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ABSTRACT  

 

The recent delivery of the first Goddard Space Flight 

Center (GSFC) Navigator Global Positioning System 

(GPS) receivers to the Magnetospheric MultiScale 

(MMS) mission spacecraft is a high water mark crowning 

a decade of research and development in high-altitude 

space-based GPS.  Preceding MMS delivery, the 

engineering team had developed receivers to support 

multiple missions and mission studies, such as Low Earth 

Orbit (LEO) navigation for the Global Precipitation 

Mission (GPM), above the constellation navigation for the 

Geostationary Operational Environmental Satellite 

(GOES) proof-of-concept studies, cis-Lunar navigation 

with rapid re-acquisition during re-entry for the Orion 

Project and an orbital demonstration on the Space Shuttle 

during the Hubble Servicing Mission (HSM-4).   

 

INTRODUCTION  

 

Recently, the first Navigator Global Positioning System 

(GPS) receivers were delivered for integration to the 

Magnetospheric MultiScale (MMS) mission spacecraft at 

Goddard Space Flight Center (GSFC).  This milestone is 

the culmination of many years of GPS receiver research 

and development activities at GSFC, towards the goal of 

expanding the utility of GPS to challenging new space 

applications well beyond low Earth orbit (LEO).   

 

The MMS mission consists of four identical, tuna-can 

shaped spacecraft designed to investigate magnetic 

reconnection of the Earth’s magnetosphere in very highly 

elliptical orbits known as Phase 1 & 2 with perigee at 1.2 

   and apogee at 12 and 25  , respectively.  Navigation 

performance requirements stem from the need to control 

the relative positions of the satellites in a desired 

formation, while protecting against conjunctions between 

the satellites.  The Navigator receiver includes a 

capability to acquire and track very weak GPS signals, 

and incorporates an ultra-stable reference oscillator 

(USO) and internal extended Kalman filter to meet 

navigation and timing performance requirements in the 

presence of sparse GPS signal availability.  The receiver 

is designed to survive the harsh radiation environment 

present in high Earth orbits.  Finally, the MMS 

implementation required a customized radio-frequency 

(RF) design and features to allow tracking of the GPS 

signals via four independent antennas spaced radially 

around the perimeter of the spinning spacecraft.   

 

The design of the Navigator receiver hardware and 

software has been documented in several references [1] 

[2] [3] and will not be repeated here.  Instead, this paper 

will focus on the test setup of GSFC’s Formation Flying 

Testbed (FFTB), a state-of-the-art facility for the testing 

and analysis of hardware-in-the-loop navigation, used for 

MMS testing, and a summary of the MMS testing results.   
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NAVIGATOR GPS PROGRAM  

 

NASA Goddard’s GN&C hardware components branch 

initiated a spaceflight GPS receiver development program 

in the mid 1990’s.  GSFC led one of the early flight high 

Earth orbit GPS experiments, operating a GPS receiver on 

the AMSAT-OSCAR-40 satellite which recorded 

measurements of the GPS side lobe signals [4].  GSFC 

then leveraged a popular commercial GPS chipset to 

create the PiVoT GPS receiver, which was used as a 

development platform, and on Balloon experiments.  As 

the program progressed, high-altitude space-based GPS 

navigation, above the GPS constellation itself, emerged as 

a focus area [5] [6].  In the early 2000’s the Navigator 

GPS receiver program was initiated to create a GPS 

receiver specifically designed for Geostationary and other 

high-altitude applications [1] [2] [3].  On the way to the 

development of the MMS-Navigator, shown mechanically 

integrated to the first spacecraft bus in Figure 1, related 

receivers were built in support of multiple missions and 

mission studies, including the LEO Global Precipitation 

Measurement (GPM) mission, above the constellation 

navigation for the Geostationary Operational 

Environmental Satellite (GOES) proof of concept studies, 

cis-Lunar navigation with rapid re-acquisition during 

re-entry for the Orion Project, and an orbital 

demonstration on the Space Shuttle during the Hubble 

Servicing Mission (HSM-4) [7].   

 
Figure 1:  Fully redundant Navigator box mechanically 

integrated onto MMS spacecraft #1. 

THE MAGNETOSPHERIC MULTISCALE 

MISSION 

 

The MMS mission consists of four nearly identical, tuna-

can shaped spacecraft designed to investigate magnetic 

reconnection of the Earth’s magnetosphere in two regions 

of interest (RoI), from 9 to 1    and 18 to 25  , 

respectively.  The spacecraft will spin at a nominal rate of 

three revolutions per minute (RPM) and vary in formation 

configuration from a tetrahedron in the RoIs, near apogee, 

to a linear “string-of-pearls” configuration at perigee.  

