [58|, differential evolu-
tion [59], and jumps along eigenvectors of the FMI (e.g.,
see Ref. [60]) computed from PN waveforms to efficiently
explore the posterior distribution function. We use burn-
in times of 10* samples, and run several chains with dif-
ferent initial locations to check for convergence. Prior
distributions for all parameters are chosen to be uniform.
Azimuthal angular parameters (e, ', and ;) have sup-
port over [0, 27) with periodic boundary conditions, while

af, (3)

=1 fmin

4

declination-like angle parameters (sin d, cost) range from
[-1,1] with reflecting boundary conditions. The ranges
for InM and In Dy, are chosen to be large enough so as
to not influence the posteriors. The prior range on In M
is coupled to In M, as the maximum value of the chirp
mass occurs for the ¢ = 1 (v = 1/4) case, and depends
on the total mass M of the system. Because of this, the
prior boundary on chirp mass does affect the posteriors
for the equal-mass svstems considered in this work.

The products of our analysis procedure are samples
from the posterior distribution function p(@!d} — an
oddly shaped, sometimes multimodal, blob living in a 9D
space. There is no perfect way of distilling this informa-
tion into a simple, robust, statistic to assess parameter-
estimation accuracy. We will make do with the “frac-
tional systematic error” §3z. For parameter 6, we first
define the systematic error Sy = |fyap — 60| where Oyap
is the mazimum a posteriori (MAP) value and @y is the
injected value, while the statistical error is quantified by
the standard deviation of the 1D marginalized posterior
distribution function gy. We then define the fractional
gvstematic error as the ratio between 3 and the statis-
tical error:

0Bp=—. (4)

We consider templates that consistently yield 68 < 1 as
introducing negligible bias assuming the NR, waveforms
are exact, which, as seen in Sec. TI, is not the case !

The fractional systematic error (4) can be interpreted
as the number of standard deviations away from the in-
jected value at which we find the MAP waveform. This
choice of statistic is not perfect — low-SNR systems have
very non-gaussian posteriors making the standard devia-
tion a poor choice for characterizing the statistical error.
Furthermore, the MAP parameters are a single point and
tell us nothing about how large a region in parameter
space had similar posterior support to the current best
estimate. Additionally, the MAP value is a feature of
the full 9D posterior, while the variances are computed
from the marginalized posterior distribution functions.
This introduces complications for some special cases as
we shall discuss in detail below.

IV. RESULTS FOR ADVANCED LIGO
DETECTORS

The first test of the EOB waveforms uses simulated
data from the network of advanced ground-based detec-
tors expected to come on line in the middle of this decade:
the two LIGO detectors in the USA and the Virgo de-
tector in Italy. We use the same noise PSD for each in-
terferometer, the “zero-detuned high-power” curve from

1 Currently we have no way of incorporating the numerical error
of the NR waveforms into our estimate and so we neglect it.



Ref. [61], which is the sensitivity curve for the fully com-
pleted Advanced LIGO detector. The GW response in
each interferometer is modeled by convolving the GW
signal with the beam-pattern function for that detector
and applying the appropriate time-delays between inter-
ferometers [62].

A. Choice of binary configurations

We study several binary configurations using different
mass ratios, total masses, and SNRs. The SNR of the
system is computed via SNR = +/(d|d), and its value is
controlled by adjusting the luminosity distance Dy,. Be-
cause our simulated data d contain no simulated noise,
the SNR is simply the inner product of the injected wave-
form with itself. Also, our definition of the inner prod-
uct in Eq. (3) includes a summation over all interferom-
eter channels, thus we quote the network SNRs for the
ground-based studies.

The first three panels of Fig. 1 show the time-domain
EOBgn waveforms (blue, dotted) and whitened by the
noise spectral density (red, solid) for three representative
cases studied here. The vertical lines indicate intervals in
which 10% of the signal power is accrued, starting from
fmin for each system, with the rightmost line indicating
where 99.9% of the power has accumulated. The power
intervals are included as a guide to see which portions of
the waveform contribute most to the parameter estima-
tion. For instance, the ¢ = 1, M = 50 Mg waveform
acquires 50% of the signal power in the last 1000 M of
the signal, while the ¢ = 2, M = 23 Mg signal is much
less dominated by the late-inspiral and merger, account-
ing for only 30% of the power. The g = 6, M = 120 My
examples are most influenced by the latter stages of the
signal, which make up over 70% of the power.

The bottom-right panel of I'ig. 1 shows the strain spec-
tral densities for the same three systems, now using the
NR waveforms used in this study. Also included is the
Advanced LIGO power spectral density.

