A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
SAFETY DRAIN SYSTEM FOR FLUID RESERVOIR

ORIGIN OF THE INVENTION

The invention described herein was made in part by employees of the United States Government and may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

CROSS-REFERENCES TO RELATED APPLICATIONS

This patent application is co-pending with one related patent application entitled “SAFETY SYSTEM FOR CONTROLLING FLUID FLOW INTO A SUCTION LINE”, Ser. No. 12/698,793, filed Feb. 2, 2010, by the same inventors and owned by the same assignee as this patent application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to fluid reservoir drain systems. More specifically, the invention is a safety drain system that prevents injuries where the drain system interfaces with the fluid in the reservoir.

2. Description of the Related Art

Many large fluid-filled tanks (e.g., pool, spa, mixing tank, storage tank, etc.) typically have at least one drain formed therein. Frequently, a suction line is coupled to the drain to facilitate removal of fluid from the tank. For example, pools and spas use pumps to continuously pull water through a drain and suction line as part of the water filtration process.

A problem with pool/spa drains (or any other tank drain that would encounter human interaction) is that human hair or extremities can become entrapped in a drain or suction line. Forces at these drains can be as much as several thousands of pounds. At these levels, human hair, fingers, toes, etc. can be violently sucked into the drain/suction line such that a person cannot free themselves from the drain/suction line. In the case of long hair, knots in the hair can readily form behind the drain as the turbulent flow of water moves through the drain and into the suction line. In the case of fingers, toes, etc., the violent sucking of the extremity can cause immediate injury thereto. If the suction force is confined to a small area (e.g., the connection point for a pool’s vacuum line), a person’s torso could provide a sufficient seal to the suction area thereby trapping the person thereto. Further, if such trapping occurs well under the water’s surface, a person could be in danger of drowning. Still further, in extreme cases, intestinal disembowelment could occur if a person’s rectal area were trapped over a drain/suction line.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a safety drain for a fluid reservoir.

Another object of the present invention is to provide a safety drain system that can distribute suction forces as fluid is drained from the reservoir.

Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.

In accordance with the present invention, a safety drain system includes a plurality of drain sections. Each drain section defines a plurality of distinct fluid flow paths with at least a portion of the fluid flow paths commencing at a side of the drain section that is in fluid communication with a reservoir’s fluid. Each fluid flow path at the side communicating with the reservoir’s fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections to carry fluid exiting the reservoir through the drain sections.

BRIEF DESCRIPTION OF THE DRAWING(S)

Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:

FIG. 1 is perspective view of a safety drain system in accordance with an embodiment of the present invention;

FIG. 2 is an isolated side view of a drain section having a flat side where it interfaces with a surface of a reservoir in which it is installed;

FIG. 3 is an isolated side view of a drain section having a contoured side where it interfaces with a surface of a reservoir in which it is installed;

FIG. 4 is an isolated cross-sectional view of a curved drain section having a cap attached thereto in accordance with another embodiment of the present invention;

FIG. 5 is a cross-sectional view of a modular drain section in accordance with another embodiment of the present invention;

FIG. 6 is a top view of the drain section in FIG. 5 taken along line 6-6 thereof;

FIG. 7 is an end view of the drain section in FIG. 5 taken along line 7-7 thereof;

FIG. 8 is a cross-sectional view of three modular drain sections coupled together as part of a safety drain system in accordance with another embodiment of the present invention; and

FIG. 9 is a perspective view of a safety drain system having contiguously patterns of drain sections on both the side and bottom of a fluid reservoir in accordance with another embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring now to the drawings and more particularly to FIG. 1, a safety drain system in accordance with an embodiment of the present invention is shown and is referenced generally by numeral 10. Drain system 10 is coupled to a fluid reservoir referenced by dashed lines 100 that can be representative of a swimming pool or any other tank/reservoir holding a fluid that must be drained therefrom occasionally, periodically, or constantly as part of a filtration or circulation process. Accordingly, it is to be understood that the type of fluid reservoir 100 and fluid contained thereby are not limitations of the present invention. Furthermore, the word “drain” as used herein refers to any withdrawal of fluid from a reservoir (e.g., near the top or along the sides of a reservoir for fluid recirculation as in a pool’s skimmer, at the bottom of a reservoir as in a pool’s drain, or both).

