Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

Daniel S. Jones and Syri J. Koelfgen
NASA Dryden Flight Research Center, Edwards, California, 93523

Marvin W. Barnes, Rachel J. McCauley, and Terry M. Wall
NASA Marshall Space Flight Center, Huntsville, Alabama, 35812

Brian D. Reed
NASA Glenn Research Center, Cleveland, Ohio, 44135

and

C. Miguel Duncan
TASC Rocket Systems Launch Program, Kirtland AFB, New Mexico, 87117
Outline

- Introduction
- Launch Abort System (LAS) Abort Motor (AM)
- LAS Attitude Control Motor (ACM)
- LAS Jettison Motor (JM)
- Crew Module (CM) Reaction Control System (RCS)
- Abort Test Booster (ATB) SR118
- Conclusion
Introduction
Constellation, Orion, and the AFT Program

• Constellation Program – Background
 – Continue U.S. human transport capability to the International Space Station (ISS), after the retirement of the Space Shuttle
 – Return humans to the Moon, and eventually take them to Mars
 – Included development of the Ares I rocket, Ares V rocket, Orion Crew Exploration Vehicle (CEV), and Altair lunar lander.

• Orion CEV – Background
 – The Ares I architecture includes the Orion CEV.
 – Consists of: the Launch Abort System (LAS), Crew Module (CM), Service Module (SM), and Spacecraft Adapter (SA).
 – Focus: LAS capability.

• Orion Abort Flight Test (AFT) program
 – Purpose: Conduct a series of flight tests in several launch abort scenarios to certify Orion LAS capability.
 – Responsibility: The NASA Orion Flight Test Office (FTO), located at NASA JSC.
Introduction
LAS Motors, and the Orion AFT Flight Manifest

- LAS includes several subsystems, three of which are solid rocket motors: the Attitude Control Motor (ACM), the Jettison Motor (JM), and the Abort Motor (AM)
- Conducted a significant review of Apollo architecture, including the Launch Escape System (LES)
- Review of the Apollo Flight Test Program facilitated the initial creation of the Orion AFT Flight Manifest
 - Pad Abort (PA) and Ascent Abort (AA) flight tests were planned at the White Sands Missile Range (WSMR), NM

<table>
<thead>
<tr>
<th>Flight Test (in chronological order)</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-1</td>
<td>Abort from launch pad</td>
</tr>
<tr>
<td>AA-1</td>
<td>Maximum dynamic pressure abort</td>
</tr>
<tr>
<td>PA-2</td>
<td>Abort from launch pad with flight-like abort trajectory</td>
</tr>
<tr>
<td>AA-2</td>
<td>Transonic abort</td>
</tr>
<tr>
<td>AA-3</td>
<td>Off-nominal maximum dynamic pressure abort</td>
</tr>
<tr>
<td>AA-4</td>
<td>High altitude abort</td>
</tr>
</tbody>
</table>

Apollo, with LES
Introduction
PA-1, and Planned Future Flight Test Vehicles

- The Orion FTO successfully completed PA-1
- AA-1 was to include a CM cold gas Reaction Control System (RCS)
- All AA flights were to include an Abort Test Booster (ATB), with an SR118 motor

Launch Abort Vehicle (LAV)
(Note: LAV = LAS + CM)

Separation Ring

Abort Test Booster (ATB)

PA-1 Launch, 06May10

Typical Pad Abort sequence of events
LAS AM Overview, PA-1
Purpose, Design, and Development

- **Purpose**: Provide the thrust force necessary to propel the LAV safely away from a failed booster.
 - Thrust is balanced between the desire to escape quickly, and the human tolerance for acceleration.
- **Developed by**: Alliant Techsystems, Inc. (ATK) in Utah.