We focus on moderately high-mass black-hole merg-
ers with M ~ 50 Mg (e.g., the equal-mass case shown
in Fig. 1: top-left panel, red solid curve in bottom-
right panel). Beyond their potential as Advanced LIGO
sources?, high-mass systems serve an important role in

2 A binary with M ~ B50Mg is astrophysically relevant, as
the largest black-hole mass ever observed is in the range of
23-34 Mg [63, 64]. Recent results from population-synthesis
studies suggest that massive low~metallicity stars are capable
of producing black holes as large as M ~ 80 Afg [65], although
these findings are for single stars only, and binary evolution could
either increase or decrease the maxirmm black-hole mass. Addi-
tionally, there exists at least one example of a massive Wolf-Rayet
star, R136al [66], with A ~ 250Mg at a distance of ~ 0.1 Mpec
and with sufficiently low metallicity to produce a massive black
hole. However, it cannot be excluded that the star goes instead
through a pair-instability supernovae leaving no remnant.

3

testing the waveform models for two reasons: First, as
explained in Sec. II, the NR signals are short in duration
and we do not supplement the waveform by hybridiz-
ing the numerical data with analytic inspiral models at
low ‘frequency. We therefore require higher-mass sys-
tems, merging at lower frequency, to ensure that most
of the inspiral missing from the NR data will fall outside
the sensitive measurement band of the detector. With
M ~ 50 Mg NR waveforms start at ~ 30 Hz, setting
Jemin in the inner product defined in Eq. (3). Comparing
thege data to EOB waveforms with the same parameters
but fmin = 10 Hz (below which the Advanced LIGO sen-
sitivity is very poor), we find the NR waveforms contain
~ 85% of the total signal power, or ~ 90% of the total
SNR.

A second reason for focusing on M ~ 50 Mg, for the
binary is that these systems are “centrally located” in
frequency over the most sensitive band of the advanced
detectors (~ 30 to ~ 10% Hz, e.g., see the bottom-right
panel in Fig. 1), such that inspiral, merger, ringdown,
and additional modes all contribute to the overall signal
power and, accordingly, the parameter-estimation capa-
bilities. Generally speaking, we expect such systems to
make the greatest demands on complete inspiral-merger-
ringdown waveform model accuracy.

While the M ~ 50 Mg systems serve as the basis
for our comparisons, we include additional examples to
probe regions of signal space that are of particular in-
terest. These include a ¢ = 6, 120Mg system {Fig. 1:
bottom-left panel, blue dotted curve in bottom-right
panel) chosen such that the subdominant modes con-
tribute the most, as they will be most pronounced at high
mass ratios, and signal power from the higher frequency
modes is still in the sensitive band of the detector. At
this mass, fmin = 10 Hz, so our analysis is not missing
any signal power due to the length of the NR data.

We also go to lower masses, using a ¢ = 2, 23 Mg
binary (Fig. 1: top-right panel, green dashed curve in
bottom-right panel) as a more likely LIGO/Virgo de-
tection, to demonstrate the EOB models’ parameter-
estimation accuracy not at the extremes of a potential
binary signal, but within reasonable expectations of what
the coming data may hold (apart from inciuding the
black-hole spins). It is worth noting that for these low-
mass systems we are missing a large portion of the in-
spiral, as fuin = 60 Hz and ~ 30% of the full SNR will
be accumulated below that frequency. Therefore, these
results might change in the future when longer EOB and
NR waveforms become available.

B. Results on systematic biases at fixed inclination
angle

In Fig. 2 we plot the 1D marginalized posterior dis-
tribution functions for each parameter for the case of a
binary with mass ratio ¢ = 2, total mass M = 51 My,
and network SNR. = 48 produced using an MCMC sam-
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FIG. 1: [Top row, and bottom-ieft] Time-domain EOB waveforms (blue dotted) and the same signal whitened by the noise
spectral density (red solid) representing different test cases studied in this work. The time-axis is scaled by the total mass
and shifted by the merger time. The horizontal dotted lines demarcate 10% intervals for accumulated signal power, with the
rightmost line at the 99.9% mark. [Bottom right] Strain spectral densities |h(f)| showing the estimate fcr the Advanced LIGO
noise curve (gray dotted line} and the NR waveforms for the same representative examples as the other panels.

pler. The inclination angle is chosen to be ¢ ~ #/3.
The 'independent variables in these plots are A@
0 — 0.,;, where @y,; are the injected parameter values.
The p(EOB22|EOB2s) histograms (green, dashed lines)
are the posteriors using the EQOBgs waveforms for both
the signal and the templates. These confirm that the
MCMC sampler is working properly, as the posteriors all
show strong support for the injected waveform param-
eters (peaking at or near () and statistical errors con-
sistent with results in Ref. [29] obtained using FMI es-
timates and phenomenological inspiral-merger-ringdown
waveforms.

The red (solid) lines and blue (dotted) lines are for
data containing an NR signal and the EOBgs and EOBpy
waveforms as templates, respectively. The bottom-right
panel shows the logarithmic likelihood distributions for
each chain. We can see from these posteriors that the
EOBg;; waveform is significantl;y biased away from the
NR injected value, by ~ 1% in both M and M. This

bias is substantially reduced when including the subdom-
inant modes in the EOB template, to the point where
the systematic error is well within the statistical error
of the posterior. For the extrinsic parameters such as
distance and sky-location, the posteriors for the approxi-
mate templates are nearly identical to those produced by
using the exact same waveform for both data simulation
and parameter estimation. We also see the role that sub-
dominant modes play in breaking the 7/2 degeneracv in
the polarization angle ¢, which can aid in distance and
sky-location determination for some systems.