In the illustrated embodiment, drain system 10 includes a number of drain sections 12 leading from reservoir 100 (e.g., a bottom of reservoir 100) to a trunk line or manifold 14. Manifold 14 is sized to carry the entire volume of fluid exiting reservoir 100 via drain sections 12. In many applications,
For ease of description, it will be assumed that each of drain sections 12 is the same. However, it is to be understood that a variety of drain sections 12 could be used in a particular drain system without departing from the scope of the present invention. Each drain section 12 defines a number of channels or paths 120 that lead from one side 12A to the other side 12B of drain section 12. Side 12A serves as the interface with the fluid in reservoir 100 and side 12B is in fluid communication with manifold 14. Each of paths 120 is distinct (i.e., closed between sides 12A and 12B) and defines an opening at sides 12A and 12B. That is, each path 120 defines a fluid flow path between reservoir 100 and manifold 14. The openings formed at side 12A should be small enough such that the smallest human extremity (e.g., finger, toe) cannot fit in any one opening. For most applications, this means that the smallest dimension (e.g., diameter in the case of circular opening) of an opening for a path 120 at side 12A should not exceed approximately one centimeter. The number of distinct paths 120 provided in a drain section 12 will depend on the number of drain sections used in drain system 10 and the volume of fluid that must be handled by drain system 10.

Another feature that can be provided by drain sections 12 is the length of path 120 as a mechanism for preventing entanglement of hair, clothing features (e.g., straps, drawstrings, etc.) etc. More specifically, if hair, straps, etc., were drawn into nearby distinct paths 120 at side 12A, the lengths of paths 120 could be utilized to prevent hair/strap entanglement at side 12B. This can be achieved in the vast majority of applications by making each flow path 120 approximately 3 feet (or longer) in length.

Drain sections 12 can also be used to minimize hair entanglement issues. Specifically, the number of flow paths 120 can be increased such that the flow turbulence and force necessary to draw in and entangle the hair at any localized group of paths 120 is sufficiently small to thereby prevent hair entanglement at side 12B.

Flow paths 120 can be straight and parallel to one another in their drain section 12. To shorten the overall length of a drain section, flow paths 120 could be spiraled or otherwise curved in drain section 12. Each drain section 12 could be made from a solid piece of material (e.g., plastic, composite, metal, etc.) with paths 120 formed therethrough. For example, each drain section 12 could be extruded with paths 120 being formed during extrusion. Each drain section 12 could also be molded with paths 120 being formed during molding. Furthermore, each drain section 12 could be cut from a long length of extruded/molded material that incorpo-

Although not shown in this embodiment, the length of a flow path 320 originating at an end 32B (opposing end 32C) and exit flow path region 32 in manifold region 34.

Along a side of reservoir 50, or along both bottom and side surfaces of a reservoir, (ii) at least one side of the reservoir, and (iii) a side surface of reservoir 100.

The advantages of the present invention are numerous. The safety drain system utilizes small drain openings, long/distinct fluid flow paths, and drain opening distribution to virtually eliminate the dangerous suction forces and hair/garment entanglement issues associated with conventional drain systems. The safety drain system will be especially useful in recreational pools to protect unassuming swimmers. The present invention will also improve safety in training pools where swimmers are often encumbered with lots of equipment and/or clothing, and can be distracted by attempting to accomplish a task at hand.

Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A drain system for a fluid reservoir, comprising:
 a plurality of drain sections with each drain section from said plurality thereof defining a plurality of distinct fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at a side of said drain section adapted to be in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over at least one surface of the reservoir,
 a cap coupled to each said side of said drain section, said cap defining a plurality of flow openings corresponding to said fluid flow paths commencing at said side wherein, when said cap is coupled to said drain section, each of said flow openings is in fluid communication with a unique one of said fluid flow paths commencing at said side, wherein said flow openings are distributed about a periphery of said cap and a manifold coupled to said plurality of drain sections and adapted to carry fluid exiting the reservoir through said plurality of drain sections.

2. A drain system as in claim 1, wherein said sides associated with said plurality of drain sections are arranged in a discontinuous pattern over the at least one surface of the reservoir.