Two highly elliptical orbits known as Phase 1 (1.2x12  ) 

and Phase 2 (1.2x25  ) have been designed to enable 

scientific observations in the two RoIs.  [8] 

 

 
Figure 2: Regions of interest in the MMS orbit [8]. 

Fully redundant Navigator GPS receivers on each 

spacecraft will track L1C/A code GPS signals in order to 

provide absolute position, velocity, and time (PVT) 

estimates to the spacecraft and ground system.  PVT 

estimates are produced continuously, in real-time, by the 

Goddard Enhanced Onboard Navigation System 

(GEONS), an integrated extended Kalman filter, which 

allows measurement updates even when fewer than four 

GPS signals are tracked, and high fidelity onboard state 

propagation during measurement outages.  Traditional 

point-positioning techniques are also used, when 

sufficient numbers of signals are visible, to initialize and 

monitor the filter performance.  The filtered solution is 

used by the navigation ground system and science team, 

and the time estimate is distributed in real time onboard 

via a one pulse-per-second (PPS) signal and an associated 

time-of-tone telemetry packet.   

 

The MMS-Navigator software and hardware have been 

specially designed to meet and exceed MMS mission 

requirements for tracking both weak and strong L1C/A 

GPS signals from a spinning platform.  A key to 

Navigator’s excellent performance is its ability to 

autonomously and rapidly acquire weak GPS signals with 

received carrier-to-noise density (C/N0) levels down to 

25dB-Hz, including those emerging from the transmitter 

antenna side-lobes.  This capability is achieved by the use 

of its specialized acquisition engine, described in [2].  

Figure 3 and Figure 4 depict the range of visibility of the 

GPS main-lobes and side-lobes antenna patterns to a 

receiver with assumed 35 and 25dB-Hz sensitivity, 

respectively.   
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Figure 3:  35dB-Hz sensitivity. 

 
Figure 4:  25 dB-Hz sensitivity. 

The remainder of the paper is organized as follows.  We 

first describe the test facility, Goddard’s Formation Flying 

Testbed (FFTB), including its capabilities and 

configuration for MMS testing.  Next we describe the 

mission requirements and test plan developed to verify 

these requirements.  Finally, we present results from the 

executed test plan, present some lessons-learned in 

developing and testing the MMS-Navigator, and draw 

conclusions. 

 

FORMATION FLYING TESTBED 

 

Goddard’s FFTB is a state-of-the-art test facility 

developed for hardware-in-the-loop validation of 

formation flying navigation sensors and systems.  It is 

equipped with a full range of RF test equipment including 

an array of GPS constellation and RF crosslink channel 

simulators.  The FFTB has supported the testing of 

navigation sensors for many NASA and outside missions 

including ST9, HST-SM4, Constellation/Orion, GPM, 

MMS, GOES-R, Firefly, AFRL ANGELS, to name a few 

[9][8][10][11].  The FFTB has also been the primary 

development lab for the Navigator GPS receiver program.   

 

For testing of the MMS GPS receivers, the FFTB has 

primarily relied on its array of Spirent STR4760 GPS 

constellation simulators to generate the L1C/A GPS 

signals which Navigator will expect to acquire and track 

on-orbit.  To allow continuous tracking of GPS signals 

from the spinning spacecraft, each MMS vehicle is 

equipped with four independent GPS antennas, spaced at 

90º offsets around the perimeter of the vehicle, the feeds 

of which are processed by four independent RF chains 

and analog-to-digital converters in the GPS receivers.  

Obstructions on the top and bottom of the spacecraft, 

coupled with mission attitude control requirements 

precluded a simpler two-antenna solution.  Therefore, the 

receiver was designed to track the GPS signals as they 

transition between the four perimeter antennas, 

approximately every 5 seconds for a 3 RPM spin rate.  

The high sensitivity requirement precluded analog 

combining of the four perimeter antennas. 

 

To simulate this configuration, a pair of dual-output 

Spirent STR4760 GPS constellation simulators, 

synchronized to a lab Cesium frequency standard, are 

setup in a master-slave mode to simulate signals for each 

of the four GPS antennas.  Accurate MMS spacecraft 

orbits and attitude time-histories are provided to these 

“Spirent racks” at a 10Hz update rate to provide a high 

fidelity RF simulated environment to test the GPS 

receivers.   