The SNR of the residual d — h, given by SNR,.s =
v —2Inp(d|#) can be inferred from the bottom-right
panel. Viewed in this way, there is a distinct excess in
the residual for even the EOByy case {(blue, dotted) in
comparison with the idealized control MCMC residuals
(green, dashed). To understand the significance of this,
consider applying a detection threshold of SNR = 6 [67]
for the residual waveform. This corresponds to a maxi-
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FIG. 2. Example margiralized posterior distribution functions for a birary system with mass ratio g = 2, total mass M = 51Mg,
and network SNR = 48 produced using an MCMC sampler. The green (dashed) histograms arise from injecting the EQBas
waveforms and using the same model as the template. The red (solid) distributions use the EOBg2y waveform while the blue
(dotted) curves use the EOBun waveform to recover an NR injection. The z-axis shows the distance away from the injected
parameter value, so distributions that peak at zero show no bias. The bottom-right panel shows the logarithmic iikelihood
distributions, which are used to quantify the amount of residual power left behind by the waveform model. The y-axes have

be normalized to range between [0, 1].

mum !ogarithmic likelihood of < 18, below which the
residual could potentially contain enough power to be de-
tected after the best-fit waveform is regressed from the
data. Suppose in the near future we have model wave-
forms at our disposal containing all of the details of black-
hole mergers (i.e. spins and eccentricity) that generally
produce SNR s < 6 for equally detailed NR simulations,
and yet coherent residuals are consistently found in the
data. Such an event could suggest a possible departure
from gereral relativity.

The resuits from our MCMC studies for different sys-
tems ere displayed in Tables T and II, which show the
fractional systematic error 63 (defined in Sec. III) for
the mass, sk location, and distance parameters. The
injected waveforms again had an inclination angle of
¢ = 7/3. We include our estimate of the stafistical error
oy to quantify the precision of the advanced detectors for
the systems considered here. The standard deviations

should be interpreted with caution; we do not include
noise in the simulated data, so the deviations are not rep-
resentative of the “error bars” on a particular detection,
but instead represent an ensemble average over idealized
Gaussian stationary noise realizations of the statistical
error for these particular systems.

Table I contains the intrinsic parameters — those that
affect the shape of the waveform. Because we consider
non-spinning black holes, the only intrinsic parameters
are the masses. The ezirinsic, or observer-dependent,
parameters {i.e., distance and sky-location) are given in
Table II. They are encoded in the instrument response
to the GW, instead of being imprinted in the phase and
amplitude evolution of the waveform itself. We do not
report on the orientation parameters ¢ and + or reference
time ¢, and phase y, parameters in this fashion, but
note that results for these other parameters are consistent
with the extrinsic variables in Table II.



p(EOB[EOB) p(EOB2:2|NR) p(EOBur|NR)
g M (M) fiow (Hz) SNR| Oinmr Olam 0Pzt 8Binm |Omar Omm 68mar 80m| Oinre  omr 8Pam 8Bam
1 50 30 12 | 002 0.02 0.11 0.05 |0.02 002 034 0.17 | 002 0.02 029 0.10
1 50 36 48 |4%x10723%x10%1%x107° 014 |0.01 001 176 0.84 12x107%2x10"% 0.79 0.87
2* 23 60 12 | 0.02 0.01 0.01 002 [0.03 002 027 007 | 0.03 002 018 0.26
2 51 30 12 | 0.03 0.02 3x107%4x10°%0.03 0.02 047 028 | 0.03 0.02 001 0.01
2 51 30 48 | 0.01 0.01 0.01 001 [001 001 192 1.39 | 0.01 0.01 093 0.32
6 56 30 12 { 0.03 0.03 0.03 0.08 |0.03 003 094 066 | 0.02 0.02 058 0.39
6 56 30 48 | 001 5x107%. 0.23 0.04 (001 001 347 251 001 4x107% 143 0.84
6 120 i0 12 | 0.03 0.03 0.05 0.14 [0.03 003 167 060 | 0.02 002 029 0.8

TABLE I: Fractional systematic biases 83 (see Eq. (4)) and statistical errors ¢ for intrinsic parameters as determined by the
MCRMC sampler. An asterisk in the mass ratio column indicates examples where EOByn was used for the p(EOB|EOB) study.

All other examples used the EOBaz waveform.

From Table I we can see that generically, the EOBag
waveforms are not as accurate as the EOBpy waveforms,
which include the subdominant modes. This is true even
for comparable-mass systems, where the subdominant
modes only minimally contribute to the overall waveform
power. The bias introduced by neglecting additional har-
monics is not due to missing waveform power as much as
it is caused by phase differences between a quadrupole-
only template and the full NR data, as coherent matched
filtering analysis are typically more sensitive to phase
than amplitude.