High performance turn-flow motor featuring 4 nozzles at an efficient 25 degrees cant
- Total flow turn = 155 degrees

Light weight high performance carbon fiber composite case

High burn rate propellant in a high surface area grain configuration provides required abort performance

Convergent manifold configuration stabilizes flow, balances thrust, and maximizes performance

High performance pyrogen igniter

LAS AM manifold during hydroproof testing at ATK
LAS AM Overview, PA-1
Static Fire Testing and Performance

- Subscale Tests (SST) and a full scale Static Test (ST) were completed

<table>
<thead>
<tr>
<th></th>
<th>SST-1</th>
<th>SST-2</th>
<th>ST-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Fire Test Date</td>
<td>26Jun07</td>
<td>10Aug07</td>
<td>20Nov08</td>
</tr>
<tr>
<td>Description</td>
<td>Subscale test series:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ~1/4-scale of the geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ~1/25-scale of the overall thrust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test configuration</td>
<td>Horizontal</td>
<td>Vertical, upside-down</td>
<td></td>
</tr>
<tr>
<td>Nozzle configuration</td>
<td>• Two reverse flow nozzles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 180 degrees apart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Canted 25 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Four reverse flow nozzles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 90 degrees apart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Canted 25 degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PA-1 LAS AM Performance:
 - Nominal maximum thrust: ~500,000 lbf
 - Action time: ~7 seconds
• **Purpose:** Provide pitch and yaw control to optimize the LAV abort trajectory.
 - **Boost phase:** Utilized for LAV directional control during ascent vehicle separation, and stabilizes the LAV during LAS AM operation.
 - **Sustain phase:** Utilized to pitch-over and reorient the LAV into a “CM heat-shield forward” attitude, and stabilize the LAV in preparation for LAS jettison.

• **Developed by:** Alliant Techsystems, Inc. (ATK) in Elkton, Maryland.

Lithium-ion battery assembly, with 28-volt and 140-volt batteries, each with a redundant backup

Aluminum controller/battery stand

Gas generator assembly, with D6AC steel case and closure, and aluminum skirts

Controller assembly, including single-fault-tolerant controller circuits with an arbiter

Eight proportionally controlled pintle valve assemblies
LAS ACM Overview, PA-1
Static Fire Testing and Performance

- Several subscale High Thrust (HT) tests were completed
 - Primary focus: To develop the valve assembly

<table>
<thead>
<tr>
<th>HT-4</th>
<th>HT-5</th>
<th>HT-6</th>
<th>HT-7</th>
<th>HT-8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static fire test date</td>
<td>31Oct07</td>
<td>31Jan08</td>
<td>14Jan09</td>
<td>09Apr08</td>
</tr>
<tr>
<td>Number of valves</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Burn time</td>
<td>~9 sec</td>
<td>~27 sec</td>
<td>~27 sec</td>
<td>~8 sec</td>
</tr>
</tbody>
</table>

- Two full scale Demonstration Motor (DM) static fire tests were completed
 - DM-1: 15Dec09
 - DM-2: 17Mar10 (shown)

- LAS ACM Performance:
 - Maximum thrust: 7,000 lbf
 - Action time: 35 seconds
Purpose: Provide the thrust force required to jettison the LAS from the Orion CM, in both the abort and nominal flight scenarios.

- Abort scenario: Utilized after the AM and ACM have performed their functions.
- Nominal scenario: Utilized with fully loaded AM and ACM propellant.

Developed by: Aerojet in Sacramento, California.

Gas generator assembly, including a high performing propellant grain design, with a pyrogen igniter.

Nozzle assembly, 4 each:
- 17-4 stainless steel housing
- Canted 35 degrees
- 3 nozzles with a large throat, and 1 nozzle with a small throat
- Scarfed to OML of LAS
 (shown with nozzle covers)

Case, aft closure, and shroud assembly, all made with 6AL-4V titanium.

Aft closure assembly (not shown)

Shroud assembly: clamshell configuration with structural ribs.
Subscale Ballistic Test Evaluation System (BATES) tests were successful

<table>
<thead>
<tr>
<th>Static Fire Test Date</th>
<th>BATES-1</th>
<th>BATES-2</th>
<th>BATES-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>02 Oct 07</td>
<td>09 Oct 07</td>
<td>17 Oct 07</td>
</tr>
<tr>
<td>Top-Level Description</td>
<td>Igniter assembly test in free volume simulator</td>
<td>Axial nozzle assembly test</td>
<td>Canted and scarfed nozzle assembly test</td>
</tr>
</tbody>
</table>
| Test Configuration Details | • Full-scale igniter
• Open BATES chamber
• No nozzle | • Sub-scale igniter
• BATES chamber with ~1/4 flight mass propellant
• Single nozzle, axial, with flight-like throat | • Sub-scale igniter
• BATES chamber with ~1/4 flight mass propellant
• Single nozzle, canted and scarfed, with flight-like throat |