 

In order to fully test the performance of the receiver, 

particularly that of the embedded Kalman filter GEONS, 

a minimum of three complete orbits were simulated.  The 

MMS Phase 2 orbit has a period of approximately 2.8 

days, and since the testing proceeds in real-time, the 

Phase 2 simulations must run for a minimum of eight days 

to produce a sufficient dataset.  Achieving successful 

simulations of this length under schedule pressure was a 

major challenge for the test team.  The MMS test program 

had to overcome power outages, severe weather, 

simulator failures, HVAC malfunction, and humidifier-

generated electromagnetic pulses, to name a few. 

 

Customized parameters used to define the GPS 

constellation simulation include transmitter antenna gain 

pattern, receiver antenna gain and phase pattern, 

ionosphere model, fine signal strength settings, and a file 

defining the spacecraft orbit and attitude time-history.  

The geometry of the orbits implies that a large number of 

visible signals will be seen from the side lobes of the 

transmitter pattern and indeed, use of these signals is a 

key to successful GPS navigation for MMS.  The levels of 

these side-lobe signals are known to vary significantly 

between GPS transmitters and are known to have 

significant variation in azimuth in each individual antenna 

pattern.  The Block IIR-M transmitter patterns have been 

used in MMS-Navigator testing, as they provide perhaps 

the best representation of the signals present across the 

GPS constellation, and provide a conservative 

representation of side-lobe signal levels.  The receiver 

antenna gain and phase patterns were generated by the 

MMS GPS antenna design team using high fidelity 

electromagnetic models of the MMS antennas on the 
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MMS spacecraft.  Finally, a significant effort was made to 

achieve an accurate, yet reasonably conservative, 

calibration of the Spirent signal levels in order to ensure 

that the C/N0 levels seen by the receiver-under-test match 

predicted levels on-orbit, for different test configurations.  

This is perhaps the most critical setting for the simulation 

because slight inaccuracies in its setting, producing 

received power levels either slightly higher or slightly 

lower than realistic conditions, can significantly affect 

navigation performance achieved.  The next section is 

dedicated to discussing how this signal level was 

calibrated. 

 

SIGNAL LEVEL CALIBRATION 

 

This calibration boils down to careful selection of the 

simulator’s “global gain” parameter which is applied to 

all transmitter-to-receiver links.  This parameter can be 

used to compensate for differences in the lab and on-orbit 

system noise temperature and to account for assumptions 

in the simulator link model that may not accurately model 

the on-orbit situation.  Table 1 displays an example 

(actual numbers not important for this discussion) 

breakdown of the terms contributing to the global gain 

adjustment. 

 

The first term in the table is the receiver noise adjustment.  

To compute this term, we predicted the on-orbit system 

noise temperature using flight hardware noise and passive 

loss specifications, and an estimated antenna noise of 90K 

(based on a certain average of 30K space and 290K Earth 

temperatures).  The lab system noise temperature was 

estimated based on a 290K simulator antenna 

temperature, noise specifications for the engineering-unit 

LNA, and careful accounting of passive losses. 

 

The next five terms in the Table have to do with the 

simulator link model.  There are adjustments for differing 

definitions of the “Reference Range” and an associated 

off-boresite transmit angle and gain between IS-GPS-

200F [12] and the Spirent User Manual [13].  Another 

adjustment removes an atmospheric attenuation term that 

does not apply in space.  The receiver antenna peak gain 

is then accounted for (as our receive antenna models are 

generally given as attenuation patterns).  Next, some gain 

is removed for expected, but unmodeled, polarization 

losses in the transmit antenna side-lobes.  (Including this 

term in the “global gain” makes signals received from the 

transmit antenna main lobe somewhat lower than 

expected, but we prefer this to providing too much signal 

in the side-lobes.) Another term accounts for average 

excess gain of the (Block IIR) GPS transmitter above 

specified levels.   

 

Finally we account for attenuators affixed to the Spirent 

output ports.  These are in place to keep the global gain 

near its upper limit.  This term could have been accounted 

for in the receiver noise adjustment term, but we prefer to 

account for it separately. 

 

To verify this global gain calibration procedure, the same 

general procedure was applied to set the global gain for a 

rooftop-mounted MMS engineering test unit (ETU) 

antenna and LNA/passive loss configuration.  A Spirent 

simulation was then set up to model the rooftop scenario 

for the current date.  Reported C/N0 levels from the 

simulation were compared to those estimated from the 

live-sky signals received by the antenna and showed to be 

in very good agreement (neglecting multipath variations 

and low-elevation signals). 