The parameter estimation accuracy of the EQBpn
model up to SNR ~ 50 exceeds expectations from
Ref. [25], as can be seen by focusing on rows 2 and 7
in Table 1. Here we find systems chosen specifically to
compere with Fig. 15 in Ref. [25] where, based on the
accurecy requirement proposed in Refs. [40, 41], they
predicted that systematic error could exceed statistical
error at single-detector SNR ~ 35 (g = 1, M = 50Mg)
and ~ 11 (g =6, M = 56 Mg). ®

Qur analysis uses the LIGO/Virgo network of de-
tectors, as opposed to the single-detector studies from
Ref. [25]. This difference will not heavily impact the
results, as it is the measurement of intrinsic parameters
that is most affected by differences in the waveform model
due to both the accuracy with which they are measured,
and the way they are encoded in the phase evolution of
the signal. Measurement of the intrinsic parameters is
not greatly influenced by the inclusion of additional de-
tectors in the network (at a fixed SNR). Qur findings
show that, even at SNRs that are rather high for an ex-
pected LIGO detection, the EOByy model introduces
systematic errors that differ by < 1o from the injected
parameters.

The extrinsic parameters, on the other hand, are in-

3 The accuracy criterion used in Refs. [25, 40, 41] is a “sufficient”
but “not necessary” requirement for parameter estimation, and
it does not say which of the binary parameters will be biased and
how large the bias will be. Thus, the authors of Ref. [25] were
making conservasive judgments about the waveform accuracy.

ferred mostly from the overall amplitude of the wave-
form, which is not as well measured as phase, and the
time-of-arrival of the signal at each detector. We thus
expect that the extrinsic parameters, determined with
lower fidelity than the masses, will be better able to toler-
ate small differences between template waveform models
within the statistical error. Adding additional detectors
to the network dramatically improves the statistical er-
ror for extrinsic parameters, mostly due to the increased
baseline [68], but not to the point of becoming influenced
by the waveform systematics.

Indeed, we find that the relative systematic biases for
extrinsic parameters are generally smaller that those of
the intrinsic parameters.For systems with ¢ > 2, regard-
less of the SNR or the EOB model, the systematic errors
are consistently smaller than the statistical errors, even
when the (2, 2)-only waveform is used as the template.
This is evident in Fig. 2, where the Dy, sin §, and « poste-
riors are nearly indistinguishable, despite the significant
difference in the residual left behind by the waveform
model, as shown in the bottom-right panel containing
the logarithmic likelihood distributions. The same can
not be said for the equal-mass cases {top two rows in
Table II), where we encounter a subtle effect from our
choice of statistic, 6.

For the SNR = 12, equal-mass case, the 63 statistic
breaks down and resuits are omitted from the table. At
such a low signal strength, the orientation parameters
are very poorly measured, with the polarization angle 1
effectively unconstrained. These large measurement un-
certainties cascade through the 1D posteriors via strong
¥ — ¢ and ¢ — Dy, covariances. We are left with an un-
constrained Dy, distribution that is poorly characterized
by the variance, and large stochastic variation from one
Markov chain run to the next as to where the MAP
parameters lie. This degeneracy is evident in Fig. 3,
where we show the 2D marginalized posterior distribu-
tion function of the i — cos: plane (left panel) from a
p(EOByu|NR) run, and the maximum logarithmic like-
lihood found in the Markov chain for different bins in
Dy, space (right panel) from both p(EQOB33|EOB22) and
P(EOByu[NR). We see a virtually flat distribution of the



q M (Mg) fie- (Hz) SNR|Guins 0o (rad)|om b, by 38sins 68a |0inn;, 38inp, 8Psins 6B |0nny, 88D, IPsins 0fa

p(EOB22[NR) p(EOBru[NR)

2(EOB[EOB)
1 50 30 12 [0.06  0.04

1 50 30 48 (0.03 0.01 0.10 0.11 0.01
2* 23 60 12 |0.06 003 |024 002 0.04
2 51 30 12 |0.06 0.04 028 0.03 0.08
2 hi 30 48 | 0.03 0.02 0.12 010 0.10
6 56 30 12 1007 0.05 0.29 007 0.04
6 56 30 48 (003 002 | 014 029 0.10
6* 120 10 12 10.08 0.05 0.21 023 - 0.28

0.09} 0.12 0.12 0.17 0.03] .20 064 0.07 0.30
0.02| 0.27 028 0.02 0.06| 0.25 0.30 0.05 0.08
0.06; 0.29 021 0.28 0.07( 0.27 060 0.15 0.33
0.08( 0.14 0.11 0.1¢ 0.11] 0.11 007 0.04 0.05
021, 029 0.28 (.14 0.09| 0.25 0.40 041 0.39
0.07| 019 028 0.14 0.09| 0.09 0.78 027 0.21
0.13] 0.30 0.86 0.37 0.54| 0.22 036 0.02 0.16

TABLE II: Same as Table I, except here we show a subset of the extrinsic parameters corresponding to the binary’s location.
Because of their similarity between each run, the statistical errors are displayed once but apply to each example. Results for
the ¢ = 1, SNR = 12 example are omitted due to the failure of our 43 statistic.

maximum logarithmic-likelihood values between ~ 0.5 to
~ 2.25 Gpc, with well over half of the allowed parameter
space in the 1) — cos « plane receiving significant posterior
support. The injected value of Dy was near 1 Gpe.