3. A drain system as in claim 1, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

4. A drain system as in claim 1, wherein each of said drain sections comprises an extruded piece of material with said fluid flow paths formed therethrough.

5. A drain system as in claim 1, wherein each of said drain sections comprises a molded piece of material with said fluid flow paths formed therethrough.

6. A drain system as in claim 1, wherein said plurality of drain sections are located along at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir.

7. A drain system as in claim 1, wherein each of said fluid flow paths is at least approximately 3 feet in length.

8. A drain system as in claim 1, wherein said side of said drain section is coincident with the at least one surface of the reservoir.
A drain system as in claim 1, wherein said side of said drain section is planar.

A drain system as in claim 1, wherein a top of said cap is contoured.

A drain system as in claim 1, further comprising a pump coupled to said manifold for developing a vacuum pressure therein.

A drain system as in claim 1, wherein said fluid flow paths are parallel to one another in each of said drain sections.

A drain system for a fluid reservoir, comprising:

- a plurality of drain sections with each drain section from said plurality thereof defining a plurality of distinct and parallel fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at a side of said drain section adapted to be in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over multiple surfaces of the reservoir to include at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir;

- a cap coupled to each said side of said drain section, said cap defining a plurality of flow openings corresponding to said fluid flow paths commencing at said side wherein, when said cap is coupled to said drain section, each of said flow openings is in fluid communication with a unique one of said fluid flow paths commencing at said side, wherein said flow openings are distributed about a periphery of said cap a manifold coupled to said plurality of drain sections and adapted to carry fluid exiting the reservoir through said plurality of drain sections; and

- a pump coupled to said manifold for developing a vacuum pressure therein.

A drain system as in claim 13, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

A drain system as in claim 13, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

A drain system as in claim 13, wherein each of said fluid flow paths is at least approximately 3 feet in length.

A drain system as in claim 13, wherein at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir.

A drain system as in claim 21, wherein said sides associated with said plurality of drain sections are arranged in a discontinuous pattern over the at least one surface of the reservoir.

A drain system as in claim 21, wherein said sides associated with said plurality of drain sections are arranged in at least one contiguous pattern wherein said contiguous pattern is defined by at least two adjacent ones of said sides.

A drain system as in claim 21, wherein each of said fluid flow paths comprises a piece of material with said fluid flow paths formed therethrough.

A drain system as in claim 21, wherein each of said fluid flow paths is at least approximately 3 feet in length.

A drain system as in claim 21, wherein said side of said drain section is coincident with the at least one surface of the reservoir.

A drain system as in claim 21, wherein each said drain section is of modular construction to permit coupling of multiple ones of said drain sections, wherein some of said fluid flow paths commencing at said side of one said drain section are in fluid communication with some of said fluid flow paths from said another of said drain sections coupled thereto.

A drain system as in claim 21, further comprising a pump coupled to said manifold for developing a vacuum pressure therein.

A drain system as in claim 21, wherein said fluid flow paths are parallel to one another in each of said drain sections.

A drain system for a fluid reservoir, comprising:

- a plurality of drain sections with each drain section from said plurality thereof defining a plurality of distinct and parallel fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at a side of said drain section adapted to be in fluid communication with a fluid in a reservoir, said side of said drain section undulating to define a plurality of valleys with each of said fluid flow paths commencing in one of said valleys, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over at least one surface of the reservoir; and

- a manifold coupled to said plurality of drain sections and adapted to carry fluid exiting the reservoir through said plurality of drain sections.

A drain system as in claim 21, wherein sides associated with said plurality of drain sections are arranged in a discontinuous pattern over the at least one surface of the reservoir.

A drain system as in claim 33, wherein said sides associated with said plurality of drain sections are arranged in a discontinuous pattern over the at least one surface of the reservoir.

A drain system as in claim 33, wherein said sides associated with said plurality of drain sections are arranged in a discontinuous pattern over the at least one surface of the reservoir.
at least one contiguous pattern wherein said contiguous pattern is defined by at least two adjacent ones of said sides.

35. A drain system as in claim 33, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

36. A drain system as in claim 33, wherein each of said drain sections comprises an extruded piece of material with said fluid flow paths formed therethrough.