 

The analysis conducted for the global gain calibration was 

also importantly used to calibrate the link model used to 

simulate GPS measurements in the MMS flight dynamics 

team’s offline orbit-determination Monte-Carlo 

simulations [14]. 

Table 1:  MMS global gain adjustments 

Source 

1. Rx noise adjust 

2. Reference Range 

3. Tx Antenna Gain 

4. Atmosphere 

5. Rx Antenna Gain 

6. Polarization Loss 

7. Excess Gain 

8. Fixed Attenuators 

 

PERFORMANCE REQUIREMENTS AND TEST 

PLAN  

 

The key performance requirements levied on the MMS-

Navigator are summarized in the list below.  These 

requirements are either directly related to the MMS 

primary navigation requirements [15], or are in place to 

ensure consistency with the associated GEONS offline 

Monte Carlo simulations [14]. 

 

● Align PPS to TAI time within 325  s  

● Maintain semimajor axis (SMA) error less than 

100m (above 3   ) 

● Acquire signals at or below -175 dBW 

● Track signals at or below -172 dBW 

● Acquire 95% of signals with received power 

greater than -156 dBW, and 75% of signals with 

received power less than -156 dBW 

● Acquire and track signals with a dynamic range 

of at least 15 dB 

● Maintain measurement noise less than 30 m (3 ) 

 

In order to verify these primary requirements, a series of 

tests were developed and assembled into a coherent test 

plan. Laboratory resources were organized in attempt to 

meet the scheduled delivery of hardware to the spacecraft 

level.  In general, each receiver must individually pass the 
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full system and benchmark tests; however, corner-case 

tests need only be demonstrated once because they either 

validate software or verify performance beyond normal 

requirements. 

 

Simulation data processing tools were developed and 

revision controlled to ensure repeatability of the analysis 

of each dataset.  The processing tools go well beyond 

simply verifying requirements.  For each simulation, 

critical telemetry from the receiver is carefully checked to 

ensure it meets expectations and compares well with 

agreed upon performance standards, which are generally 

derived from prior, pre-validated simulations 

 

KEY TEST DESCRIPTION AND RESULTS 

 

In this section we describe and present example results 

from a subset of the tests run on the MMS-Navigator GPS 

Flight Box 1-Side A.  This subset includes two full 

system tests (Phase 1, Phase 2B), two benchmark tests 

(Measurement Noise, Acquisition Probability), and one 

corner-case test (High Spin Rate).   

 

Table 2 lists dynamic modeling parameters used in both 

generation of truth trajectory, and modeled in the GEONS 

filter during full system testing.  Differences between 

truth and GEONS model parameters are intended to be 

representative of dynamic modeling errors that will be 

present during the actual mission. 

Table 2:  Parameters for the Full System Tests [14]. 

Parameter Truth Filter 

Non-Spherical Earth 

Gravity Model 
21x21 EGM-96 13x13 JGM2 

Point Mass Gravity 

Sun, Moon 

using DE 405 

ephemeris 

Sun, Moon using 

analytical fit to 
DE 404 ephemeris, with 

30 sec 

min lunar update 
interval 

Atmospheric Drag 

Jacchia Roberts, 

Schatten +2 sigma 

prediction solar 
flux, CD of 2.2, 

Drag area of 7.1 m2 

Analytical fit to Harris 

Priester model, CD of 
2.2, Drag area of 7.1 m2 

Solar Radiation 

Pressure  

Spherical model, CR 
of 1.8, SRP area of 

2.026712 m2 

Spherical model, CR of 

1.8, SRP area of 2.02m2 

Integrator  
8(9) Variable Step 

Runge-Kutta 

4th Order Fixed Step 

Runge-Kutta 

Integration Stepsize  1 second 10 seconds 

Precession/Nutation 

Update Interval  
1 second 10 seconds 

Maneuver Model  Finite burns 

Accelerometer 

measurements 

averaged over 10 seconds, 

including acceleration 

knowledge errors 
 

PHASE 1 TEST 

 

The Phase 1 test validates the receiver’s performance 

during the 24hr period MMS-Phase 1 orbit, where the 

spacecraft make scientific observations in the Earth’s 

dayside magnetopause.  There are two maneuvers which 

Navigator must compensate for during this test.  This is 

done by passing accelerometer data to the GEONS filter 

during the simulation.  Since several orbits are required to 

fully validate the receiver performance, the Phase 1 test is 

run for a minimum of five days. 