The over-density at {¢, cost} ~ {n/3,0.5} corresponds
to the injected parameter values, with the w/2 — shift
degenerate mode still appearing despite the inclusion of
subdominant modes. Recall that this is an equal-mass
system, where the subdominant modes are the least no-
ticeable. The over-density at cos: ~ 1 is due to the
Markov chain preferring template waveforms with min-
imal contribution from subdominant modes (to match
the strictly equal-mass injection) as the sampler explores
higher mass ratios, up to g ~ 3 in this case. Systems with
cost = k- L = 1 are face-on and it is this configuration
where the subdominant modes are least prominent.

C. Dependence of the results on the inclination
angle

Due to the high computational cost of each MCMC
run, we are not able to Monte Carlo over a large popula-
tion of binary systems. We instead have chosen extrinsic
parameters away from the extremes of parameter space.
This means sky-locations that are away from nulls in any
detector’s response, and inclinations (1 ~ 7/3) that were
not edge- or face-on with respect to the observer’s line of
sight.

One of the more interesting results from this study is
the impact of the subdominant modes on the parameter-
estimation capabilities of ground-based detectors. The
role that the additional modes play in the waveform de-
pends heavily on both the mass ratio and the orientation
of the binary — edge-on systems have the largest contri-
butiop from the additional modes, while face-on systems
are most dominated by the (2,2) mode. It is therefore
possible that, for some more extreme orientations, sys-
tematic biases could become large due to the increased
importance of the additional modes.

To allay this concern we performed a series of NCMC
runs on a system where the subdominant modes would

play an important role, exploring the edges of orientation
space for each run. We chose the M = 120Mg, g = 6
system (row 8 in Tables I and II) and analyzed three dif-
ferent orientations: edge-on (¢ = w/2), face-on (¢ = 0),
and moderate tilt (¢ = 7/3). We compare the Aln M
and Aln M posteriors for each of these systems using
the EOByy model as a template to study data contain-
ing an NR waveform injected at SNR= 12. The results in

t |oinar 8Pinas{oinm 8P | MR %HH

0 1003 0.10 | 004 0.12 55 ~0
«/3|0.02 0.29 | 0.03 0.06 59 7.5
«/210.02 0.18 ! 0.03 0.01 60 10

TABLE III: Fractional systematic errors and statistical errors
for In M and In M when M = 120Mg, g = 6, SNR = 12 and
for three different inclinations: Edge-on (¢ = w/2), face-on
(¢ = 0), and an intermediate orientation (+ = w/3). We also
include the percentage that the merger (MR) and additional
modes (HH) contribute to the total SNR.

Table III show the fractional systematic error well below
unity for each orientation regardless of the inclination
angle. We-also include the percentage of the total SNR
that comes from the merger and ringdown of the wave-
form (MR) and the additional modes (HH). This result
confirms that the parameter-estimation accuracy of the
EOB model is robust to different orientations, and thus
different strengths of the additional modes.

D. Simulating a detection

All of the above results have been performed on simu-
lated data that do not contain any noise, but do include
the noise PSD in the inner product defined in Eq. (3).
Thus the posteriors that we generate are not represen-
tative of a probability density function for an actual
GW measurement, but instead are the hypothetical aver-
aged measurements of the same system in an ensemble of
noise realizations [69-71]. To more realistically demon-
strate the parameter-estimation capabilities of advanced
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FIG. 3: Selected results from the ¢ = i, SNR = 12 run to exhibit the breakdown of 653 as a useful statistic. The left-hand
panel shows the 2D marginalized posterior for the orientation angles ¥ and cose, with darker colors corresponding to higher
probability density. The right-hand panel displays the maximum logarithmic likelihood as a function of Dy, which is effectively

uniform between ~ 0.5 and ~ 2.25 Gpe.

ground-based interferometers, we want now to simulate
a single LIGO/Virgo detection.

To that end, we use again the binary configuration
with ¢ = 2, M = 51 Mg and network SNR of 12, but now
add stationary, gaussian noise to the NR waveform using
the same PSD as in the noise-free study. The resultant
posteriors are then representative parameter-estimation
products, subject to the following important caveats:

e We use the same PSD for each detector when,
in practice, each interferometer will have different
sensitivity at any given time. Furthermore, the
Virgo design sensitivity is not identical to LIGO
(although it is qualitatively similar). We also effec-
tively introduce a noise “wall” at 30 Hz to account
for the limited duration of the NR data.

e We do not include any calibration errors in the
waveform injections, which could prove to be a
significant contribution to the overall parameter-
estimation error budget [72]. Furthermore, we do
not account for intrinsic error in the NR waveforms.

o We recoghize that simulated additive gaussian
noise is different from injecting waveforms into real
LIGO/Virgo noise [56].