37. A drain system as in claim 33, wherein each of said drain sections comprises a molded piece of material with said fluid flow paths formed therethrough.

38. A drain system as in claim 33, wherein each of said fluid flow paths is at least approximately 3 feet in length.

39. A drain system as in claim 33, wherein said side of said drain section is coincident with one of the multiple surfaces of the reservoir.

40. A drain system as in claim 33, wherein each said drain section is of modular construction to permit coupling of multiple ones of said drain sections, wherein some of said fluid flow paths commencing at said side of one said drain section are in fluid communication with some of said fluid flow paths from said another of said drain sections coupled thereto.

41. A drain system for a fluid reservoir, comprising:

- a plurality of drain sections with each drain section from said plurality thereof defining a plurality of distinct fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at a side of said drain section adapted to be in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over at least one surface of the reservoir;
- each said drain section being of modular construction to permit coupling of multiple ones of said drain sections, wherein some of said fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at said side of one said drain section are in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over at least one surface of the reservoir;
- a manifold coupled to said plurality of drain sections and a manifold coupled to said plurality of drain sections adapted to carry fluid exiting the reservoir through said plurality of drain sections.

42. A drain system as in claim 41, wherein said sides associated with said plurality of drain sections are arranged in at least one contiguous pattern wherein said contiguous pattern is defined by at least two adjacent ones of said sides.

43. A drain system as in claim 41, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

44. A drain system as in claim 41, wherein each of said drain sections comprises an extruded piece of material with said fluid flow paths formed therethrough.

45. A drain system as in claim 41, wherein each of said drain sections comprises a molded piece of material with said fluid flow paths formed therethrough.

46. A drain system as in claim 41, wherein said plurality of drain sections are located along at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir.

47. A drain system as in claim 41, wherein each of said fluid flow paths is at least approximately 3 feet in length.

48. A drain system as in claim 41, wherein said side of said drain section is coincident with the at least one surface of the reservoir.

49. A drain system as in claim 41, wherein said side of said drain section is planar.

50. A drain system as in claim 41, further comprising a pump coupled to said manifold for developing a vacuum pressure therein.

51. A drain system as in claim 41, wherein said fluid flow paths are parallel to one another in each of said drain sections.

52. A drain system for a fluid reservoir, comprising:

- a plurality of drain sections with each drain section from said plurality thereof defining a plurality of distinct parallel fluid flow paths therethrough with at least a portion of said fluid flow paths commencing at a side of said drain section adapted to be in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over multiple surfaces of the reservoir to include at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir;
- each said drain section being of modular construction to permit coupling of multiple ones of said drain sections, wherein some of said fluid flow paths commencing at said side of one said drain section are in fluid communication with a fluid in a reservoir, wherein each of said fluid flow paths at said side defines an opening having a smallest dimension not to exceed approximately one centimeter, said plurality of drain sections adapted to be distributed over multiple surfaces of the reservoir to include at least one of (i) a bottom of the reservoir, (ii) at least one side of the reservoir, and (iii) a bottom of the reservoir and at least one side of the reservoir;
- a manifold coupled to said plurality of drain sections and a manifold coupled to said plurality of drain sections adapted to carry fluid exiting the reservoir through said plurality of drain sections; and
- a pump coupled to said manifold for developing a vacuum pressure therein.

53. A drain system as in claim 52, wherein said sides associated with said plurality of drain sections are arranged in at least one contiguous pattern wherein said contiguous pattern is defined by at least two adjacent ones of said sides.

54. A drain system as in claim 52, wherein each of said drain sections comprises a solid piece of material with said fluid flow paths formed therethrough.

55. A drain system as in claim 52, wherein each of said drain sections comprises an extruded piece of material with said fluid flow paths formed therethrough.

56. A drain system as in claim 52, wherein each of said drain sections comprises a molded piece of material with said fluid flow paths formed therethrough.

57. A drain system as in claim 52, wherein each of said fluid flow paths is at least approximately 3 feet in length.

58. A drain system as in claim 52, wherein said side of said drain section is coincident with one of the multiple surfaces of the reservoir.

59. A drain system as in claim 52, wherein said side of said drain section is planar.