 

The simulated Phase 1 trajectory begins with the 

spacecraft approaching perigee at an altitude of about 4 

   allowing the reception of many strong signals early in 

the simulation.  GEONS is initialized with a valid point 

solution that has a geometric dilution of precision 

(GDOP) of 5.0 or less.  This helps ensure that a 

reasonably good state is used to initialize the Kalman 

filter.   

 

Figure 5 shows a quickly converging PPS error.  The PPS 

error is a measurement Navigator’s timing accuracy with 

respect to true simulation time.  There is a residual 

uncompensated line-bias of about 125ns and a maximum 

variation of about 50ns, which primarily consists of 

quantization of the PPS pulse edge to one of the receiver’s 

digital clock edges.  The periodic nature of the errors 

coincides with the orbital period, although in Phase 1 

timing errors never grow significantly because the filter is 

able to accurately model the USO and regularly has at 

least one measurement to process.   

 

Figure 6 shows the real-time GEONS root sum-of-squares 

(RSS) position and velocity (PV) errors and filter one-

sigma covariance estimates and Figure 7 shows the 

number of GPS signals tracked and orbital radius 

together.  That the actual position and velocity errors are 

much smaller than the covariance estimates is expected 

and is the result of a conservative filter tuning.  The 

periodic cycling of the error and covariance from 

maximum to minimum delineates the subsequent orbits as 

they progress from apogee to perigee and apogee again.  

The PV errors and filter covariance reach a minimum near 

perigee where the presence of many high quality 

measurements result in rapidly improved state estimates.  

The PV errors and filter covariance reach their maximum 

values before multiple GPS signals are tracked near 

perigee, and the maximum position error is less than 20 m 

RSS. 
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Figure 5:  Phase 1 PPS error. 

 
Figure 6:  Phase 1 GEONS PV error and 1-σ covariance. 

 

 
Figure 7:  Phase 1 - number of signals used in GEONS 

solution, and orbit radius. 

Figure 8 shows the error in the SMA estimate.  The 100m 

requirement is easily met here, even in the region where 

the requirement is relaxed, below 3  .  Obvious spikes in 

SMA error occur as perigee is approached and the 

GEONS state is updated with new information from four 

GPS signals.  Throughout the orbit, a strong correlation 

builds up between radius and speed error, and new 

information which is provided to the state estimator does 

not fit this correlation.  This creates a transient in the 

estimate which is evident each time the spacecraft 

approaches a perigee after having tracked less than four 

GPS signal simultaneously for the majority of the 

previous orbital period.  This topic is covered in detail by 

a recent article by Carpenter, et al. [16]. 

 
Figure 8:  Phase 1 SMA error. 

Figure 9 shows an example of the range of      reported 

by Navigator as it exits perigee during the Phase 1 

simulation.  Notice the weak signals, identified with bold 

lines, which are successfully acquired and tracked in the 

presence of strong signals, the difference between some 

of which are greater than 15 dB (recall the dynamic range 

requirement).  Acquiring and tracking weak signals in the 

presence of strong signals poses some difficulties which 

are discussed in the “Points of Interest” section found 

later in this paper. 

 
Figure 9:  An example of the dynamic range of the      

reported by Navigator from the Phase 1 test. 
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PHASE 2 TEST 

 

Once an apogee raising maneuver sequence is complete, 

the MMS constellation will be in its 2.8 day-long Phase 2 

orbit where the spacecraft make scientific observations in 

the Earth’s nightside magnetopause.  The Phase 2 test is 

designed to verify performance in this regime.  Again, 

since we require several orbits to validate the receiver 

performance, the Phase 2B test is run for a minimum of 8 

days, but preferably for 14 days.  

 

Again the simulation started with the spacecraft entering 

perigee at an altitude of 4  .  Figure 10 shows the PPS 

error over the duration of the Phase 2 orbit.  As expected, 

the PPS error decreases rapidly as the simulated orbit 

moves through perigee and slowly grows as fewer signals 

are available at high altitude.  Figure 11 shows the 

GEONS state estimate RSS PV errors and filter 1-sigma 

covariance.  A small gap in the data around day 9 on the 

horizontal axis was due to a temporary failure of the GSE 

data collection equipment, but caused no major loss of 

information.  As expected, the PV errors grow larger in 

the Phase 2 orbit than they do in Phase 1, reaching 50-

100m and 0.25-0.75cm/s respectively.  Still, all 

requirements are met with margin.   