For this study we find the 2D marginalized posterior
distribution functions to be of the most interest. We show
results for the sky-location in Fig. 4 and mass parameters
in Figs. 5 and 6.

In Fig. 4, the sky-location posterior is shown in a Mol-
weide projection with the detector locations projected on
to the celestial sphere. The white, dotted lines show the
circles of constant time delay between each pair of de-
tectors. The posterior should sit at intersections, and
the principal axis should lie along a line. A small white
square is included, centered on the injected position. The

injected values for the sky location are contained within
the ~ 63% confidence interval of the posterior (the red
region of the error ellipse). The injected sky location was
chosen to be a region where the SNR in each detector was
roughly equivalent.

Of more pertinence to this study are the mass poste-
riors. While In M and In M are the most convenient pa-
rameters for the MCMC sampler, being the most orthog-
onal, they are not of the most interest to the wider as-
trophysical community. A better data product would be
posteriors on either the individual masses m; and ma, or
the total mass and mass ratio. In post-processing we take
the MCMC chains and compute the relevant mass param-
eters at each step in the chain. The injected component
black holes have masses m; = 34Mg and ma = 17Mg.
We show the 2D marginalized posterior distribution func-
tions for the the ri—mq (Fig. 5), and M—¢q plane (Fig, 6),
where the color corresponds to the posterior density.

These figures give a good depiction of just how cor-
related the mass parameters are with one another, and
how much of parameter space is supported by the chain
in part due to that strong correlation. For exampie, the
M—q plane has significant support for mass ratios be-
tween 1 and 3, compatible with previous LIGO MCMC
studies using PN waveforms (e.g., see Ref. [48]). These
are the type of parameter-estimation products that the
astrophysics community can anticipate as the advanced
detectors come on line in the coming years.

V. RESULTS FOR SPACE-BASED DETECTORS

For EOB waveforms that include subdominant modes,
we have found relatively small systematic errors in
parameter-estimation results for ground-based observa-
tions with SNR < 50. Because ground-based GV instru-
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FIG. &: 2D marginalized posterior distribution function for the sky-location of a ¢ = 2, M = 50Mg, binary with SNR = 12
injected into simulated stationary gaussian noise colored by the Advanced LIGO noise power spectral density. The red, yellow,
and cyan regions roughly correspond to 1, 2, and 3o confidence regions. The white box represents the injected sky location
of this source. The position of each interferometer in the network are projected onto the sky, and depicted with H,L, and V
for LIGO Hanford, LIGO Livingston, and Virgo. The white, dashed lines show the locations that yield the same time-delay

between each pair of detectors for the injected sky position.
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FIG. 5 2D marginalized posterior distribution function for
the individual masses m; and ms of a ¢ = 2, M = 51M, bi-
nary with SNR = 12, injected into simulated stationary gaus-
sian ncise colored by the Advanced LIGO noise power spectral
density. The injected values for {m., ma} were {34, 17} Mo,

ment rates are limited by sensitivity, higher-SNR events
are exceedingly unlikely in the first generation of detec-
tions. Proposed space-based instruments will be sensi-
tive to supermassive black-hole (SMBH) mergers out to
cosmological scales, such that a significant fraction of de-
tected events may have SNR > 100. Space-based in-
struments are typically sensitive to these events over a
broad bandwidth covering a large number of cycles lead-
ing up to merger [4, 73]. Such observations will make
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FIG. 6: Same as Fig. 5, but now depicting total mass M and
mass ratio g.

much greater demands on the accuracy and efficiency of
inspiral-merger-ringdown waveform templates. Though
considerable effort has gone into estimating the ability
of space-based instruments to measure astrophysical pa-
rameters assuming accurate waveforms, very little has
been done to assess the template requirements for these
future observations. Here we make a limited exploration
of the capability with the current numerical-relativity
and EOB waveforms to pursue space-based observations.

Of several proposed space-based GW interferometer
instruments [3, 4, 74, 75|, the best studied concept is
the classic LISA mission [3] . While acknowledging that



there is currently considerable uncertainty about when
and how the first space-based GW instrument will be de-
veloped, we choose to study the classic LISA configura-
tion to make contact with the large body of work that has
already been dedicated to black-hole merger parameter
estimation (e.g., see Refs. [30, 31, 76-78]). To compare
with other concepts, the most relevant alteration from
the classic LISA design is the arm-length (e.g., from 5
Gm for classic LISA down to 1 Gm for eLISA), which
sets the overall scale for parameter-estimation capabili-
ties. Our results for a more modest detector configura-
tion would be very similar to those for classic LISA, after
appropriately rescaling the total mass of the black-hole
system.

We follow here the same procedure outlined for the
LIGO/Virgo studies in Sec. IV, where NR waveforms are
injected into simulated noise-free data, and the signals
are analyzed using the EOB model as a template. Be-
cause we saw significant bias in the EOB3; model at SNR
~ 50 it is safe to assume that those errors will only grow
with SNR, and so we focus these runs only on the EOBgug
model.