Two full scale DM static fire tests were completed
- DM-1: 27 Mar 08
- DM-2: 17 Jul 08 (shown)

PA-1 LAS JM performance:
- Nominal maximum thrust: Over 40,000 lbf
- Action time: ~2 seconds
CM RCS Overview, AA-1
Purpose, Design, and Development

- **Purpose:** To induce a roll torque to determine the response of the CM main chutes, and to position the CM properly for landing. Also used to provide rate damping, as needed.
- **Developed by:** NASA Glenn Research Center (GRC), in Cleveland Ohio.
CM RCS Overview, AA-1
Purpose, Design, and Development (continued)

- CM RCS was to be utilized throughout five phases of the AA-1 flight test:

<table>
<thead>
<tr>
<th>Phase</th>
<th>RCS function</th>
<th>Time, s</th>
<th>Altitude, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rate damping after drogue chute deployment</td>
<td>0 – 1</td>
<td>34,750 - 34,550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – 70</td>
<td>34,550 - 16,675</td>
</tr>
<tr>
<td>2</td>
<td>Rate Damping</td>
<td>177 – 178</td>
<td>9,200 - 9,130</td>
</tr>
<tr>
<td>3</td>
<td>Induced Roll Torque (Development test objective)</td>
<td>184 – 196</td>
<td>9,000 - 8,680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196 – 202</td>
<td>8,675 - 8,520</td>
</tr>
<tr>
<td>4</td>
<td>Rate Damping</td>
<td>202 – 205</td>
<td>8,500 - 8,430</td>
</tr>
<tr>
<td>5</td>
<td>Roll Control Algorithm</td>
<td>221 – 223</td>
<td>8,000 - 7,960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223 – 268</td>
<td>7,945 - 6,700</td>
</tr>
</tbody>
</table>

- GRC design team completed PDR, and procured most of the flight hardware
Purpose: To provide the required thrust force to simulate an ascent of the Orion spacecraft on the Ares I CLV, and deliver the LAV to the appropriate test conditions for an abort.

ATB Developed by: Orbital Sciences Corporation, in Chandler Arizona.

SR118 Developed by: ATK in Utah.
- Development initiated in 1978 (aka Peacekeeper, first stage)
- Peacekeeper deactivated in 2002

ATB Architecture
- Aeroshell structure, to simulate OML of Ares I CLV upper stage
- SR118 is encased within the ATB aeroshell

SR118 Architecture
- Dimensions:
 - 27.8 feet long
 - 7.7 feet case diameter
- Conventional propellant
- Pre-impregnated epoxy resin composite case
- Partially submerged nozzle, with TVC
- Pyrogen igniter in the forward dome

Photo of the SR118 during rotation
• SR118 testing has been extensive, and successful
 - Completed over 35 static fire tests
 - Over 50 flights, with no propulsion failures
• Orbital experience with SR118:
 - Three successful Minotaur IV flights, in support of DARPA, SMC, and Space Test Programs under a USAF SMC RSLP contract, all in 2010.

• Performance: Nominal average thrust ~500,000 lbf
Conclusion

- The architecture of any human-rated launch vehicle and spacecraft will always require the greatest level of safety.

- PA-1 required the use of three propulsive subsystems: the AM, ACM, and JM.
 - All three successfully demonstrated their required functions during the PA-1 flight.

- Subsequent Orion FTVs were also being developed that required the use of two additional propulsive subsystems: the CM RCS, and the ATB SR118.

- Since 2004, hundreds of people across the country have been devoted to increasing flight safety, with the development and testing of the Orion LAS.
 - Includes numerous government and private sector organizations.
Orion PA-1 Video

http://www.youtube.com/watch?v=wzlcDDJyTRI

Courtesy: Space City Films