  

Figure 12 is analogous to Figure 7.  Notice that, on 

average, at least one GPS signal is typically visible 

(although there are significant periods where no signals 

are tracked) even at apogee of 25   where the received 

signal power is below -171 dBW.  Figure 13 shows the 

error in the estimated SMA is less than 18 m (as 

compared to the 100 m requirement in the RoI) after a 

two-perigee pass convergence period. 

 
Figure 10: Phase 2 PPS error. 

 
Figure 11:  Phase 2 GEONS PV error and 1-σ covariance. 

 
Figure 12:  Phase 2 number of signals used in GEONS 

solution, and orbit radius. 

 
Figure 13:  Phase 2 SMA error. 

MEASUREMENT NOISE 

 

The test plan also includes a measurement noise test that 

is designed to verify the pseudoranges produced by the 

receiver meet their noise requirements (<30m, 3-sigma).  
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To estimate the noise on the pseudorange measurements, 

a double-differencing technique is used to first remove 

signal dynamics by subtracting out the true dynamic and 

satellite clock (using information from the GPS 

simulator), and again differencing the single differenced 

measurements to remove receiver clock and other 

common errors [17].  Figure 14 demonstrates this process 

graphically. 

 
Figure 14:  Measurement Noise test algorithm. 

To ensure a sufficient number of samples throughout the 

range of expected power levels, a special simulator 

scenario was created.  The Measurement Noise test 

scenario is broken into fourteen discrete 30-minute stages 

where the signal strength is progressively stepped down 

from -146dBW to -174dBW.  Each stage employs an 

identical, repeated orbit segment with mission-typical 

dynamics. 

 

Figure 15 shows the results of the test from MMS-

Navigator Flight Receiver 1-Side A.  The 3-sigma noise 

on the pseudorange measurements is at most 

approximately 24m near the lower limit of Navigator’s 

tracking threshold of -174dBW.  Also shown on the plot 

is the theoretical delay-lock-loop (DLL) tracking thermal 

noise using Equation 2 from [18]. 

 

        √
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Here,    is the wavelength of a GPS L1 C/A code chip 

(293.05 m/chip),    is the dimensionless DLL 

discriminator correlator factor (½ for Navigator),   is the 

dimensionless correlator spacing between dedicated early, 

prompt, and late (EPL) correlators (½),    is the code 

loop noise bandwidth in Hertz (¼ Hz or ½ Hz),   is the 

predetection integration time in seconds (1 ms or 20 ms), 

and    is the dimensionless discriminator type factor for 

EPL correlators (1).  In Figure 15 one will notice a slight 

change in concavity of the DLL noise curve near -156 

dBW, the weak signal threshold point.  This is a result of 

the predetection integration time increasing from 1 ms to 

20 ms and the DLL noise bandwidth    increasing from 

¼ Hz to ½ Hz.  That the receiver would choose to use a 

wider DLL bandwidth for weaker signals may seem 

counterintuitive, but it was observed to increase the 

probability of successfully initiating tracking of weak 

signals. 

 

The measured pseudorange noise is reasonably close to, 

but generally exceeds the theoretical prediction by up to a 

factor of 2.  While this discrepancy has not been studied 

in detail, a plausible explanation is that additional 

noise/stress is introduced in the antenna handoff process.   

 

 
Figure 15:  Three-sigma noise on the pseudorange 

measurements. 

ACQUISITION PROBABILITY 

 

In order to verify the MMS Navigator signal acquisition 

requirements, a special acquisition probability test was 

developed.  At this point the reader should note that 

Navigator uses a dedicated Fast-Fourier-Transform-based 

acquisition engine to perform acquisition attempts rather 

than the common approach of configuring tracking 

channels in search mode.  This test is designed to evaluate 

the performance of the acquisition engine and verify the 

receiver’s ability to successfully handoff acquired signals 

to a tracking channel.  The acquisition engine will 

normally only operate if there is a free channel to handoff 

acquired signals to, and in the presence of GPS signals 

empty channels are quickly filled.  This limits the number 

of acquisitions attempts performed in normal operation.  

To ensure that a statistically significant sample of 

acquisitions could be collected in a reasonable amount of 

time, a special build of the Navigator software was 

developed to sidestep this issue.  In this build, six of the 

receiver’s twelve channels were configured to behave 

normally (i.e. acquire and track signals, compute point 

solutions, and send measurements to GEONS).  The 

remaining six channels were configured specifically for 

the test to receive acquisition attempts.  The acquisition 

engine was set up to attempt to acquire the signal being 
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tracked by channel number one (with Doppler predictions 

based on GEONS state estimates allowed for weak 

signals).  The first channel’s tracking state information 

(C/N0, code phase, Doppler, information) was recorded 

and used as truth data.  An acquisition was deemed 

successful only if a successful handoff from acquisition to 

tracking (to one of the second group of six channels) was 

achieved, and the tracking parameters matched the 

channel-one truth data.  After a successful acquisition, the 

channel was cleared and the process restarted. 