The duration of the available NR data restricts us to
brief LISA observations, for which we can apply the static
limit for the detector; thus we neglect LISA’s orbital mo-
tion during the observation time. Consistently, we focus
on systems of mass 3 x 107 M at the high end of LISA’s
sensitive range. For such observations the maximum fre-
quency attained by the merger signal is well below the
transfer frequency of the detector {(when the wavelength
of the GW signal is comparable to the size of the detec-
tor). In this low-frequency, static regime, the instrument
response is equivalent to two 60° Michelson interferome-
ters, co-located, and misaligned by /3 radians. The an-
tenna patterns for this configuration, and the discussion
of the two limits applied here, can be found in Ref. [79].

We consider mass-ratios in the range 2 < ¢ < 6 ob-
served at SNR=100, which would make these unusu-
ally distant for LISA cobservations. As shown in Fig. 7,
the power-spectral density is similar over this mass-ratio
range with more structure at ¢ = 6. The noise-weighted
waveforms for these cases are most comparable to the
largest-mass 120M 4 LIGO case that we studied. Space-
based instruments are not expected to have a strong
power-law slope like the seismic noise wall in the LIGO
sensitivity curve, meaning that even for large masses
there is a softer degradation of sensitivity going back
to the early portions of the signal, making our fu:, cut
somewhat more artificial here.

Generally the higher SNRs of our nominal LISA obser-
vations would predict larger bias from systematic errors
in the template waveforms. Because of the differences be-
tween the sensitivity curves and response for LISA and
LIGO, however, it is not straightforward to scale up such
expectations. Table IV shows our results for the param-
eter biases for mass M and chirp mass M. Unlike the
LIGO results, the biases here are already significant in
most cases for LISA observations at SNR=100, reaching
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a few times the statistical error level. In Table IV we also
provide the SNR of the residuals after the MAP wave-
forms are removed from the data. These residuals with
SNR > 6 would be detectable and could therefore lead
to biases in estimates of overlapping signals. Residuals
at this level would also limit the utility of the current
waveform templates for studies aimed at testing general
relativity (52, 53). '

For LISA, however, such a system would have to be
exceedingly distant, at redshift z > 20 or more, in order
to expect an SNR as small as 100 [78]. Actual SNRs could
be as much as 100 times larger, and we would expect
correspondingly larger relative biases and residuals. Full
interpretation of LISA data would thus require higher
levels of template accuracy. Even the level of errors in
the numerical simulations used here in place of the exact
predictions of general relativity are far too large to avoid
biasing such high-SNR measurements.

That being said, while the statistical error should de-
crease linearly with increasing SNR. (causing 68 to grow),
the systematic error should remain approximately the
same, and the absclute biases in the mass parameters
are small. Reading from Table IV we see that the sys-
tematic errors in M and M are < 1%. Converting these
into the individual masses, the biases on m; and mg are
at most a few percent. While the MAP mass parameters
may end up many o away from the true values and would
thus fall short of an optimal analysis of LISA data, such
~ 1% errors in the masses are still small in astrophysical
terms and may have little impact on key inferences made
about the massive black-hole population. For example,
when trying to constrain black-hole formation scenarios
using simulated eL.ISA BBH catalogs, Amaro-Seoane et
al [4] (based on the procedure in Ref. [51]) endured sta-
tistical errors as high as ~ 1% and were still able to easily
discriminate between black hole seed models.

The limitations of our current analysis prevent us from
providing any detailed indication of how far template ac-
curacy must be improved for space-based observations.
For the detector configuration used here, the extrinsic
parameter estimation at SNR = 100 is actually worse
than that for the ground-based detectors. Space-based
detectors rely on the long duration of the signals, the am-
plitude and Doppler modulations caused by the orbital
motion, and finite-arm-length effects, to break degenera-
cies among the system parameters. We are limited here
to working in a regime where all of those features are
missing from our instrument model, so our classic LISA
response is more like a two-detector co-located LIGO net-
work operating at significantly lower frequencies than the
existing ground-based detectors.

More complete analysis will require either dramatically
longer-duration numerical simulations or a suitably well-
controlled wav of matching analytical and NR waveforms
at low frequency that does not add as much systematic
error as the template models being tested. We would also
require more computationally efficient signal generation
to successfully study template biases with long-duration
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FIG. 7: Same as Fig. 1 now showing the LISA examples using M = 3 x 10" Mg at SNR = 100. The time-domain waveform

in the left-hand panel is for the ¢ = 6 case.

ik P(EOBru|EOBH=) p(EOBuu|NR)
g M {M¢) fiow (Hz) SNR| laar  Olnmt 68mnr 0Binm SNRies| 0lnns 0inm 8B 8Bin m SNRres
2 3x107 5x107° 100 (2x10° 2x 107 0.09 008 05 [2x1092x10"° 1.19 127 65
3 3x107 5x107° 100(2x10733%x107% 0.02 004 07 |3x1072x10°% 059 282 7.7
4 3x107 5x107° 100(|3x107*2%x107% 010 009 05 [|3x107*3x107® 131 3.02 96
6 3x107 5x107% 100 |2x107%2x107* 0.16 027 05 [3x107*2x107® 062 092 115

TABLE IV: Same as Table I but for SMBH mergers as seen by LISA. Here we also include the residual SNR. after the MAP
waveform is regressed from the data. The p(EOB|EOB) study used the EOBuu model for each example.

waveforms,

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have produced the first measurement
of systematic errors introduced by using EOB templates
to analvze NR waveforms. Qur study’s main focus was
on stellar-mass BBHs observed by Advanced LIGO and
Virgo. We also considered massive black-hole mergers
detectable by space-based interferometers like LISA. We
have injected NR waveforms into simulated data and
have used an MCMC sampler to characterize the pos-
terior distribution function for the astrophysical param-
eters, Dur metric for assessing the size of the systemaitic
error is to compare the offset between the injected and
best-fit parameters to the statistical error characterized
by the standard deviation of the 1D marginalized poste-
riors.

Several of our examples were chosen specifically to
compare with Fig. 15 in Ref. [25]. Encouragingly, we find
that the EOB waveforms accurately recover binary pa-
rameters at SNRs higher than were predicted in Ref. {25]
using the (deliberately) conservative accuracy require-
ments of Refs. [40, 41].

For the stellar-mass systems we have investigated,
when including the subdominant modes, we find system-

atic biases consistently comparable to, or smaller than,
the statistical errors for mass ratios up to ¢ = 6 and
SNRs £ 50. We have tested these waveforms in the
most stringent way possible, simulating high-SNR events
where the merger (the least reliable part of the waveform
calculations) is peaking in the most sensitive band of the
detector, and the higher-frequency modes contribute sig-
nificantly to the overall signal power. For the g = 6
waveforms, the fraction of power contained in the sub-
dominant modes is 11% and 16% for the M = 56 My, and
M = 120M systems, respectively. We also tested low-
masgs systems (M ~ 20 M) to better represent likely Ad-
vanced LIGO/Virgo detections. In all of these examples,
the bias introduced by the EOB waveform in Ref. [25]
was at worst comparable to the statistical errors.

Matched-filtering analyses are most sensitive to the
phase of the signal, and it is the phase of the waveform
that is most influenced by different choices of model.
It is therefore predictable that the most significant bi-
ases appear in the mass parameters. On the other hand,
the extrinsic parameters have comparatively less immpact
on the shape of the signal — the distance comes in as
an overall amplitude scaling, and the sky location is
(for ground-based interferometers) predominantly deter-
mined through triangulation based on time delays be-
tween detectors. Therefore a model waveform used for
parameter estimation has much more room for error if,



for instance, the location of the binary is the primary
interest (say, for optical counterpart searches) and the
requirements on the phase-matching are not as severe.

While the results here are undoubtedly positive, there
is still work to be done in waveform modeling. We are
only testing the EOB waveforms over the last 30-40 GW
cycles before merger and there is no guarantee that longer
waveforms will not accumulate larger phase errors during
the early portion of the inspiral. Furthermore, this study
leaves off significant aspects of the waveform structure re-
lated to black-hole spins and orbital eccentricity. A sim-
ilar study will need to be performed with long-duration,
spinning systems once both the NR and EOB waveforms
are prepared for that test. It will also be valuable to test
the EOB waveforms over a broader class of NR simula-
tions, including those that were not used to calibrate the
template model. Moreover, we have assumed in this pa-
per that the NR waveforms were exact but, as discussed
in Sec. II, this is not the case. One possibility for taking
the numerical error into account is to inject NR wave-
forms computed at different resolution and/or extracted
at different radii and measure the EOB systematic bi-
ases in each case. The difference between these biases
can provide us with an estimate of the intrinsic error
caused by the NR waveforms deviating from the exact
solution in general relativitv. Finally, we do not consider
the effects of real detector noise or calibration errors in
the data, both of which could prove to be a significant
contribution to the overall error budget [56, 72|.

While EOB waveforms that include subdominant
modes were found to have relatively small systematic er-
rors in parameter-estimation results for ground-based ob-
servations with SNR < 50, proposed space-based instru-
ments are sensitive to SMBH mergers with SNR > 100.
For tlese scenarios, we find statistically significant bi-
ases in the mass parameters for mass-ratios in the range
2 < g < 6 observed at SNR = 100, on the order of ~ 1%
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for the component masses of the system. However, as
discussed in Sec. V, systematic errors introduced by the
EOB templates are small enough to still place strong con-
straints on the population of massive black holes in the
Universe.

In the LISA examples, the residual power exceeded
the SNR. > 6 threshold above which the data analysis
could be compromised both in parameter estimation of
overlapping signals and studies aimed at testing general
relativity. Space-based GW data analysis will require
more accurate templates grounded in even more accurate
numerical simulations.

A more complete analysis is needed, but will require ei-
ther dramatically longer-duration numerical simulations
or a suitably well-controlled way of matching analyti-
cal and NR waveforms at low frequency. We would also
require more computationally efficient signal generation
to successfully study template biases with long-duration
waveforms.
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