 

The MMS-Navigator uses two modes for acquisition: one 

mode is configured for speed, and the other for high-

sensitivity.  These are referred to as “strong” and “weak” 

acquisition modes, respectively.   

   

The Acquisition Probability test software build is 

designed to make approximately equal numbers of strong 

and weak mode attempts.  To get a wide range of signal 

levels with mission-typical dynamics, a Spirent 

simulation was configured to execute a segment of the 

Phase 1 orbit starting well above perigee, passing through, 

and then ending well above perigee again.   

 

The resulting detection-probability vs.      curves, 

separated by weak or strong mode, and the distribution of 

attempts are shown in Figure 16.  Navigator’s acquisition 

performance, which we take as the maximum of the red 

and blue curves dominates the black-dotted requirement 

line. 

 
Figure 16:  Acquisition characteristics. 

MAXIMUM SPIN RATE 

 

While the nominal spin rate of the MMS spacecraft is 3 

RPM, unforeseen circumstances may prohibit the attitude 

control system from precisely controlling this rate.  

Furthermore, during the commissioning phase of the 

MMS mission, the spacecraft will spin at a much higher 

rate in order to aid in the deployment of booms and wires 

which will extend radially from the sides of the 

spacecraft.   

 

In the course of regular performance testing, the spin rate 

was set to 3.4 RPM, with the signal moving from antenna 

to antenna approximately every 4.4 seconds.  This slightly 

elevated spin rate provided a margin of conservatism in 

the full system test results, but the question remained as to 

how higher spin rates would degrade the receiver’s 

performance.  To answer this question we developed the 

maximum spin rate test. 

 

Previous Spirent testing and theoretical considerations 

implied that the upper limit of Spirent’s capacity for this 

type of antenna switching testing is between 

approximately 7.5 RPM and 10 RPM.  Therefore, a Phase 

1 Spirent scenario was created in which the spacecraft 

was spinning at 7.2RPM, allowing sufficient margin from 

the empirically derived limit of Spirent and also show 

Navigator can perform at much higher than nominal 

spinning rates.  At 7.2 RPM, the handoff between 

antennas occurs approximately every 2.1 seconds. 

 

As expected, Navigator’s position and velocity errors are 

higher in these tests than during the nominal spin rate 

tests, because fewer GPS signals are tracked, as shown by 

Figure 17 and Figure 18.  With fewer measurements 

available for GEONS, the covariance also remains higher.  

While the error in the SMA is apparently converged after 

the first perigee pass in the nominal spin-rate case (Figure 

8), two passes are required for the filter to converge in the 

maximum spin rate test (Figure 19). 

 
Figure 17:  High RPM GEONS PV error and 1-σ 

covariance. 
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Figure 18:  High RPM number of signals used in GEONS 

solution, and orbit radius. 

 
Figure 19:  High RPM SMA error. 

POINTS OF INTEREST 

 

In addition to the baseline Navigator receiver capabilities 

such as weak signal tracking and survivability in high 

Earth orbits, the requirements of the MMS mission 

necessitated other advanced capabilities and 

customization.  While the Navigator team has fully met 

the challenge, in early tests of the receiver erroneous 

measurements and large outliers were sometimes 

observed.  Below, two primary causes for these outliers 

are discussed: cross-correlations (XC), and parity errors in 

decoding the GPS broadcast ephemeris.  Also discussed 

are the implemented strategies to identify and prevent 

these problems from degrading receiver performance. 

 

CROSS-CORRELATIONS 

 

Cross-correlations occur when a GPS signal modulated 

with a particular pseudo-random noise (PRN) sequence is 

tracked with a different PRN sequence. Theoretically, the 

1023-length GPS ranging codes provide at least 23dB of 

protection against XCs, but one may reasonably expect 

this protection to be reduced by 3 dB in the presence of 

noise [19].  Thus, given an acquisition sensitivity of 23-

25dB-Hz or lower, signals with C/N0 greater than about 

46 dB-Hz pose a risk for being acquired and tracked as 

XCs. This risk is particularly high in the MMS-Navigator, 

which sees a high dynamic range of signal levels (23-

55dB-Hz), and for robustness reasons, uses very little a-

priori for acquisition, searching across large Doppler and 

delay swaths for strong and weak signals simultaneously.  

 

Cross-correlation signals are troublesome as they prevent 

valid signals from using the channel and produce invalid 

measurements. While standard error checks in the point 

solution almost always edit these measurements (because 

their residuals are so large) the possibility remains that 

one could pass the error checks and cause performance 

issues.   

 

Unfortunately the GPS broadcast message does not 

contain an explicit transmitter identification (SVID) field; 

otherwise this would provide an obvious way to detect 

XCs: check if the PRN sequence used for tracking 

corresponds to that assigned to the SVID providing data. 

Nonetheless the MMS-Navigator has developed a method 

of identifying cross-correlations from broadcast data. In 

this method the position of the tracked satellite (with its 

assumed SVID based on the PRN sequence being used for 

tracking) is computed at a common time using both the 

broadcast ephemeris downloaded from satellite and a 

trusted GPS almanac received from a strong signal. If the 

positions differ by more than 10km, the signal is declared 

a XC and removed from its tracking channel, otherwise it 

is “validated” as a good (non-XC) signal once and for all. 

A study of these position differences using three years of 

GPS archive data, showed this method to be very robust.  

In our method, we use the time of ephemeris (TOE) plus 

one half hour as the common time for position 

calculation. The half-hour offset ensures that the effects 

of certain ephemeris parameters are not “zeroed-out” in 

the comparison.   

 

PARITY ERRORS IN NAVIGATION MESSAGE 

 

At an orbital radius of 25   Navigator will track signals 

between 23-30 dB-Hz.  These signals allow GEONS state 

estimates to converge faster and maintain a lower filter 

covariance.  Signals tracked below 30dB-Hz make up 

33% of the signals tracked during Phase 2.  One of the 

problems with weak signals is the possibility of bit errors 

in decoding the navigation data message, and studies of 

MMS-Navigator telemetry have shown elevated bit error 

rates (for weak signals) due to cycle slips occurring in the 

antenna handoff process.    

 

Bit errors are detected by the (32, 26) extended Hamming 

Code algorithm described in [12].  This algorithm only 

guarantees that four bit errors will be detected per 30 bits 
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decoded.  Bursts of bit errors may cause the Hamming 

code to fail in a non-detectable way. Cycle slips may 

invert the bit stream somewhere in the middle of the 30 

bits being parity checked, which can lead to a burst of bit 

errors that fail to be detected.  Undetectable bit errors in 

parity checks may be seen either as unusual values in 

fields such as time of week, improper reserved bits, or 

incorrect ephemeris or almanac parameters, which can 

lead to large measurement errors. 

 

To address the weak-signal bit error problem in the 

MMS-Navigator, the almanac data is not decoded from 

signals with a      less than 30 dB-Hz, and ephemeris 

information is not used until it is verified that two decodes 

for a given issue of data ephemeris (IODE) are identical. 

 

CONCLUSION 

 

The MMS Mission Navigator GPS Receiver embodies 

over ten years of research and development in the area of 

high-altitude GPS navigation.  The receiver has been 

designed specifically to meet and exceed the unique and 

challenging MMS requirements, which include the ability 

to acquire and track strong and weak signals (including 

those emerging from the side-lobes of the transmitter 

antenna patterns), maintaining continuous tracking of 

signals as they rise and set on each antenna of the 

spinning platform, and to operate robustly in the harsh, 

high-altitude space environment. 

 

Developing the capability to test such a unique receiver 

represents a further challenge which has been met by 

Goddard’s Formation Flying Testbed.  The lab has been 

tailored to allow for efficient execution of the detailed test 

plan developed to verify the MMS-Navigator’s 

requirements.  This includes multiple, dual simulator 

configurations each with the capability to provide high 

fidelity RF stimulus for the MMS receivers.  The 

simulator customizations include adapting Spirent 

simulators for spaceborne applications, implementing 

mission-specific receive antenna profiles, and fine-tuning 

global gain settings.  Additionally, a suite of post-

processing software has been developed to support 

performance verification.  So far, three engineering test 

units and two of eight flight receivers have made their 

way through the lab. 

 

Results have been presented for a subset of the flight tests 

executed on the first flight receiver.  This includes two 

comprehensive full-system tests evaluating the 

performance in the two main MMS orbits, two benchmark 

tests, and a corner-case test.  The performance of the 

receiver in these tests has been shown to meet all of its 

requirements with comfortable margin. 
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